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Abstract

This paper presents a framework for software architec-
ture recovery and restructuring. The user specifies a high
level abstraction view of the system using a structured pat-
tern language. A pattern matching engine provides an opti-
mal match between the given pattern and a decomposition
of the legacy system entities by satisfying the inter/intra-
module constraints defined by the pattern.

The data mining technique Apriori is used by the match-
ing engine to reveal meaningful data and control flow prop-
erties of the target system and limit the search space. A
branch and bound search algorithm using a score function,
models the constraints in the pattern as a Valued Constraint
Satisfaction Problem (VCSP), and assists in searching for
an optimal match between the given pattern and the target
system.

1 Introduction

Software maintenance constitutes a major part of the
software life-cycle. Most maintenance tasks require a de-
composition of the legacy system into modules and func-
tional units.

One approach to architectural design recovery is to par-
tition the legacy system using clustering, data-flow and
control-flow analysis techniques [9]. Another approach is
based on user defined constraints that need to be satisfied
[18] and therefore, architectural recovery becomes a Con-
straint Satisfaction Problem (CSP). We propose an archi-
tectural design recovery based on design descriptions that

�This work was funded by IBM Canada Ltd. Laboratory - Center for
Advanced Studies (Toronto) and the National Research Council of Canada.

are provided by the user in the form of queries using a pat-
tern language. We call this pattern language, Architectural
Query Language (AQL).

In the proposed approach the target system (consisting
of a number of entities and relationships) is decomposed
into a collection of modules with inter/intra-module con-
straints, defined using the AQL. The intra-module con-
straints require that the resulting architecture demonstrate
high-cohesion among the module’s constituents. The inter-
module constraints, if manifested as import/export links,
can control the coupling among the modules. In this sense,
the AQL query provides a description of the conceptual ar-
chitecture and the instantiated pattern (i.e. source code en-
tities are assigned to the variables) provides the correspond-
ing concrete architecture. The matching engine searches for
an optimal arrangement of functions, types, and variables
of the original system, into modules that conform with the
user’s view of the conceptual architecture.

We view the matching process as a Valued Constraint
Satisfaction Problem (VCSP) with both implicit and explicit
constraints at the conceptual architecture level. In the VCSP
domain, the constraints can be violated and the goal is to
find an optimal solution. Therefore, the valuation of the vi-
olated constraints are minimized in order to group similar
values in a module and, at the same time, satisfy the con-
straints defined at the conceptual architecture abstraction.

Considering the size of the search space for the pattern
matching engine when a large system is involved, the scal-
ability of the approach is a fundamental requirement. In
order to limit the search space and speed-up the matching
process, we use data mining techniques and a variation of
the branch and bound search algorithm.
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Figure 1. The proposed software architecture
recovery framework

2 Related work

The following approaches are related to our work. The
Murphy’s reflexion model [13] allows the user to test a
high level conceptual model of the system against the ex-
isting high level relations between the system’s modules.
In our approach the user describes a high level conceptual
model of the system and the tool provides a decomposition
of the system into interacting modules. Some clustering
techniques also provide modularization of a software sys-
tem based on file interactions and partitioningmethods [12].
Specialized queries (recognizers) for extracting particular
properties from the source code are presented in [6, 8]. In
[3] a tool for code segmentation and clustering using depen-
dency and data flow analysis is discussed. Holt [9] presents
a system for manipulating the source code abstractions and
entity-relationship diagrams using Tarski algebra. In [4] a
clustering approach based on data mining techniques is pre-
sented. Lague et al. present a methodology for recovering
the architecture of the layered systems [10]. The methodol-
ogy focuses on the examination of interfaces between dif-
ferent system entities.

In this work we use the notion of Architecture Query
Language (AQL) which is a direct extension of Architec-
tural Description Languages (ADL) as discussed in: Unicon
[16], Rapide [11], and ACME [7].

3 A framework for architectural recovery

Software architecture recovery has been extensively in-
vestigated in the literature. It has been mostly seen as a
problem of identifying aggregate relations from the source
code and applying clustering techniques to derive highly co-
hesive, low coupled modules.

We present the architectural recovery problem as a pat-
tern matching problem. In particular, we define a pattern
language to specify the architectural patterns as abstract
queries. We call this pattern language Architectural Query
Language (AQL). The proposed software architecture re-

covery framework consists of three phases (Figure 1):
In the first phase (conversion), the source code is rep-

resented as a typed, attributed, directed multi-graph Gt.
Nodes in Gt represent source code entities (i.e., File, Func-
tion, Variable, Type). Edges in Gt represent data and con-
trol flow dependencies (i.e., calls, defines, sets, updates, de-
clares). In the conversion process, the low-level relations
between entities are aggregated into more abstract relations
(i.e., calls and uses) which is suitable for architecture re-
covery. The result is the source model graph Gs. Sim-
ilarly, the AQL query is represented as a multi-graph Ga

where nodes correspond to high level design abstractions
(i.e., Module, Subsystem) or, placeholders that are instanti-
ated by the source code entities. Edges in Ga correspond to
abstract design relations such as imports, exports, contains .
These entities and relations, defined for each programming
language, conform with a schema (domain model) for that
programming language. So far, we have defined domain
models for PL/I, PL/IX, PL/X, RPG, C, C++ and, Java.

In the second phase (Recovery or Restructuring), the pat-
tern matching engine instantiates the placeholders in Ga

with the source code entities in Gs. This instantiated graph
Ga is denoted as the concrete architecture graph Gc. Ide-
ally, we would like the graph Gc be isomorphic to a sub-
graph Gd, obtained from Gs. In this way, Ga and the pat-
tern matching algorithm generate a decomposition Gd of
Gs such that, Gc and Gd become isomorphic or similar.
Since graph matching algorithms are computationally ex-
pensive, we formulate the matching process using a tree-
based search space which is discussed in more detail in the
following sections.

In the third phase (distribution), as a post-processing
phase, the unresolved source code entities are bound to the
non-instantiated placeholders. This phase addresses the or-
phan adoption problem [9].

This framework allows us to restructure an existing sys-
tem by imposing constraints on the interactions between the
modules. A common form of these constraints is defining
import/export links among the modules in the AQL query.
We define uninstantiated links between modules as con-
straints, imposed by the user, to be satisfied by the recovery
process. The result of the recovery or restructuring process
is a concrete architecture that conforms with the conceptual
architecture as it is specified by the AQL query. We adopt a
typed, attributed, directed graph formalism which is similar
to some approaches in the literature [5]. The graph repre-
sentation of the target system (Gt or, Gs) is defined as a
tuple:

Gs = hVs;Asi

where Vs is the set of typed vertices obtained from the
target system (source code entities), and As is the set of al-
lowable edges between vertices obtained from the language
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domain model.
Similarly an AQL query can be represented as a graph

and is specified as a tuple:

Ga = hVa;Aai

where Va is the set of typed vertices (placeholders), and
Aa is the set of allowable edges (aggregate relations) be-
tween vertices.

The matching process instantiates the set of placeholders
Va with the entities from Vs, hence, converting Ga to Gc.

During the matching process, the graph isomorphism
problem can become intractable for real applications, there-
fore, we formulate our problem as a constraint satisfaction
search problem where isomorphism is relaxed to graph sim-
ilarity. In this framework, we use the data mining algorithm
Apriori in a pre-process phase to reveal the bi-partite sub-
graphs of the target system graph Gs. The resulting source
model graph Gs is used by the pattern matching process (as
a constraint satisfaction search space) to identify the iso-
morphism between Gc and specific partitions of the graph
Gs, as opposed to any arbitrary partition of Gs.

3.1 Target system representation

We use an Entity Relationship (ER) model to represent
the source code artifacts in the form of a directed typed
graph (i.e. Gt). Such a graph is represented using typed
nodes that correspond to syntactic constructs of the soft-
ware system under analysis obtained as a by-product of
the parsing process, and edges that correspond to allow-
able relationships between the graph nodes. Allowable re-
lationships between nodes are defined in terms of a domain
model for a given programming language. For example if
the implementation language is C, the domain model con-
tains entities such as File, Function, Identifier, Declaration,
and If-Statement. Allowable relationships in the C domain
model include Function calls Function, File includes Li-
brary, Function usesVar Identifier.

3.2 Source model representation using data min-
ing technique

The source model is an abstraction of the target system
to a level that is suitable for architectural recovery. In this
section, we discuss a source model representation that fa-
cilitates the process of mapping the entities from the source
model onto the modules in query. We use the Apriori data
mining technique [2] to discover a common pattern among
a group of system entities that is not trivially observable.

Association strength values, obtained from the Apriori
algorithm, are annotated to the nodes in the resulting source

model graph Gs. These association values are used to par-
tition the source model graph into highly-cohesive and low-
coupled subgraphs as the result of the recovery process.

Most data mining algorithms are based on the concept
of database transactions and their items that correspond to
market baskets. In our approach, each transaction is a func-
tion definition Ft from the software system under analy-
sis, and the transaction items are the system functions, data
types, and global variables (Figure 2) that are called or used
in any form by Ft.

Interesting properties of data in a database, namely as-
sociation rules, are extracted from frequent itemsets [2]. A
k-itemset is a set with cardinality k > 0. A frequent itemset
is an itemset whose elements are contained in every member
of a group of supporting transactions (i.e., supporting func-
tions in Figure 2). The cardinality of this group of trans-
actions is greater than a user-defined threshold called min-
support. The frequent itemsets are generated by the Apriori
algorithm.

A sample of the frequent itemsets is shown below:

1 <[V-3 T-42 T-44 T-58] [F-83 F-176 F-646 F-647] 4>
2 <[V-3 T-43 T-44 T-58] [F-83 F-647] 2>
3 <[V-3 F-478 F-649 F-719] [F-647 F-648] 2>
4 <[V-4 T-41 T-42 T-44] [F-83 F-647 F-648] 3>
5 <[V-30 F-552 F-553 F-567] [F-547 F-548] 2>

Each line is a record in the database consisting of an
itemset (left), followed by the transactions (baskets), and
the itemset support (i.e., the number of transactions). The
target system’s entities have been encoded (V for variable,
T for type, F for function).

The first line of the sample data above is interpreted as:
each of the functions F-83, F-176, F-646, and F-647 uses
all variable and data-types denoted by V-3, T-42, T-44, and
T-58. These records are part of the frequent 4-itemsets.

The frequent itemsets, discussed in the previous section,
are used to generate a collection of entities that can be
considered as the candidates to be contained in a module,
given a seed for that module. We call this collection
a domain. To generate a domain, we collect all those
entities that co-exist with an entity s (we call it main-seed
s) in any single frequent itemset, along with the entity’s
highest association value with the main-seed s. The
domain of s is denoted by Dom(s). Below, the set of enti-
ties inDom(s) (without the association values) are defined:

Dom(s) = fd j 8k 2 [1::jF j]; fd; sg � (Fk:I [ Fk:T )g

where, F is the whole collection of frequent itemsets,
Fk is a single itemset record, and I and T are the itemset
and its supporting transactions. For example, if the whole
frequent itemsets F in the system are those 5 records that
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transaction” notion in Reverse Engineering
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we presented above, then the domain of function F-83 is as
follows1:

Dom(F-83):
f<V-3 4> <T-42 4> <T-44 4> <T-58 4>
<F-176 4> <F-646 4> <F-647 4> <V-4 3>
<T-41 3> <F-648 3> <T-43 2>g

The frequent itemsets and their corresponding support-
ing functions demonstrate a high correlation among the
group of supporting functions and the itemsets. Therefore, k
(the cardinality of the itemset) can be viewed as the strength
of the association among every pair of items in the item-
sets and its supporting functions. A high association value
among a group of system entitles qualifies them as candi-
dates to be put in the same module.

This correlation can be demonstrated as complete bi-
partite sub-graphs in the whole graph Gs of the source code
entities. In this sense, the supporting functions and the item-
sets are located at two opposite sides. Figure 3(a) is a typical
representation of a graph that demonstrates the entities and
relationships in a source model (graph Gs). The entities
and relationships are an abstraction of those found in a soft-
ware system. The generalized relationships include: call,
useVar, and useType. Apparently, this graph lacks any in-
teresting pattern to be used for guiding the recovery process.
Applying the Apriori algorithm on this graph discovers the
bi-partite sub-graph patterns, Figure 3(b).

The collection of domains (Dom(s)’s) is the basis for
grouping the entities into modules, hence, this collection
constitutes our source model representation. We obtain n
domains (n is the number of distinct entities in the frequent
itemsets), whereas, we need only m (m<< n) domains, one

1In this example, we use the number of supporting functions as the
association value.
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Figure 3. (a) An un-processed graph repre-
sentation of the target system. (b) A bi-partite
sub-graph representation resulted from ap-
plying the Apriori algorithm on graph (a).

for each module to be recovered. In a pre-process phase, a
domain selection algorithm assists us in selecting the best m
domains. The selection process is based on the size of the
domain and the level of the association strength between its
contents.

This process provides a means for partitioning the search
space, hence, reduces the complexity of the matching pro-
cess.

3.3 System partitioning based on domain cou-
pling

A system can be partitioned into subsystems based on
the notion of domain coupling and cohesion as a gener-
alization of the conventional coupling between the system
components (e.g., file, module, subsystem). Convention-
ally, the coupling between two system components is de-
fined as the existing dependency between the components
based on a single criterion (e.g., calling dependency among
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the functions). The domain-coupling is defined as an over-
all dependency between two system components based on
an overall association between these components with re-
gard to several criteria. In Figure 4(a), a system of nine files
is shown. The domain-coupling of file 5 onto file 2 is pro-
portionally related to the size and density of the shaded area
to the area of the file 2 (i.e., the functions of file 2). The
domain-cohesion is defined for a single file as the propor-
tion of the overlapped part of the file’s functions domains to
the same file’s functions. Therefore, a file whose domains of
functions are concentrated on the functions of the file itself,
is highly cohesive. Figure 4(b) demonstrates the domain-
couplings of the file 5 onto other files of the system. In this
example, file 5 has high coupling to files 2 and 4, medium
coupling to file 1, and low-coupling to other files, therefore,
file 5 is not cohesive. The thickness of the arrows in Fig-
ure 4 can be shown by different colors between the files of
a system in a visualization tool such as Rigi. This method
allows us to group the files into subsystems according to the
strength of couplings to each other.

4 An abstract query language

In this section, we present an overview of the Architec-
tural Query Language (AQL) which is used for describing
(not specifying) the conceptual architecture of a legacy sys-
tem. The AQL is used for: i) decomposing the program
representation into modules with inter-/intra-module rela-
tionships; and ii) abstracting away the target system’s syn-
tactical and implementation variations.

The syntax of AQL encourages a structured description
of the architecture for a part or the whole system. A typical
AQL query is illustrated below:

BEGIN-AQL
MODULE: M1

MAIN-SEED: func numget()
IMPORTS:

FUNCTIONS: func $IF,
func ?F1, func ?F2, func ?F3

TYPES: type $IT
VARIABLES: var $IV

EXPORTS:
FUNCTIONS: func $EF,

func ?F4, func ?F5
TYPES: type $ET
VARIABLES: var $EV

CONTAINS:
FUNCTIONS: func $CF(4..20), func numget()
TYPES: type $CT(1..3)
VARIABLES: var $CV(0..2)

END-ENTITY

MODULE: M2
MAIN-SEED: func generic compute()
IMPORTS:

FUNCTIONS: func $IF,
func ?F4, func ?F5

TYPES: type $IT
VARIABLES: var $IV

EXPORTS:
FUNCTIONS: func $EF,

func ?F1, func ?F2, func ?F3
TYPES: type $ET
VARIABLES: var $EV

CONTAINS:
FUNCTIONS: func $CF(4..20),

func generic compute()
TYPES: type $CT(0..2)
VARIABLES: var $CV(0..2)

END AQL

The prefixes “$” and “?” represent simple-placeholders
and matching-placeholders, respectively. For example
$CF(4..20) denotes simple-placeholders that can be instan-
tiated by minimum 4 and maximum 20 functions that are
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Figure 5. Transformation steps from frequent
itemset to n-tree graph.

contained in a module 2, and $IF denotes an unidentified
number of simple-placeholders that is determined by the
distribution phase in Figure 1.

Two matching-placeholders, with the same name in
different parts of a query, can only be instantiated with a
single entity, and represent the links between those two
modules. The matching process provides an instantiations
which bind these AQL placeholders with actual entities
of the source model. When all placeholders in the query
have been instantiated, i.e., bound to values (even by a nil
binding), a concrete system architecture is generated (as
opposed to the abstract architecture defined by the AQL
query).

5 Modeling the recovery process

We perform a transformation onto the frequent item-
set representation of the domains (section 3.2) in order to
demonstrate: i) a modeling of the recovery process, and ii)
a clear representation of the domains suitable for domain
selection algorithm (explained below). This transformation
converts the frequent itemsets onto a forest of n trees (Fig-
ure 5). In this conversion, each node of the connected graph
is allowed to appear in several trees.

The transformation steps are explained with reference to
the parts of Figure 5 as follows:

(i) A tuple representation and a bi-partite graph representa-
tion of a frequent 2-itemset [F-3 T-1] with support 2,
i.e., [F-1 F-2], are considered.

2We adopt a naming convention for the AQL variables, e.g., CF de-
notes to contains functions.
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(ii) The complete bi-partite graph in Figure 5(a) is trans-
formed into a complete graph, in two steps: 1) two re-
lations sibling and sharedChild are added to the graph,
2) each relation between a pair of nodes is coupled
with its inverse relation (Figure 5(b)).

(iii) Each node in Figure 5(b) along with its connected n - 1
nodes (n is number of all nodes) constitute a tree. The
result is a forest with n tree components (Figure 5(c)).

Each tree represents a domain of a candidate main-seed
to be considered for a module. The domain selection al-
gorithm then performs an exhaustive search to find the best
candidate domains for the modules in the query. The crite-
ria for this search include: i) high average level of associa-
tions between each entity in a domain and the corresponding
main-seed; ii) low level of scattering of the domain entities
into the system files; and iii) large domain size.

Figure 6(a) illustrates two domains corresponding to two
main-seeds #2 and #8 (see Figure 3(b)), selected by the do-
main selection algorithm. Figure 6(b) illustrates a highly
simplified mapping3 from the selected domains onto the
modules. In this model, the matching process selects the
entities for each module solely based on the highest value of
the data mining association (i.e, from left to right of the do-
main trees, Figure 6(a)). Each shaded box (i.e., entities #1,
#2, and #12 in Figure 6(b)) denotes that the corresponding
entity is closer to the other module, therefore, it is deleted
from the current module. The import/export link handling
is as follows: all entities that are called or used by a particu-
lar module, and exist in other modules, are imported by the

3In this model we only consider the data mining association values as
the criterion for closeness.
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former module and are exported by the latter modules. In
Figure 6(b), The imported/exported entities are also shown
(i.e. entities 10, 11, 12, 16).

As we noted in section 3, the goal of architectural re-
covery (or restructuring) is to satisfy the inter/intra-module
constraints that are defined in an abstract form (e.g., us-
ing a query language notation). One manifestation of
these constraints includes: i) instantiating the modules’ con-
tained placeholders to provide cohesive modules; ii) instan-
tiating the link placeholders such that they carry the im-
ported/exported entities. As there are many possible ways
of instantiating links between modules, the whole problem
can be reduced into a Valued Constraint Satisfaction Prob-
lem (VCSP) by translating the above abstract constraints
into exact constraints between variables.

Therefore, we first define an abstraction of the recov-
ery problem using the main-seeds (one for each module)
and the placeholders in different parts of a module in query.
Then we translate these abstract constraints into exact con-
straints between variables to be solved by a known problem
solving domain, i.e., Valued Constraint Satisfaction Prob-
lem (VCSP), to be dealt with.

5.1 Valued Constraint Satisfaction Problem

The Valued Constraint Satisfaction Problem framework
(VCSP) [15] is an extension of the Constraint Satisfac-
tion Problem framework (CSP), that allows over-constraint

problems to be dealt with. In the VCSP framework, a valu-
ation is associated with each constraint. The valuation of an
assignment is defined as the aggregation of the valuations of
the constraints which are violated by this assignment. The
goal is to find a complete assignment of minimum valua-
tion. A VCSP framework is defined as a quintuplet P = (V,
D, C, S, �), where V is a set of variables, D a set of associ-
ated domains, C a set of constraints between the variables,
S a valuation structure, and � a valuation function.

For this work we use a valuation structure which is
known as �-VCSP (additive VCSP) and is discussed in [15].
Moreover, we use the branch and bound search algorithm
[14] to find a minimum valuation of the assignment of the
entities in the source model (domain of the variables) into
the placeholders (variables) of the query.

In addition to our previous work [14], in this paper we:
i) improved the search engine to handle VCSP; ii) provided
automatic main-seed selection mechanism; iii) used the no-
tion of domain-coupling as a means for decomposing the
system into subsystems to be further used for modulariza-
tion and; iv) provided interfaces to web browsers and graph
visualizer RIGI. In the next section the modeling of the ar-
chitectural recovery with �-VCSP is discussed.

5.2 Modeling architectural recovery using VCSP

In this section, we describe the mapping between a sim-
ple AQL query of two modules M1 and M2 (see Section 4),
and its associated VCSP model (Figure 7). The steps of this
mapping are as follows:

Step 1
For every node in each module, we assign a variable vi in
the set of variables V, and assign a corresponding domain di
in the set of domains D, where di = Dom(s) (i.e., the domain
of the main-seed s in the corresponding module).

Step 2
For every pair of variables in V that correspond to the same
module (e.g., M1), define a constraint of type similarity-
constraint in C. If module M2 exports a matching-
placeholder link to module M1 (e.g., ?F1), assign a con-
straint of type link-constraint from every single variable in
module M2 to every single variable in module M1 with
the same name as the matching-placeholder. Repeat the
same procedure for every matching-placeholder link be-
tween each pair of modules in the query (Figure 7) .

We define the valuation function � on the basis of our
architectural recovery objectives as follows: i) the average
similarity value between the group of entities in a module
must exceed a threshold which is determined by the overall
properties of the software system; ii) all import/export links
between the modules must be instantiated.
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Figure 8. The branch and bound search tree.

In order to meet the above general requirements, we de-
fine the condition for satisfaction or violation of each type
of constraints between a pair of variables in V we defined
earlier:

� similarity-constraints: the similarity between each pair
of the assigned variables (entities) in a module is deter-
mined by considering the shared features of those two
entities (measured using the Jaccard formula4, where
A and B represent the sets of feature values for two
entities [17]) as well as the highest association value
between the corresponding entities. We assign a very
high similarity value for satisfaction of a similarity-
constraint so that almost all such constraints are vio-
lated. This causes the valuation function � to aggre-
gate the distance values (1 - similarity value) between
the candidate entity and the entities of the already in-
stantiated placeholders in that module, as a measure of
ranking the module by the branch and bound algorithm
(Figure 8). If the aggregated cost of the violated con-
straints exceeds an upper-bound, the candidate value is
discarded and the search tree for that value is pruned.
If such a incidence is repeated for all domain values of
a variable, a form of backtracking occurs.

� link-constraints: if a link-constraint is satisfied (e.g.,
the relation call or use exists between the values of
the corresponding variables), all other link-constraints
with the same name (e.g., ?F1) are deleted from C.
If such a constraint is violated5 and the number of the
uninstantiated variables in the current module is less
than the uninstantiated links between the correspond-
ing modules, the violation cost is maximum, therefore,

4Jaccard = jA\Bj
jA[Bj

5Handling this case is different for the import constraints. The current
discussion is for export constraints.

the candidate value is discarded. Otherwise, the viola-
tion cost would be very small and is added to the cost
of violation of the similarity-constraints for this value.

With the above valuation strategy, the steps for the branch
and bound search algorithm are as follows:

Step 1
the next variable is selected from the current module to be
instantiated;

Step 2
from the domain of this variable the next value (candidate
value) is selected to be assigned to the variable;

Step 3
all similarity-constraints and link-constraints between the
assigned variables are evaluated and checked for satisfac-
tion/violation;

Step 4
if the cost of violation is very high (i.e., the upper-bound),
the candidate value is discarded, else, the valuated cost is
used as the ranking criterion for the current module and the
current module is put in the proper place of the list of all
partially assigned modules for future assignment and rank-
ing (more detailed discussion in [14]). Figure 8 illustrates
the behavior of the employed branch and bound algorithm
in order to come up with an optimum solution.

6 Experiments

In this section, experimental results obtained using
the proposed system are presented. Our experimentation
platform consists of a Sun Ultra 10 (333MHZ, 256M
memory). It takes 4 minutes to parse the target system
(CLIPS)6, using a parser written in Refine C, and to
construct an annotated AST in the Refine’s database. The
Apriori algorithm requires approximately 20 minutes to
build the frequent itemsets with support 2.

The user is a part of the recovery process and modifies
and enhances the query based on the result of the previous
run. A typical scenario for architectural recovery with this
tool proceeds with the following steps.

� The user parses the target system using the Refine’s
parser, generates a database from the system entities
and their relationships, and uses the Apriori algorithm
to produce the source model representation of the sys-
tem.

� The user decides on the part of the system for re-
covery (a sub-system or the whole system) and de-
fines the number of the modules to be recovered. The

6An expert system with size 40 KLOC.
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Figure 9. The result of the recovery is pre-
sented using the Netscape browser.

domain selection algorithm then searches the source
model based on the user preferences (discussed in sec-
tion 5) and produces the template of the query. The
user can run the template query directly, or first tailor it
to his/her needs and then run it. Different modes of op-
eration such as automatic and incremental in terms of
the number of modules, or the type of the entities (i.e.,
function, type, and variable to be recovered), provide a
convenient environment for the recovery process.

� The user observes the result of recovery through Web
browsers with hypertext links to the actual entities in
the source files, and investigates the property of the
recovered modules through Rigi visualization tool [1].

� Based on the result of recovery, the user decides on re-
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Figure 10. The run time diagram for module
recovery.

structuring the recovered module based on ill-formed
modules, uneven module size, or unbalanced inter-
module interactions. The restructuring is performed
by defining import/export links among the modules, as
hard constraints to be satisfied, and by changing the
size of the modules. The tool then provides new re-
structured modules in which the links are forced to be
instantiated.

6.1 Module recovery

In this section, the result of the recovery process cor-
responding to the query of section 4 is discussed. Fig-
ure 9 shows the recovered module M1 using the Netscape
web browser. Each line corresponds to an entity (here only
functions) with its name, its container file name, and the
linked modules (for import/exports). The module’s main-
seed has been labeled using “**”. Each entity has a hy-
pertext link to its corresponding actual text in the system’s
source file. Three matching-placeholders from M2 to M1,
and two matching-placeholders from M1 to M2 have been
instantiated in the recovery process. These links were de-
fined as the constraints between these modules. The four
links F-227, F-29, F-102, and F-69 have been instantiated
in the distribution phase of the process (Figure 1). The
file utility.c provides services to the other files of
the system. In this recovery, the dependency of the files
sysio.c, evaluatn.c and multivar.c to this file
is shown.

Figure 10 illustrates the results related to the time com-
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Figure 11. The decomposition of the CLIPS
system fi les into subsystems.

plexity of the recovery of the module M1. In this experi-
ment, we started from the result of the recovery (discussed
above) and put 18 functions (seeds) and one placeholder in
the query for the module to be recovered. We run the exper-
iment and registered the time. At each subsequent experi-
ment we deleted one more seed from the query, considered
it as a placeholder, and then run the matching process again.
The result shows that the time increases rapidly by the in-
crease of the number of placeholders in the module.

Experiments on matching process accuracy using pre-
cision / recall evaluation and matching process stability
through the result of recovery can be found in [14].

6.2 System decomposition

We decompose the CLIPS and BASH systems (Figure 11
and Figure 12 respectively) using the system partitioning
discussed in section 3.3. In these Figures only the strong
and medium couplings are shown using the lines between
the boxes (the colors are not distinguishable). A line from
the bottom of a box to the top of another box signifies that
the former is coupled on the latter in terms of using the ser-
vices defined in the latter file. Figure 11 shows the decom-

Figure 12. The decomposition of the BASH
system fi les into subsystems.

position for the CLIPS system into five subsystems. We
compared this result with the CLIPS documents. The sub-
systems at the bottom-right corner of Figure (with 15 files)
corresponds to the subsystem Parsing Modules in CLIPS.
Data flow analysis and cohesion metrics indicated that the
files in this subsystem are highly coupled to each other. The
subsystem at the top-left corner of the Figure (with 10 files)
corresponds to the subsystem Inference Engine Modules,
and the subsystem at the top-right corner (with 3 files) cor-
responds to the subsystem Object. Figure 12 illustrates the
same experiment with the Bash system (Unix shell).

7 Conclusion

In this paper we presented a framework for software ar-
chitecture recovery. We adopt a directed, typed, attributed
graph formalism to provide a unified environment for the
framework artifacts to be defined and related. A struc-
tured query language is used to describe architectural de-
sign abstractions for the given software system in the form
of modules and high-level constraints. The software system
is parsed and a data base of the system entities and their re-
lationships is generated. The data mining technique Apriori
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is used to provide a restricted and highly associated source
model for the recovery process. The translation of the high-
level constraints into exact constraints reduces the architec-
tural recovery into an over-constraint system of variables
and constraints to be dealt with in the Valued Constraint
Satisfaction Problem (VCSP) domain. Initial results ob-
tained by applying the proposed technique to medium size
systems (30-50 KLOC) are promising that the technique is
reasonably accurate and scalable. On-going work includes
the evaluation of the recovery technique on larger software
systems at the IBM Toronto Lab, Center for Advanced Stud-
ies.
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