
Source Code Modularization Using Lattice of Concept Slices

Raihan Al-Ekram and Kostas Kontogiannis
Dept. of Electrical and Computer Engineering

University of Waterloo
Waterloo, Ontario, Canada

Email: {rekram | kostas}@swen.uwaterloo.ca

Abstract

Most legacy systems have been altered due to
prolonged maintenance to the point that they deviate
significantly from their original and intended design
and consequently, they lack modularity. Static source
code analysis techniques like concept assignment,
formal concept analysis and program slicing, have
been successfully used by researchers for program
understanding and for restoring system design
properties. In our approach we combine these three
techniques, aiming to gain on their individual
strengths and overcoming their weaknesses. In this
paper we present a program representation formalism
that we call the Lattice of Concept Slices and a
program modularization technique that aims to
separate statements in a code fragment according to
the concept they implement or they may belong to. The
lattice shows the relationship between the statements of
a program and the domain concepts that might be
implemented by the statements. Using the lattice as a
primary data structure we present two algorithms for
decomposing the program into appropriate modules.
The goal is to achieve a modularization such that the
modules are self-contained, side effect free and the
code duplication among nodes is minimal. The
modularization process is illustrated with an example
C program.

1. Introduction

Most legacy software systems have been altered due
to prolonged maintenance activities so that they deviate
from their original design and consequently they lack
among other qualities modularity. Such systems may
have been degenerated to a point that they consist of
monolithic low cohesive subroutines each of which

implementing numerous distinct domain concepts1.
This makes these systems difficult to understand and
maintenance tasks hard to perform. Automatic or semi-
automatic decomposition of such systems into a more
modular structure with each module preferably
implementing a single domain concept facilitates better
understanding and maintenance of the application,
program parallelization, object-oriented migration or
other re-engineering activities.

Static source code analysis techniques like concept
assignment, formal concept analysis, and program
slicing, have long been used by researchers for
program modularization. Concept assignment aims to
associate specific meaning to specific parts of a
program. This technique can be used to extract
program fragments that may be associated with a
particular domain concept in a program. But the
problem of concept assignment is that the code
fragment that has been identified as a domain concept
is not self-contained and not executable independently
as a separate module. Program slicing is another useful
technique that extracts an executable subset of the
original program that preserves the behavior of the
program with respect to a variable at a program point.
The problem of slicing is that the decomposition is
done based on very fine-grained program variables
instead of domain concepts. Moreover different
decompositions overlap with each other and may have
a significant amount of duplicated code among the
extracted modules. Even though each of the
decompositions is executable by itself, the code
duplication may cause side effects when implemented
as separate modules. Formal concept analysis is used
from a different perspective in modularization. Instead
of decomposition, it has been used to identify grouping
of subroutines and global data structures into modules.

1 A domain concept is an idea or a task in the problem domain that
is being implemented in the program, e.g. calculate interest, book
ticket etc. It is totally different from the concepts of formal concept
analysis.

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering (CSMR’04)
1534-5351/04 $ 20.00 © 2004 IEEE

In this paper we introduce a program representation
formalism that we call the Lattice of Concept Slices
and propose a modularization technique based on it.
This approach combines concept assignment, slicing,
and concept analysis aiming to capitalize on the
strengths of these three analysis techniques while
overcoming their shortcomings. The goal is to achieve
a modularization such that each module implements
preferably a single domain concept, each module is
self-contained, there is minimal duplication in code and
there are limited side effects among the modules.
Firstly, we use concept assignment to identify domain
concepts in the program and extract code fragments
associated with them. Secondly, we define a new type
of slicing criteria based on the domain concepts and
compute concept slices. Thirdly, we build a lattice from
the concept slices using formal concept analysis, which
we call the Lattice of Concept Slices. We use this
lattice to identify code duplication and side effects
among the concept slices. Finally, we perform
modularization by clustering and restructuring the
lattice.

The paper is organized as follows. Section 2
provides a brief description of the existing
modularization techniques and summarizes their
strengths and weaknesses. Section 3 introduces the
Lattice of Concept Slices representation formalism and
describes the mechanism for building it. Section 4
presents the algorithms for modularization based on the
lattice. The complete process is illustrated with an
example C program. Section 5 describes some related
work in the area of combining source code analysis
techniques for program comprehension and re-
engineering. Finally Section 6 concludes with paper
with directions for future work.

2. Background

Researchers have used static source code analysis
techniques like concept assignment, slicing and formal
concept analysis for program comprehension and
modularization. This section provides a brief
description of these techniques.

2.1 Concept Assignment

As defined by Biggerstaff [1] the Concept
Assignment problem is the identification of human
oriented domain concepts and assigning them to
implementation oriented source code within a program.

There are two approaches taken for identifying
domain concepts – the structural analysis and the
plausible reasoning. Structural analysis is based on

parsing technology. A domain concept is defined as a
structural pattern, e.g. uses of a variable, call to a
method, regular expression matching on variable
naming etc. The source code is then parsed to match
the signature of the pattern. The matching lines of
source are considered to be part of the domain concept.
The atomic concepts are recognized first and based on
them larger grained composite domain concepts are
identified.

Plausible reasoning systems are based on heuristics,
rules of thumb, informal information, weight of
accumulated evidence and so forth. Some example
plausible reasoning systems are hypothesis-based
concept assignment (HB-CA) [2], domain model – the
adaptive observer (DM-TAO) [1]. HB-CA is a three-
stage process. The process uses a knowledge base that
contains a list of domain concepts implemented in the
program and their indicators. The indicators can be
identifiers, keywords, comments, regular expressions
etc. In the hypothesis generation stage the source code
is taken as input and scanned through to generate
hypotheses of domain concepts and based on the
knowledge base. The hypotheses are then sorted by the
indicator position in the source code. In the
segmentation stage the sorted hypotheses are analyzed
to group them into segments using an unsupervised
competitive learning neural network. The output of the
stage is a collection of segments each containing a
number of hypotheses. In the concept binding stage the
segments hypotheses are analyzed to identify the most
evident concept. The segments are then labeled with
their corresponding domain concepts.

Code segments corresponding to the domain
concepts are candidates for modules. The advantage of
this technique is that the fragmentation is done at right
level of granularity, the domain concepts. But the
drawback is that the code segments corresponding the
domain concepts are not self-contained and not
executable independently as separate modules.

2.2 Program Slicing

Slicing as originally described by Weiser [3] is an
abstraction of a program based on a particular
behavior. A slice is defined to be an executable subset
of the original program that preserves the original
behavior of the program with respect to a slicing
criteria <P, V>, which is a given variable V at a given
program point P. The slice will consist of all the
statements of the program that may affect the value of
V at point P.

The original slicing algorithm was based on
statement deletion using data flow analysis. More

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering (CSMR’04)
1534-5351/04 $ 20.00 © 2004 IEEE

widely used algorithms [4], [12] work on the
Dependence Graph of the program. First, a program
dependence graph (PDG) [10], [11] is created for the
program at hand. Some additional nodes are inserted at
the start of the PDG to correspond to the initial
definitions of all variables used in the program without
first being defined and at the end to correspond to the
final uses of all the variables. The algorithm starts by
traversing the PDG from the node corresponding the
program point P and then traces back to all the nodes
that has a direct or indirect control or data flow
dependency on this node. All the visited nodes are
marked. All the unmarked nodes are deleted. The
program corresponding the resulting PDG is the
computed slice. This type of slicing is known as static
intra-procedural slicing. [15], [16] gives a
comprehensive list of all the slicing variations and
techniques.

Slicing has the advantage that the slices are self-
contained and executable by themselves. But the
problem of slicing is that the decomposition is done
based on very fine-grained program variables instead
of domain concepts. Modularization based on slicing
may result into modules that contain a dignificant
amount of duplicaed code because of overlapping
control flows. Moreover, even though each of the
decompositions is self-contained, if the duplicated code
modifies global program ressorces it may cause
significant and undesirable side effects when deployed
in separate modules.

2.3 Formal Concept Analysis

Formal Concept Analysis is a mathematical
technique used for identifying groupings of objects that
have common attributes and representing them in a
lattice structure to show the generalization-
specialization relationship among the groups.

Concept analysis starts with a context (O, A, R), a
binary relation R between a set of objects O and their
attributes A. A concept C (E, I) is a maximal collection
of objects E (the extent) sharing common attributes I
(the intent). A concept C1 (E1, I1) is a sub-concept of
another concept C2 (E2, I2) if E1 ⊆ E2 or equivalently I2

⊆ I1. The sub-concept relation is a partial order
relationship that forms a lattice over the set of the
concepts, each of the nodes of the lattice being a
concept. For the infimum of the lattice the intent is
empty and the extent contains all the objects, whereas
for the supremum the intent contains all the attributes
and the extent is empty. Concepts in the lattice are then
grouped together depending on the relationships among
them.

Concept analysis has been used as a data analysis
method in other disciplines for a while. In software
engineering its applications include program
understanding, automatic modularization of legacy [5]
[6], detection of configuration interference, class
hierarchy transformation [13] and, source code
restructuring [14].

In modularization, instead of decomposition concept
analysis is used to identify grouping of program
elements into modules. For example it is used to group
together subroutines and global data structures into
ADTs for object-oriented migration. As a result this
technique is not directly applicable to the type
modularization we are interested in.

3. Lattice of Concept Slices

We now propose a program representation
formalism that we call the Lattice of Concept Slices.
Based on this representation we are going to propose
modularization techniques in the next section. The goal
is to achieve a modularization such that each module
implements preferably a single domain concept, each
module is self-contained, there is minimal duplication
in code and there is no side effect among modules

The formation of the lattice is a three-stage process
– domain concept identification, computation of
concept slices and finally, building and analyzing the
lattice.

3.1 Identification of Domain Concepts

The first step is the identification of domain
concepts in the program. This can be done using
exhaustive concept assignment techniques like HB-CA
or DM-TAO. Instead we take the simpler approach of
structural and informal analysis of the source code.

In our approach the software engineer provides a list
of domain concepts that are taken from the functional
specifications of the system and are implemented in the
given program. Furthermore, she associates such
domain concepts with one or more program elements
such as variables and structural idioms in the source
code. The associations may be based on the use or def
of a particular data type or variable, call to a procedure
or method, a particular variable passed as parameter in
a call, expressions matching on identifier naming or
comments etc. These associations cannot be by no
means exhaustive and only serve as a starting point of
the analysis. In addition, the software engineer
identifies some statements as key statements [8] that
are believed to contribute the most in the computation
of that domain concept.

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering (CSMR’04)
1534-5351/04 $ 20.00 © 2004 IEEE

1: #include <stdio.h>
2: #define YES 1
3: #define NO 2
4: void main()
5: {
6: int nl = 0;
7: int nw = 0;
8: int nc = 0;
9: int inword = NO;
10: int c = getchar();
11: while (c!=EOF)
12: {
13: char ch = (char) c;
14: nc = nc + 1;
15: if (ch=='\n')
16: nl = nl + 1;
17: if (ch==' ' || ch=='\n' || ch=='\t')
18: inword = NO;
19: else if (inword == NO)
20: {
21: inword = YES;
22: nw = nw + 1;

}
23: c = getchar();
 }
24: printf("%d \n", nl);
25: printf("%d \n", nw);
26: printf("%d \n", nc);
 }

Figure 1: The line count program

Some domain concepts can be identified
automatically based on a set of general criteria. The
rationale behind the criteria is that any information
being sent outside from the program or any change in
the internal state that is externally visible are
information that will be used by other parts of the
program and hence are candidates for being part of a
domain concept. Such criteria can be the identifiers
such as – return parameters of a function or method,
modified formal parameters that have been called by
reference, variables in output/print statements, global
variables or class attributes been modified. These
identifiers are candidates for domain concepts and the
statements that modify these identifiers will be
considered as part of the corresponding domain
concept. The software engineer may accept or reject
the suggestions made automatically.

The outcome of this step is a set of domain concepts
and associated with each of them is a set of program
statements that implement the concept, where some of
the statements are marked as key statements. Each of
the concepts is a candidate to form a possible module
and the associated statements will comprise the
statements for the module.

As an illustration of the technique consider Figure 1
that illustrates a simple line count program taken from
[7] that counts the number of lines, words and
characters in a text file. We are attempting to
modularize main function. The function outputs the
calculation results of three variables – nl, nw and nc

statement 24, 25 and 26 respectively. Hence the
automatic identification technique suggests the possible
presence of three domain concepts corresponding to
these three variables. The software engineer confirms
the suggestion and names the domain concepts as
Lines, Words and Chars respectively. The nl variable is
being computed (def-ed) in statement number 6 and 16.
Statement 6 is the declaration and initialization and
does not directly contribute to the computation of nl,
whereas Statement 16 is the place where the main
computation is being done. In this respect the Lines
domain concept consists of statement 6, 16 and 24,
where statement 16 is the key statement. Table 1 shows
the list of domain concepts identified in this step and
the statements associated with each of them.

In addition to the domain knowledge used by the
software engineer to collect the significant variable that
are believed to be associated with a specific domain
concept, other semi-automated techniques can be also
used. These include data mining, cohesion metrics, and
data usage analysis [17].

Table 1: The Domain Concepts
Domain Concepts Statements
Lines 6, 16, 24
Words 7, 22, 25
Chars 8, 14, 26

3.2 Computation of Concept Slices

In this step we apply concept slicing as introduced
in [8]. A concept slice is a slice of the program with
respect to the domain concept. It is computed by taking
slices of the program with respect to each of the
statements belonging to a domain concept and then
taking union of the slices.

The outcome of this step adds more statements to
the domain concepts and makes the domain concept
executable. The concept slices corresponding to the
domain concepts are candidates for possible modules.

4: void main()
5: {
6: int nl = 0;
10: int c = getchar();
11: while (c!=EOF)
12: {
13: char ch = (char) c;
15: if (ch=='\n')
16: nl = nl + 1;
23: c = getchar();
 }
24: printf("%d \n", nl);
 }

Figure 2: Slice on the Lines concept

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering (CSMR’04)
1534-5351/04 $ 20.00 © 2004 IEEE

4: void main()
5: {
7: int nw = 0;
9: int inword = NO;
10: int c = getchar();
11: while (c!=EOF)
12: {
13: char ch = (char) c;
17: if (ch==' ' || ch=='\n' || ch=='\t')
18: inword = NO;
19: else if (inword == NO)
20: {
21: inword = YES;
22: nw = nw + 1;

}
23: c = getchar();
 }
25: printf("%d \n", nw);
 }

Figure 3: Slice on the Words concept

4: void main()
5: {
8: int nc = 0;
10: int c = getchar();
11: while (c!=EOF)
12: {
14: nc = nc + 1;
23: c = getchar();
 }
26: printf("%d \n", nc);
 }

 Figure 4: Slice on the Chars concept

Figures 2, 3 and 4 illustrate the concept slices
corresponding to the domain concepts Lines, Words
and Chars. Table 2 shows the refined statement list
associated with the domain concepts after performing
this step.

Table 2: The Concept Slices
Domain Concepts Statements
Lines 4, 5, 6, 10, 11, 12, 13, 15, 16,

23, 24
Words 4, 5, 7, 9, 10, 11, 12, 13, 17, 18,

19, 20, 21, 22, 23, 25
Chars 4, 5, 8, 10, 11, 12, 14, 23, 26

3.3 Building the Lattice

The third step is building the lattice of concept
slices. This is done by performing a formal concept
analysis on the concept slices. The context is formed by
the relationship between the domain concepts and the
program statements. The domain concepts make up the
objects (extents) and statements make up the attributes
(intents) of the context. A domain concept is
considered to have a relationship with a statement if the
statement is member of the concept slice for that
domain concept. A concept lattice is formed by
performing a formal concept analysis on the context.

Figure 5: The Lattice of Concept Slices

The nodes of the lattice are called concepts2, some
of which correspond to the domain concepts. In the
lattice each domain concept is related to all the
statements in its node and all the nodes below it,
whereas each statement is related to all the domain
concepts in its node and all the nodes above it.

After applying a formal concept analysis on the
elements illustrated in Table 2, we obtain the lattice
given in Figure 5. The lattice consists of 6 nodes, 3 of
which are the domain concepts. The domain concept
Lines consists of statements 6, 15, 16, 24, 13, 4, 5, 10,
11, 12 and 23. The statement 13 belongs to both Lines
and Words domain concepts.

An observation from the lattice is that the flow in
the lattice structure does not correspond to the control
flow or data flow in the program. Rather the statements
are shuffled up and down among the nodes. This lattice
serves as an input to the modularization algorithms that
is discussed in more detail in the following section.

4. Modularization Algorithms

Once the concept lattice has been built, the next step
of the process is to perform modularization based on it.
We present two different algorithms to do so. The first
one is a lattice clustering algorithm that aims at keeping
the modules as separate from each other as possible
and only merge them together if there is any side
effects identified. The second one targets the
elimination of code duplication and organizes the
program in a module/sub-module hierarchy.

2 A concept is a node of the concept lattice. It is totally different
from domain concept.

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering (CSMR’04)
1534-5351/04 $ 20.00 © 2004 IEEE

Lattice Clustering Algorithm
Input: Lattice of concepts
Output: A collection of modules

Step 1. In the bottom-up traversal of the lattice
1.1. If this node is a domain concept create a new

 cluster containing this domain concept
1.2. If this node is a critical node create a new

 cluster containing all the domain concepts in
 the sub-lattice starting from and above this
 node.

Step 2. Merge clusters with non-empty intersection

Step 3. Create a separate module for each of the
 clusters consisting of the union of the
 statements corresponding to the concept slices
 of the domain concepts inside each cluster.

Figure 6: Clustering algorithm

4.1 Lattice Clustering Algorithm

A node of the lattice is called a critical node if any
statement in the node contains a Pricipal Variable3 [8].
The existence of a critical node makes all other nodes
above this node in the lattice interfering with each
other. Furthermore, if the concept slices corresponding
to the domain concepts above a critical node are
decomposed as sperate modules then they might have
side-effect with each other since one module will
change the internal state of the program and it might
cause the other module to work possibly with incorrect
data.

In this step we run a clustering algorithm on the
lattice to group domain concepts together to form a
non-interfering set of modules. Figure 6 presents the
algorithm.

For a lattice in Figure 7(a) there will be three
clusters consisting of nodes 3, 4, and 5 respectively.
For the lattice in Figure 7(b) due to the presence of the
critical node 2, the node 4 and 5 will be clustered
together and node 3 will be a in a separate cluster. In
Figure 7(c) node 4 and 5 will be in one cluster due to
the presence of critical node 2 and node 5 and 6 will be
in another cluster sue to the critical node 3. But since
the clusters overlap for node 5, they will be joined
together forming a single cluster for the lattice.

3 A Variable V in a set of statements S is a Principal Variable iff V is
global or call-by-reference and is assigned in S.

1

2

34 5

6

1

2

34 5

6

Domain Concept

Regular Node

Critical Node

1

2

64 5

7

3

(a)

(b)
(c)

Figure 7: Lattice clustering

In our line count example there is no critical node
present in the lattice structure. Hence we have three
clusters corresponding to three domain concepts.
Resulting three modules, one for each Lines, Words
and Chars, consisting of the statements in their
corresponding concept slice given in Figure 2, 3 and 4.

4.2 Lattice Restructuring Algorithm

The modularization we have achieved in the
previous section contains some duplication of code
among the modules. This is mostly because of the
control flow they share while computing the domain
concepts. Also if the computation of one domain
concept depends on the result of another domain
concept, all the code from the second domain concept
will be duplicated in the module for the first one.

Since the statements of a node of the lattice belongs
to all the domain concepts above it, the shared control
flow and the shared computations among the modules
will appear at the lower part of the lattice. Domain
concept specific computations will reside in their
corresponding nodes. But since statements in the nodes
are not necessarily consecutive, rather shuffled up and
down among the nodes of the lattice, the statements in
a node may not be self-contained in a control flow.

We attempt to eliminate the code duplication by
restructuring the lattice is a way such that the
statements in the nodes will have a complete control
flow and the lattice structure will correspond to a
module sub-module hierarchy.

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering (CSMR’04)
1534-5351/04 $ 20.00 © 2004 IEEE

Lattice Restructuring Algorithm
Input: Lattice of concepts
Output: A collection of modules

Step 1. In the top-down traversal of the lattice
1.1. If there is a sub-lattice starting and below this
 node, push all the statements down from this
 node to the bottom node of the sub-lattice
1.2. Identify groups of statements in this node

 such that the statements of the group and
 the statements of the nodes above this node
 have a self-contained and complete control
 flow
1.3. If this node is a domain concept, and

 consecutive statements are not found,
 identify each key statement as a group
1.4. Push down the other statements in this node

 to the nodes right below it
1.5. If there are multiple groups in this node,

 split them into separate nodes.
1.6. Create a module from each statement group

 in this node. Declare all the variables used
 and defined in a module as parameters with
 variables being defined as call-by-reference
 and being used as call-by-value

Step 2. In the bottom-up traversal of the lattice
2.1. From the module of this node call modules

 above this node from appropriate location.

Figure 8: Lattice Restructuring algorithm

The restructuring is done by pushing down the
statements from the nodes that disrupt the control flow.
Since only the domain concepts of the nodes above the
current node depend on the statements of the current
node, pushing a statement down to the node below the
current node still keeps it as part of those domain
concepts. The pushed down statement now becomes
part of other domain concepts above the new location
of the statement. This does not affect the computation
of these other domain concepts since the other domain
concepts were never dependent on the pushed down
statement. It is to be noted that in worst case all the
statements from all the nodes will be pushed down to
the bottom node of the lattice and there will be no
modularization at all. Figure 8 shows the restructuring
algorithm.

In our example Statement 22 is a key statement of
Words, which is part of the consecutive statement
group 17, 18, 19, 20, 21 and 22. Also the control flow
of this group is self-contained, hence it will form the

module for Words and the statements 7, 9 and 25 will
be pushed down to the node right below it. Since the
statements being pushed down from Words does not
affect the computations for Lines or Chars, putting the
statements on the path of Lines or Chars will not
hamper the computation of them. Figure 9 shows the
final structure of the lattice after applying the algorithm
on the lattice in Figure 5.

Figure 9: Restructured lattice

Statements in the node at the bottom of the lattice
will form the main controller module, which will call
the other modules that actually computes the domain
concepts. Figure 10 shows the line count program after
the modularization is performed.

5. Related Work

Source code analysis techniques like concept
assignment, program slicing and formal concept
analysis has been used in different combinations in the
area of program comprehension and re-engineering.

Harman et al. [8] described a framework for
unifying concept assignment with slicing. The paper
presents three algorithms for combining the two
analysis techniques and demonstrates their application
in reuse and reverse engineering. The algorithms are
for computing an executable concept slice, key
statement analysis and concept dependence analysis.

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering (CSMR’04)
1534-5351/04 $ 20.00 © 2004 IEEE

#include <stdio.h>
#define YES 1
#define NO 2

void chars(int &nc)
{
 nc = nc +1;
}
void lines(int &nl, char ch)
{
 if (ch=='\n')
 nl = nl + 1;
}
void words(int &nw, char ch, int &inword)
{
 if (ch==' ' || ch=='\n' || ch=='\t')
 inword = NO;
 else if (inword == NO)
 {
 inword = YES;
 nw = nw + 1;
 }
}
void main()
{
 int nl = 0;
 int nw = 0;
 int nc = 0;
 int inword = NO;
 int c = getchar();
 while (c != EOF)
 {
 char ch = (char) c;
 chars(nc);
 lines(nl, ch);
 words(nw, ch, inword);
 c = getchar();
 }
 printf("%d \n", nl);
 printf("%d \n", nw);
 printf("%d \n", nc);
}

Figure 10: The modularized line count program

Gallagher et al. [7] introduced the idea of a lattice of
a slice to analyze the relationship among the
decomposition slices of a program. The lattice is
basically a relationship graph of the decomposition
slices of a program. The lattice is used it to identify the
ripple affects of changes made to a program during the
maintenance of the program. The paper also gives a list
of modifications that can be done in the program
without any affect on the rest of the program.

Tonella [9] extended the work of [7] by performing
formal concept analysis to build the concept lattice of
decomposition slices as an extension of decomposition
slice graphs. The paper demonstrates the use of the
data structure in change impact analysis.

6. Conclusion and Future Work

This paper presents a modularization algorithm that
aims to identify stand-alone code fragments that can be
implemented as modules that deliver cohesive domain
functionality. The algorithms are applied on a lattice

based program representation formalism that is built by
combining concept assignment, concept analysis, and
slicing. The lattice representation models the
contributions of the individual statements of a program
towards the computation of different domain concepts
implemented by it. The lattice structure serves as a
primary data structure for program modularization. The
algorithms to discover modules and sub-modules are
applied on the concept lattice by clustering and
restructuring it so that nodes in the lattice contain
consecutive statements that form complete control
flows.

Currently, we apply this modularization technique in
migration of monolithically developed Servlet-based
web applications into Model-View-Controller (MVC)
pattern J2EE architecture. The work is motivated by
early web-based multi-tier applications that were
developed using Java Servlet technology in a
monolithic way by embedding all the business logic
and presentation logic inside one Java program. The
business logic in such programs computes the domain
concepts implemented in the Servlet. Similarly, the
presentation logic relates also special type of domain
concepts that deal with the user interface. Decomposed
modules from the domain concepts that correspond to
the business logic can be migrated as JavaBeans/EJBs
while modules that correspond to the presentation logic
can be migrated into JavaServer Pages.

In this paper, the proposed modularization process
has been illustrated with an example C program.
However, additional work is to be done in order to
evaluate and apply the modularization process on
larger programs with inter-procedural dependencies.
One future direction is to use Inter-Procedural
Dependency graphs, and incremental analysis so that
larger program segments and groups of functions that
relate to specific concepts can be individually analyzed.

This work is being conducted in collaboration with
IBM Toronto Laboratory, Center for Advanced
Studies, and co-sponsored by the Consortium for
Software Engineering Research.

References

[1] Ted J. Biggerstaff, Bharat G. Mitbander and Dallas
Webstar. The Concept Assignment Problem in
Program Understanding. Proceedings of the 15th
International Conference on Software Engineering.
May 1993.

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering (CSMR’04)
1534-5351/04 $ 20.00 © 2004 IEEE

[2] Nicolas Gold and Keith Bennett. Hypothesis-based
Concept Assignment in Software Maintenance. IEE
Proceedings on Software. August 2002.

[3] Mark Weiser. Program Slicing. IEEE Transactions
on Software Engineering. July 1984.

[4] Susan Horwitz, Thomas Reps and David Binkley.
Interprocedural Slicing using Program Dependence
Graphs. ACM Transactions on Programming
Languages and Systems (TOPLAS), Volume 12 Issue
1. January 1990.

[5] C. Lindig, and G. Snelting. Assessing Modular
Structure of Legacy Code Based on Mathematical
Concept Analysis. Proceedings of the 19th
International Conference on Software Engineering.
May 1997.

[6] M. Siff and T. Reps. Identifying Modules via
Concept Analysis. IEEE Transactions on Software
Engineering, Volume 25 Issue 6. November 1999.

[7] Keith B. Gallagher and James R. Lyle. Using
Program Slicing in Software Maintenance. IEEE
Transactions on Software Engineering, Volume 17
Issue 8. August 1991.

[8] Mark Harman, Nicolas Gold, Rob Hierons and
Dave Binkley. Code Extraction Algorithms which
Unify Slicing and Concept Assignment. Proceedings of
Ninth Working Conference on Reverse Engineering.
October 2002.

[9] Paolo Tonella. Using a concept lattice of
decomposition slices for program understanding and
impact analysis. IEEE Transactions on Software
Engineering, Volume 29 Issue 6. June 2003

[10] Jeanne Ferrante, Karl J. Ottenstein and Joe D.
Warren. The Program Dependence Graph and Its Use
in Optimization. ACM Transactions on Programming
Languages and Systems. July 1987.

[11] Susan Horwitz and Thomas Reps. The Use of
Program Dependence Graphs in Software Engineering.
Proceedings of the 14th International Conference on
Software Engineering. May 1992.

[12] K.J Ottenstein and L.M. Ottenstein. The Program
Dependence Graph in a Software Development
Environment. Proceedings of the ACM Software

Engineering Symposium on Practical Software
Development Environments. April, 1984.

[13] G. Snelting. Software Reengineering based on
Concept Lattices. Proceedings of the Fourth European
Conference on Software Maintenance and
Reengineering, March 2000.

[14] G. Antoniol, G. Casazza, M. di Penta and E.
Merlo. A method to re-organize legacy systems via
concept analysis. Proceedings. 9th International
Workshop on Program Comprehension. May 2001.

[15] Frank Tip. A Survey on Program Slicing
Techniques. Journal of programming languages. 1995.

[16] Andera De Lucia. Program Slicing: Methods and
Application. Proceedings of First IEEE International
Workshop on Source Code Analysis and Manipulation.
November 2001.

[17] K. Sartipi, K. Kontogiannis. A User-assisted
Approach to Component Clustering. In Journal of
Software Maintenance: Research and Practice (to
appear 2004).

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering (CSMR’04)
1534-5351/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

