
1

Extracting Java Library Subsets for
Deployment on Embedded Systems

Derek Rayside
Systems Design Engineering

University of Waterloo
drayside@swen.uwaterloo.ca

Kostas Kontogiannis
Electrical & Computer Engineering

University of Waterloo
kostas@swen.uwaterloo.ca

Abstract

Embedded systems provide means for enhancing the
functionality delivered by small-sized electronic devices
such as hand-held computers and cellular phones. Java is
a programming language which incorporates a number of
features that are useful for developing such embedded sys-
tems. However, the size and the complexity of the Java lan-
guage and its libraries have slowed its adoption for embed-
ded systems, due to the processing power and storage space
limitations found in these systems. A common approach to
address storage space limitations is for the vendor to offer
special versions of the libraries with reduced functionality
and size to meet the constraints of embedded systems. This
paper presents a technique that is used for dynamically se-
lecting, on an as needed basis, the subset of library entities
that is exactly required for a given Java application to run.
This subset can then be down-loaded to the device for ex-
ecution. The advantage of this approach is that the devel-
oper can use arbitrary libraries, instead of being restricted
to those which have been adapted for embedded systems by
the vendors. A prototype system, that dynamically builds
library subsets on an as needed per application basis, has
been built and tested on several mid-size Java applications
with positive results.

1 Introduction

Embedded systems are now an important part of modern
programming activities, and will by all estimations become
more so in the next few years. It has been estimated that
the market of embedded PC, and “soft” PC devices will ex-

�This work was funded by IBM Canada Ltd. Laboratory: High Per-
formance Java Group and Centre for Advanced Studies. Special thanks to
Scott Kerr of Object Technology International Inc. for his assistance in
untieing the knot.

ceed US $1 billion1 by the year 2001 [10]. Examples of
such embedded systems include hand-held terminals, cellu-
lar phones with Internet and World-Wide-Web capabilities,
and other industrial or household control devices. However,
due to limitations on size, processing power and, storage ca-
pabilities, embedded systems pose a number of additional
requirements on software application development. Java
was originally developed for consumer electronics devices.
However, it has evolved over the recent years, more as a pro-
gramming language for workstations and mainframes than
a language for embedded systems. This is partly due to the
inherent features inherent to the language which are diffi-
cult to implement in embedded systems. These features in-
clude multi-threading and, the overall size of the standard
Java class libraries (JDK). For example, JDK 1.1 is about
10MB in size, and has grown significantly with the version
1.2 release [15].

Efforts, attempting to re-target Java at embedded sys-
tems by defining standardized subsets of the Java language
and class libraries are under way. Examples include Sun’s
PersonalJava, EmbeddedJava and, PicoJava environments.
These JDK subsets limit the functionality of Java by remov-
ing certain language features such as multi-threading. This
reduces both the processing power and storage requirements
for executing simple Java applications.

In this paper an alternate solution to defining a standard-
ized subset of a class library is proposed. The main idea is to
dynamically determine, on an as needed basis, which parts
of a library are required for each given application, instead
of a priori limiting the capabilities of the language by ex-
cluding whole portions of the library. Thus, the basic idea
is to identify and extract the subset of the libraries that is
needed for the specific application. The motivation is based
on the observation that applications that use the entirety of
a class library are rare. In most cases only a portion of the
library is required for any given application.

1This is just over one half of one percent of the estimated cost of fixing
the Y2K problem[8].

The proposed solution is more flexible than one that lim-
its the language features by excluding a priori a large num-
ber of standard Java libraries. The proposed technique al-
lows application programmers to use the functionality they
deem necessary from arbitrary libraries. The tool presented
here extracts the code needed to run an application from a
set of standard JDK libraries and is based on the analysis of
the dependencies between a given application and its sup-
porting libraries. The dependencies are revealed by parsing
the Java byte-code and building an entity-relationship de-
pendency graph. The relations are drawn from a Java do-
main model developed for this purpose, and are discussed
later in the paper. Once a dependency graph has been
built, the selection of the required library subset is based on
traversing the graph and extracting only the nodes that cor-
respond to a library entity that areaccessible by the given
application.

Java bytecode (class files) are used to build the depen-
dency graph which the analysis presented here is based on.

The process of building and traversing the dependency
graph is very fast and is promising for use in Web-enabled
embedded systems with limited processing power.

This paper is organized in nine sections. Section two
provides an overview of Java features that are related to this
work. Sections three and four provide pointers to related
work and, an overview of the Java domain model respec-
tively. Section five defines the library subsets to be extracted
with respect to the Java language. Section six discusses the
library subset extraction process and section seven provides
and discusses our experimental results. Section eight dis-
cusses different usage scenaria for this technology. Finally
section nine provides the conclusion of the paper.

2 Java Features

The Java language[3] is designed to execute on the Java
Virtual Machine[11], an abstract computer model that ex-
ecutes code contained in Java class files. These class files
may be generated from source languages other than Java
(such as Ada).

The Java Virtual Machine is a simple stack based com-
puter model with no registers and a one-byte instruction set.
There are less than two hundred opcodes currently defined
in the machines instruction set [11].

Th JDK compiler (javac) translates Java source code
to the class file format.javac has two options of interest
for this work: -O for optimization, and-g to include de-
bug information in the class files.-O creates slightly larger
class files by inlining some fields and methods.-g makes
class files significantly larger by including debug informa-
tion such as line number tables in the class files.

The class file is similar to object files created by tradi-
tional compilers in the sense that it contains symbolic refer-

ences to all external code, and is not bound with that code.
In Java, binding occurs in the virtual machine at run-time.

Each class file contains information about the class, such
as the compiler version that created it, the parents of the
class and all literal constants and references to external
code. The class file also contains the fields and methods
declared by the class; fields and methods declared in parent
classes are kept in the parent class files, unless overridden.

Java code (source code and bytecode) is organized into
“packages”. A Java package is essentially a directory where
the code is kept. Classes in the same package have “friend”
status with each other. There is a standard naming conven-
tion for packages which ensures that code from different or-
ganizations will not have naming conflicts. The fully qual-
ified name of a class is its proper name prepended with its
package name (i.e.java.lang.Object).

The Javaimport statement has different semantics
from the C include statement which are important to
highlight in the context of this work. Theimport state-
ment is a syntactic device to allow the programmer to refer-
ence classes in other packages by their proper names instead
of fully qualified names: it does not imply “friend” status,
nor does it affect the bytecode representation in any way.

Bruce Eckel’s bookThinking In Java provides a
clear and in-depth discussion of the Java program-
ming language[2] with comparisons to C and C++.
Other articles on the Java virtual machine and class
file format, can be found at the Java World website
(www.javaworld.com)[22, 21, 20]. Moreover, both the
Java Language Specification[3] and the Java Virtual Ma-
chine Specification[11] provide a detailed view of Java’s
features.

3 Related Work

The approach presented in this paper is based on a de-
pendency analysis between the application code and library
programming entities. The Java domain model from [15]
has been adapted for these purposes.

3.1 Java on Embedded Systems

There are two main approaches for adapting the Java Vir-
tual Machine architecture to embedded systems.

The first one focuses on porting a subset of the desk-
top Java VM directly into the Real Time Operating System
(RTOS) environment. In [18] a core and standard extension
(optional) API designed specifically for resource limited en-
vironments, with the addition of specific features required
by consumer applications is defined. Similarly, in [19] a
more restricted subset of Java than PersonalJava, designed
specifically for severely resource constrained environments,

is proposed. Both EmbeddedJava and PersonalJava, are de-
rived from the Java API and therefore, are upward compat-
ible. Although these subsets have been optimized for small
memory footprints and various visual displays, they usually
result in a large (for embedded systems standards) end prod-
uct [10]. In [5] a similar to Sun’s version of small memory
Java is specified.

The second approach is focusing on real-time deeply em-
bedded systems. In this approach a Java Virtual machine
version is specifically designed and implemented to satisfy
real-time execution requirements. Native Java compilers
have also been proposed by HP, IBM and other companies.

3.2 Trends

Over the past year a growing demand for ‘information
appliances’ such as 3Com’s PalmPilot is observed. By some
estimates, the market for these devices is expected to grow
to US $ 4.2 billion by the end of 2002, when it will surpass
the demand for home PCs[10] [4]. It can be expected that
a large proportion of these will be networked in some way,
and that they will also be running Java.

The spin-off and the demand for embedded systems us-
ing Java has also grown to a point that standards initiatives
have been formed. In [24] a Compact HTML for Small
Information Appliances has been proposed. On the same
trend the Handheld Device Markup Language Specification
standard has been proposed in [25].

3.3 Tools

Sun Microsystems produces two tools that are related to
this work: JavaFilter and JavaCodeCompact [17]. JavaFil-
ter allows for configuring the environment (i.e. selecting the
necessary libraries) based on specific functionality required
(i.e. for a given application). So far, we have not been
able to obtain a license for JavaFilter for further evaluation.
JavaCodeCompact is less related, as its primary purpose
is to translate bytecode to platform independent C source
code. Princeton University [16] has developed another tool
also called JavaFilter (not related to Sun’s JavaFilter) which
can be used for preventing applets that originate from a re-
stricted site to be executed in a client. Princeton’s JavaFil-
ter differs from the approach discussed in this paper, in the
sense that it does not compute dependencies between appli-
cations and libraries. It basicaly performs pattern matching
between the applet’s originating URL and the URLs of re-
stricted sites that are stored in its local database.

The IBM Research Lab in Haifa has independently de-
veloped a similar tool for the static analysis of Java soft-
ware, although their focus is on compiler optimization[14].
Their tool will be posted on IBM’salphaWorkssite[6] as a
part ofToad .

A joint effort between the University of Victoria and the
University of Geneva has produced a tool for the compres-
sion of Java class files[1]. Their tool performs better than
standard compression algorithms by exploiting the known
structure of class files. For optimal results, their tool would
be applied to the class files after the process described in
this paper.

Finally, the dependency analysis presented in this paper,
is also related to dependency analysis proposed for ana-
lyzing the dependencies in C preprocessor statements [12],
[23].

4 Domain Model

The domain model for Java software systems presented
here is derived from [15], and consists ofentities, rela-
tions andattributes. The purpose of this model is to rep-
resent components of Java software system and their inter-
relationships at a higher level of abstraction. Instances of
this model are extracted from Java bytecode and expressed
in Rigi Standard Form (RSF) [13].

4.1 Entities

This model has only one category of entities:compo-
nents. Components have attributes that describe their in-
terface and implementation, and relations to other compo-
nents. Components in this model are at a finer level of gran-
ularity than the word component often implies.

Most of the components in the model are instances of
Java data types. The Java data types are organized in
a hierarchical fashion. There are two main categories:
Primitive and Reference . The Reference types are
subdivided intoArray andClassOrInterface , which is
made up of theClass andInterface types [3]. The Java
notion of anInterface is a special type of abstract class;
it is distinct from the general concept of interface. The
difference between a Java Class and a Java Interface is so
small for our purposes that it makes sense to model both as
ClassOrInterface . This is the approach adopted in [3]
and [11]. For the sake of linguistic simplicity, we will use
the termclassto denoteClassOrInterface in the rest of
this paper (after this section).

This model does not represent Packages explicitly: a
Package is a mechanism used in Java to partition the
ClassOrInterface namespace in a hierarchical fashion.
A Package correlates to a directory where the source code
and bytecode are kept, and is included in thefully qualified
name[11] of aClassOrInterface . In the terminology of
[9], a Package is astructuralentity.

The common notion of interface, as it applies to a
ClassOrInterface , is the aggregate interface of the de-
claredFields and Methods . This is contrary to the no-

tion employed here: aClassOrInterface is recognized
as a component unto itself, not just an aggregation of other
components (as a Package is). For example, a non-public
ClassOrInterface cannot be used for casting by meth-
ods declared in other Packages. This example illustrates
that aClassOrInterface has an interface that is com-
pletely independent of its declaredFields andMethods .
Similarly, the implementation of aClassOrInterface

is considered independently of its declaredFields and
Methods . In [9]’s terminology, aClassOrInterface
is both astructuraland arepresentationalentity.

The following simple application is used as an illus-
trative example of the domain model. The fully qualified
ClassOrInterface names are not used here in the in-
terest of clarity: the fully qualified name ofObject is
java.lang.Object .

/* A simple HelloWorld application */
public class HelloWorld {

public static void main(String[] args) {
PrintStream p = System.out;
p.println("Hello World!");

}
}

The bytecode representation of the above source is
parsed to produce a dependency graph, which is expressed
in RSF. A simplified visual representation of the graph for
this example is shown in Figure 1. Sample RSF for this
simple example may be found in [15].

The bytecode presents a more detailed representation of
the software than the source code. Information not explicit
in the source code can be found in bytecode and therefore
facilitate a moreaccurate dependency analysis. For exam-
ple, the graph in Fig. 1 containsObject and its default
constructor, even though these are not explicitly referenced
in the source code. There are other cases where the compiler
will put insert bytecode in the class file that is not apparent
in the source code [11].

4.2 Relations

The model presented here contains two categories of re-
lations:definitionanduse. All relations represent a depen-
dency between two components, and the direction of the
relation is defined by the dependency [13]. Therefore, these
relations define adependency graphof the entities.

The direct use of aClassOrInterface component is
represented by such relations asnew, checkcast and
instanceof .

Note that the relations implicitly represented in a method
signature, such asParameterType , are explicitly repre-
sented in the model.

The complete model contains 7 distinct types of defini-
tion relations and 34 distinct types of use relations.

HelloWorld()

Invoke DeclaredBy

Object()

Object

HelloWorld
Extends

DeclaredBy

DeclaredBy

Fetch

FieldType

String

main

ParameterType

System

out

PrintStream

void

Invoke

println

mesage

DeclaredBy

DeclaredByFieldType ReturnType

ReturnType

FetchStatic

ParameterType

Figure 1. Dependency graph for “HelloWorld”.

4.3 Attributes

Attributes describe the components in the model. All at-
tributes take primitive values and are encoded in RSF. The
notion of ‘attribute’ used in this model is separate and dis-
tinct from the notion of ‘attribute’ used in [11].

The component attributes are not as important in this us-
age of the domain model as they are in [15]. This usage is
concerned primarily with the relations, and does not ana-
lyze the attributes in depth. The only important attribute for
this analysis is theSignature . TheSignature is the set
of names which uniquely identifies each component.

The most interesting components are the
ClassOrInterface , Field andMethod , as they can be
declared by the application developer. TheSignature of
these components are as follows:

ClassOrInterface the fully qualified name (i.e. including
the Package name).

Field Signature of the ClassOrInterface that de-
clares it appended with its proper name and the
Signature of its type.

Method Signature of theClassOrInterface that de-
clares it appended with its proper name and the
Signatures of its parameters and return type.

A more detailed version of the Java domain model used
here can be found in [15].

5 Java System Subsets

We define three library subsets (in increasing order of
size) for a Java software system:a)space optimized,b)par-
tially space optimized, andc) reduced (being the largest).
Experimental results are discussed in section 7.

5.1 Space Optimized Subset

The space optimized subset (herein the optimized sub-
set) is composed of every class, field and method required
for every possible execution path2 that originates in the ap-
plication. This usually requires class files in the library to be
modified by removing fields and methods that are not used
by any execution path in the application. Since all execution
paths in the optimized system originate in the application,
the optimized subset is self contained.

The optimized subset is the subset that is actually loaded
and resolved by a virtual machine that uses “lazy” resolu-
tion [11], with the additional constraint that every possible
execution path originating in the application is exercised.
The virtual machine that Sun distributes with the JDK uses
“lazy” resolution. The optimized subset will also work in a
virtual machine that uses “static” resolution.

Returning to the HelloWorld example,System.out is
obviously required, butSystem.in is not. Building the
optimized subset would require removing thein field from
theSystem class. This saves a significant amount of space,
because the input functionality of the JDK is not used. In
other words, the transitive closure of components required
by thein field is large and unnecessary for this application.

5.2 Partial Space Optimized Subset

The partial space optimized subset (herein the partially
optimized subset) is composed of all class files in the opti-
mized subset, but without any modification. The partially
optimized subset will work inside a virtual machine that
uses “lazy” resolution, but may not work inside a virtual
machine that uses “static” resolution.

In the case of HelloWorld, theSystem class would be
included without modification, but none of the code that im-
plements the input functionality would be included. A vir-
tual machine that uses “static” resolution may complain that
the code to implementSystem.in is not present.

Both the optimized subset and the partially optimized
subset analyze the system using fields and methods as the
atomic units. The partially optimized subset contains exe-
cution paths that will not work since it is not self contained.
However, all execution paths that originate from the appli-
cation will still work.

2“Execution paths” includes event sequences generated by exception
handling.

5.3 Space Reduced Subset

The space reduced subset (herein the reduced subset) is
composed of all unmodified class files required by a virtual
machine which uses “static” resolution to execute the sys-
tem. The reduced subset calculation views the class file as
the atomic unit, as opposed to the field and method used in
the optimized subsets.

All execution paths in the reduced system will work, in-
cluding those that do not originate in the application. There-
fore, the reduced subset is also self contained.

For the HelloWorld example, the reduced subset will in-
clude theSystem class unmodified, as well as all of the
code necessary to implement in the input functionality (i.e.
InputStream , etc.). An execution path that originates
elsewhere in the JDK and usesSystem.in will work,
although it is known that it cannot be exercised (by Hel-
loWorld).

6 Extraction Process

The extraction process has two main steps:a) identify
the subset of the library3 required for the given application,
andb) extract the subset from the library. The input to this
process is the bytecode for the system (application and li-
brary), a text file to specify the entry point of the applica-
tion, and a switch to indicate which subset is to be extracted.

The subset is identified by first constructing a static de-
pendency graph of the system according to the domain
model specified above (see Figure 1). The transitive clo-
sure of all elements required by the program entry point are
identified by traversing this graph. The list of required com-
ponents is then passed to the extractor.

The extractor is a fairly simple tool for the reduced and
partially optimized subsets: it merely copies class files from
the library to the target destination. The extraction tool for
the optimized subset is significantly more complicated, and
here we have only calculated an estimate of the space sav-
ings such a tool would generate. The optimized subset ex-
traction tool must modify class files in order to remove un-
necessary fields and methods, as well as compress the Con-
stantPool (symbol table) and remove debug information.

Difficulty may arise in the identification process if the
program has execution entry points that cannot be identified
through a static dependency analysis. This can occur when
the bytecode interacts with ‘native’ code written in a lan-
guage such as C, or through advanced usage of reflection.
These problems can easily be worked around by specifying
these extra entry points in the same text file that specifies
the main entry point.

3 ‘Library’ is used to mean one or more libraries.

Experiment Application Library Reduced Partially Optimized Optimized
Size Size Lib. Size % Impr. Lib. Size % Impr. Lib. Size % Impr.

HelloWorld 1 8693 535 94% 381 29% 328 14%
JTool 294 8693 550 94% 414 25% 361 13%

CDF Editor 56 8693 + 391 1035 + 264 88%, 32% 967 + 222 7%, 16% 824 + 206 15%, 7%
9084 1299 86% 1189 8% 1030 13%

Average Impr. 91% 21% 13%

Table 1. Space savings results. Percent improvement is with respect to previous column. Byte code
sizes are given in KB.

7 Experiments

In this section, we present the results of experiments ob-
tained by applying the proposed system to three Java appli-
cations. These results show that the majority of the JDK is
not required for most applications, and that this technique
is scalable.

7.1 Description of Experiments

The experiments were conducted on an IBM desktop
computer with a 200Mhz Pentium processor and 64MB
RAM using the JDK 1.1.5 for Windows 95. The tool which
implements this technique is written in Java and runs inside
the Java Virtual Machine. All extracted subsets were tested
by executing the applications to ensure that they were still
functional. The space savings between the partially opti-
mized subset and the optimized subset is a minimal esti-
mate: it is the space actually consumed by each method
and field, it does not take into account the space that will
be saved in the ConstantPool by removing these fields and
methods. The space savings results are illustrated in Ta-
ble 1.

7.1.1 HelloWorld

The first experiment involved a small application that re-
quires only a small part of the JDK library. A simple Hel-
loWorld program, as shown above, does not require most
of the JDK in order to execute: the reduced subset contains
178 files (535K), and the partially optimized subset contains
122 files (381K). The predicted optimized subset removes
979 fields and methods from the partially optimized subset
and saves a further 53K. The reduced subset was identified
in 760ms, and the optimized subset in 1100ms.

This experiment showed that theinitialize
System() method in thejava.lang. System class
is executed by the native code in the VM when it is started
up. It also showed that thejava.lang. ThreadDeath

class is referenced by the native code and required for exe-
cution.

7.1.2 JTool

The second experiment was conducted on the tool that per-
forms the subset identification, as it is written completely
in Java. The characteristics of this tool are similar to other
tools: it reads input files, performs some processing, and
writes the results to other files. The tool runs in a single
thread and does not use any graphics. The reduced subset
for this tool is comprised of 189 files (550K), which is just
barely larger than the reduced subset for HelloWorld. The
partially optimized subset was 142 files (414K). The pre-
dicted optimized subset is 974 fields and methods smaller
than the partially optimized subset, for a further savings of
53K. The reduced subset was identified in 1380ms, and the
optimized subset was identified in 5760ms.

This experiment showed that the various charac-
ter sets used by the JDK are referenced reflectively.
The most common, ISO8859, is contained in the
classessun.io.CharTo Byte8859 1 and sun.io.
ByteToChar8859 1. The sun.io package contains
classes for every character set supported by the base JDK.

7.1.3 CDF Editor

The third experiment involved the CDF Editor which is
a sample application that ships with IBM’s XML4J XML
parser[7]. CDF Editor is a GUI application for editing and
viewing Channel Definition Format (CDF) files. This ap-
plication was selected for two reasons: it uses two libraries
(JDK and XML4J), and it indicates the overhead required
to use XML and a GUI in an application.

The reduced subset requires 413 files from the JDK
(1,035K) and 107 files from XML4J (264K). The partially
optimized subset requires 368 files from the JDK (967K)
and 90 files from XML4J (222K). The predicted optimized
subset does not require 2,575 fields and methods from the
JDK (143K), nor does it require 390 fields and methods

from XML4J (16K). Therefore, the approximate difference
in size between the reduced subset and the optimized subset
is 269K, approximately 20%.

The reduced subset was identified in 2580ms, and the
optimized subset was identified in 4060ms.

This experiment showed that a
number of classes injava.text.resources are ref-
erenced either reflectively in the JDK or by the VM na-
tive code. Namely,LocaleData , LocaleElements ,
DateFormat ZoneData , and theLocaleElements
and DateFormatZoneData for one’s particular geo-
graphic region. It is also useful to includeNoClassDef
FoundError andClassNotFound Exception in the
extracted JDK so that the VM can signal errors about miss-
ing code correctly.

The Abstract Window Toolkit (AWT) portion of the JDK
also requires code that is referenced reflectively or through
the VM native code. The classjava.awt.Event
is needed, as is theinitProperties method of
the java.awt.Toolkit class. The AWT is im-
plemented differently behind the scenes for each plat-
form, and this code is identified through the system
property awt.toolkit . For the Windows version of
the JDK the implementation requires theWToolkit
and WGraphics classes insun.awt.windows . The
font.properties file also iden-
tifies sun.awt.windows.CharToByteWingDings
andsun.awt. CharToByteSymbol . The layout man-
ager of the AWT requiresContainer.layout() and
LayoutManager in java.awt .

7.2 Space Analysis

A summary of the space savings results are contained in
Table 1. The Application and Library columns show the
original size of the application and library bytecode. In the
case of the CDF Editor experiment, sizes are shown for both
libraries (JDK and XML4J). The last three columns dis-
play the results for each subset. The percent improvement
columns are measured with respect to the previous column.
The reduced percent improvement is measured against the
original size, and the optimized percent improvement is
measured against the partially optimized result.

The reduced subset showed an average of a 91% space
savings over the original libraries. The reason for this is
evident when one examines the composition of the JDK:
over two thirds of the library is consumed by international
character sets and development tools, which are not used
by most applications. The 32% improvement in the XML4J
portion of the CDF Editor experiment is probably more typ-
ical of a regular library.

The partially optimized subsets showed an average 21%
improvement over the reduced subsets. The optimized sub-

sets showed an average improvement of 13% over the par-
tially optimized subsets. The optimized subsets show an
average 31% improvement over the reduced subsets (not
shown in the table).

The optimized subset of the XML4J library showed a
47% improvement over the original library (not shown in
table). In other words, the CDF Editor uses about half the
functionality available in the XML4J library. This result
demonstrates the usefulness of this approach in allowing the
developer to use arbitrary libraries without wasting storage
space.

The JDK contains about 120 character sets, with an av-
erage size of approximately 40KB. However, almost all of
these are either less than 20KB or greater than 100KB; the
largest is almost 300KB. So, the optimized subset for an in-
ternational HelloWorld may (in the very worst case) almost
double in size. In many cases the growth will be less than
10% though.

7.3 Time Analysis

In each experiment it can be seen that the optimized sub-
set is more difficult (time consuming) to identify than the
reduced subset. This difference is to be expected, as the op-
timized subset deals with the system at a greater resolution.
Results for the time analysis are shown in Table 2. Note
that analysis time is the time required for the graph traver-
sal, and does not include the time to parse the bytecode or
write the output.

It is interesting to note that the reduced subset for JTool
was identified almost as quickly as that for HelloWorld, but
that the optimized subset was the longest computation. With
respect to the reduced subset it can be seen that JTool does
not use much more of the JDK than HelloWorld does, so the
results are consistent. However, an interesting observation,
is that the optimized subset takes longer to compute for our
tool than for the CDF Editor (note that the code for the CDF
Editor and XML4J are twice as many files and bytes as that
for JTool). This observation is explained by the fact that
the extra time is caused by the deep inheritance hierarchies
present in JTool. This is an indication that, the time com-
plexity of the selection tool is dominated by the height of
the inheritance hierarchies in a given application.

8 Usage Scenaria

To illustrate the use of the system we provide four possi-
ble usage scenaria:

8.1 Embedded Systems

In this scenario, a software developer builds an applica-
tion and then uses the tool to “trim” the libraries used by

Experiment # Graph Nodes # Graph Arcs Reduced Analysis Time Optimized Analysis Time
(ms) (ms)

HelloWorld 25,283 174,729 760 1,100
JTool 27,884 190,421 1,380 5,760

CDFEditor 29,618 203,626 2,580 4,060

Table 2. Time requirements for the tool, correlated to graph size.

his or her application. If the subset is still too big for the
constraints of the device that the system will be used in, the
developer may modify the application and re-compute the
subset until it meets the embedded system’s requirements.

The optimized subset is the most useful for embedded
systems because it is often known exactly what will be ex-
ecuted. The bytecode compression tool in [1] would com-
plement the tool developed here.

8.2 Distributed Systems

In this scenario the application and library subset is ex-
tracted and delivered to the end user “just in time” by a
dedicated server. This server could keep track of the code
that the client had previously downloaded and send only the
delta. The partially optimized subset is useful here because
the class files are not broken up: there is a balance between
the configuration management difficulty and the amount of
code transmitted.

This kind of application distribution can also be used to
ensure that each client has the correct library version for the
application in question. All configuration management is
done centrally; the clients merely request and execute ap-
plications.

This scenario could be used for web enabled cellular
phones, palm-top devices or corporate intranets. Again,
the bytecode compression tool in [1] would complement the
tool developed here.

8.3 Native Code Compilers

The third usage scenario is related to the use compilers
which translate bytecode to ‘native’ code for a particular
platform. For example, using the system discussed in this
paper, library vendors can decide how to split their DLLs.
In this case, the vendor would put all of the most commonly
used code in the main DLL so that most applications would
not have to load the entire library. The partially optimized
subset is particularly important for this usage because the
class files cannot be modified. The IBM High Performance
Java S/390 Group has successfully used the tool for this pur-
pose, as fast program load times are important in high speed
transaction environments.

Alternatively, stand-alone EXEs may be created which
do not depend on library DLLs. This is useful when dis-
tributing the application to those who may not have the ap-
propriate library DLLs or runtime. The optimzed subset
would be used for this.

8.4 Library Re-factoring

The usefulness of this tool is predicated on library de-
sign with low coupling. If the library has extremely high
coupling then it will not be possible to extract only a subset
of it.

This tool can be used by the library vendor to identify
poor coupling, which can be removed when the library is re-
factored. Reports from application developers on the sub-
sets that are being extracted for their applications can give
the library vendors greater insight into how their code is
being used. This information could be generated automat-
ically if the application server discussed above were em-
ployed.

All three of the subsets presented here are useful for this
task, and insight can be gained by comparing the results
from each one.

9 Conclusion

This paper discussed a system that allows for the dy-
namic identification and extraction of software library sub-
sets which are storage space optimized for a given applica-
tion.

The selection is based on an entity-relation dependency
graph that is dynamically created foreach application.
Nodes in the graph correspond to application and library
entities, and arcs correspond to dependencies between those
entities. A library subset contains only those nodes that cor-
respond to library entities and on which a given applica-
tion depends. The subset is built by traversing the applica-
tion/library dependency graph and by collecting the library
nodes that can be reached during the traversal.

A Java domain model has been built to facilitate the
construction of such an entity-relation graph. The entity-
relation graph is created by directly parsing the Java byte
code.

Three library subsets of interest have been identified in
this paper. They are, in order of increasing size: theopti-
mized, partially optimizedand reducedsubsets. The use-
fulness of these subsets for embedded systems, distributed
systems and native code compilers has been illustrated.

The selection algorithm is efficient and can be applied
to large applications. Experimental results indicate that this
system is scalable both with respect to time and space con-
straints, and can be a viable alternative to a priori library
subsets.

References

[1] Q. Bradley, R. N. Horspool, and J. Vitek. Jazz: An efficient
compressed format for java archive files. InProc. of CAS-
CON ’98, Toronto, December 1998.

[2] B. Eckel. Thinking In Java. Prentice Hall, 1998.
[3] J. Gosling, B. Joy, and G. Steele Jr.The Java Language

Specification. Addison Wesley, 1996.
[4] A. Hamilton. Dial I for Internet.Times Magazine, 1998.
[5] Hewlett Packard. The Embedded Java VM Specification.

http://www.hp.com/embeddedvm/.
[6] IBM. alphaWorks. http://www.alphaWorks.ibm.com.
[7] IBM. XML Parser for Java. http://www.alphaworks.

ibm.com.
[8] C. Jones.The Year 2000 Software Problem — Quantifying

the Costs and Assessingthe Consequences. Addison Wesley,
1998.

[9] R. H. Katz. Toward a unified framework for version mod-
eling in engineering databases.ACM Computing Surveys,
22(4), December 1990.

[10] B. Lee. Internet embedded systems: Poised for takeoff.
IEEE Internet Computing, 2(3):pp. 24–29, May 1998.

[11] T. Lindholm and F. Yellin. The Java Virtual Machine Speci-
fication. Addison Wesley, 1997.

[12] P. Livadas and D. Small. Understanding code containing
preprocessor constructs. InProc. 3rd International Work-
shop on Program Comprehension, pages pp. 89–97, Wash-
ington D.C., November 1994.

[13] H. A. Muller. Understanding software systems using reverse
engineering technology perspectives from the Rigi project.
In Proc. CASCON ’93, pages pp. 217–226, Toronto, October
1993.

[14] S. Porat, B. Mendelson, and I. Shapira. Sharpening global
static analysis to cope with java. InProc. of CASCON ’98,
Toronto, December 1998.

[15] D. Rayside, S. Kerr, and K. Kontogiannis. Change and
adaptive maintenance detection in Java software systems.
In Proc. 5th Working Conference on Reverse Engineering,
Honolulu, October 1998.

[16] Secure Internet Programming Group. The Java Filter.
Princeton University Dept. of Computer Science, 1998.

[17] Sun Microsystems Inc. PersonalJava and EmbeddedJava
Development Tools. http://java.sun.com/products/person al-
java/pjavaandejavatools.html.

[18] Sun Microsystems Inc. PersonalJava .
http://java.sun.com/products/personaljava/.

[19] Sun Microsystems Inc. The Embedded Java Specification.
http://java.sun.com/products/
embeddedjava/, February 1998.

[20] B. Venners. Under the hood: Bytecode basics.Java World,
September 1996. http://www.javaworld.com/javaworld/jw-
09-1996/jw-09-bytecodes.html.

[21] B. Venners. Under the hood: The Java class file
lifestyle.Java World, July 1996. http://www.javaworld.com/
javaworld/jw-07-1996/jw-07-classfile.html.

[22] B. Venners. Under the hood: The lean, mean, virtual ma-
chine. Java World, June 1996. http://www.javaworld.com/
javaworld/jw-06-1996/jw-06-vm.html.

[23] K. Vo and Y. Chen. Incl: A tool to analyze include files.
In Proc. USENIX Summer 1992, pages pp. 199–208, San
Antonio, 1992.

[24] World Wide Web Consortium. Compact html for
small appliances. http://www.w3c.org/ TR/1998/NOTE-
compactHTML-19980209.

[25] World Wide Web Consortium. Handheld device markup
language 2.0. http://www.w3c.org/Submission/1997/5, May
1997.

