
A Metric-Based Approach to Enhance Design Quality
Through Meta-Pattern Transformations �

Ladan Tahvildari and Kostas Kontogiannis
Dept. of Electrical and Computer Eng.

University of Waterloo
Waterloo, Ontario
Canada, N2L 3G1

fltahvild,kostasg@swen.uwaterloo.ca

Abstract

During the evolution of object-oriented legacy systems,
improving the design quality is most often a highly de-
manded objective. For such systems which have a large
number of classes and are subject to frequent modifications,
detection and correction of design defects is a complex task.
The use of automatic detection and correction tools can be
helpful for this task. Various research approaches have pro-
posed transformations that improve the quality of an object-
oriented systems while preserving its behavior. This paper
proposes a framework where a catalogue of object-oriented
metrics can be used as indicators for automatically detect-
ing situations where a particular transformation can be ap-
plied to improve the quality of an object-oriented legacy
system. The correction process is based on analyzing the
impact of various meta-pattern transformations on these
object-oriented metrics.

1 Introduction

Design defects can be recognized in the early stages of
software development or during system evolution. They
cause the system to exhibit low maintainability, low reuse,
high complexity and faulty behavior. Specifically, for
object-oriented legacy systems which have been faced with
frequent modifications, detection and correction of such de-
sign flaws is a complex task.

Our previous work on improving the quality of object-
oriented legacy systems includes : i) using metrics for qual-
ity estimation [29, 33], and ii) proposing a software trans-
formation framework based soft-goal dependency graphs to

�This work was funded by the IBM Canada Ltd. Laboratory, Center
for Advanced Studies in Toronto; also by the Ontario Graduate Scholar-
ship (OGS) of Canada.

enhance quality [30, 31, 32]. Both aspects have been treated
mostly independently from each other. A natural extension
to these efforts is to analyze the interaction of particular
transformations and metrics in a systematic manner in order
to suggest the use of transformations that may be helpful in
improving quality as estimated by various metrics. In this
work, we identify a catalogue of object-oriented software
metrics that can be related to object-oriented design prop-
erties. Then, we investigate the use of metrics for detecting
potential design flaws and for suggesting potentially useful
transformations for correcting them.

This paper is organized as follows. Section 2 proposes
a classification of object-oriented design flaws which is a
step towards discovering recurring detection and correction
methods. Section 3 presents the proposed re-engineering
strategy using object-oriented metrics to detect and cor-
rect design flaws while Section 4 discusses quality design
heuristics to guide re-engineering strategy. Section 5 clas-
sifies a selection of object-oriented metrics which are of the
interest for this research. Section 6 presents a diagnosis
algorithm. Section 7 shows the impact of applying meta-
patterns on metrics Finally, Section 8 discusses an applica-
tion scenario of the proposed classification and Section 10
provides the conclusion and insights of future work.

2 A Classification of OO Design Flaws

Design properties are tangible concepts that can be di-
rectly assessed by examining the internal and external struc-
ture, relationships, and functionality of the design compo-
nents, attributes, methods, and classes. An evaluation of
the class definition for its external relationships (inheritance
type) with other classes and the examination of its internal
components, attributes, and methods reveals significant in-
formation that objectively captures the structural and func-
tional characteristics of a class and its objects.

Proceedings of the Seventh European Conference On Software Maintenance And Reengineering (CSMR’03)
0-7695-1902-4/03 $17.00 © 2003 IEEE

A design could deteriorate for several reasons. A class
may have conformed to good quality object-oriented design
(i.e., encapsulation, information hiding, data abstraction) in
the initial stages of development and lost its integrity due
to : i) addition of methods/data members, ii) a base class
trying to accomplish too much for its derived classes, iii) a
class attempting to handle too many different situations,
grouping what should be several different derived classes
into a single class, iv) a class with increasing number of re-
lationships and associations with other classes and abstract
data types.

By introducing a classification of design flaws, we aim
to discover recurring detection and correction methods.
This classification will ease the assessment of new re-
engineering techniques and tools. Sorting and classifying
design flaws is complex because of the multiple points of
view available. We propose the following classification
from the literature [7, 10, 15, 24, 36] based on the scope
of design flaws inside an object-oriented applications. It
can distinguish among i) design flaws involving the internal
structure of a class, ii) design flaws involving interactions
among classes, and iii) design flaws relating to the appli-
cation semantics. We retain these three categories because
they represent three distinct levels of abstraction and thus
must rely on different detection and correction techniques.

Architectural
Flaws

(AF)

SB

SAB

SA AB

Structural

Flaws

(SF)

Flaws

(BF)

Behavioral

Figure 1. Design Flaws Classification.

These three categories are not orthogonal and several de-
sign flaws do not fit simply in a single category. We can
define four additional categories as depicted in Figure 1
which are included the intersections of the three previous
ones. Thus, evolving from the three main categories, we
can introduce seven categories to classify the design flaws.
These categories which allow a finer-grain classification of
the design flaws are as follows :

� Structural Flaws (SF)
This category includes any design flaws related to the
internal structure of a class. It embodies stylish and
syntactic flaws which are design defects in the struc-
ture of the class and its members. For example, meth-
ods with too many invocations are error-prone and dif-
ficult to maintain or extend [15].

� Architectural Flaws (AF)
This category encloses any design flaws related to the
external structure of the classes (their public interface)
and their relationships. All design flaws in the appli-
cation architecture belong to this category. For exam-
ple, mixing different algorithms within a single data
structure is an architectural flaw. The reason is the al-
gorithms overweight the data structure, then the data
structure extension is slowed down because it must be
modified every time a new algorithm is added and it is
likely to grow rapidly out of control [16].

� Behavioral Flaws (BF)
This category encompasses all the design flaws related
to the application semantics. For example, the “The
Year 2000 Problem” (due to the storage of years on
only two digits) is a typical behavioral design flaw.
Another example of behavioral design flaws concerns
changes in the environment of a system.

� Intersection of SF and AF (SA)
This category includes design flaws related to both the
internal and external structures of the classes. There
are some internal design flaws which corrections im-
ply changes to the application architecture. For ex-
ample, duplicated code among classes reveals a need
to change the architecture to factor out the dupli-
cated code. Also, there are some architectural design
flaws involving changes to the internal structures of the
classes. For example, the used of the Composite Pat-
tern [16] when a single field could be used [33].

� Intersection of SF and BF (SB)
This category encloses design flaws involving both the
semantic of the class and its internal structure. There
are some defects in the behavior of the class which cor-
rections imply changing it structure as well as some
defects in the internal structure of the class which cor-
rections implies changing in its behavior.

� Intersection of AF and BF (AB)
This category encompasses design flaws related to
both architectural and behavioral of the classes. There
are a set of design flaws related to the application archi-
tecture which corrections imply changing the seman-
tics of its classes. For example, a “God” class [27]
is a sign of a bad architecture which improvement im-
plies changing the semantic of at least the “God” class.
Also, there are some design flaws in the behavior of
classes which corrections imply changes in their archi-
tecture.

� Intersection of SF, AF, and BF (SAB)
The last category includes the set of all the design flaws
implying the structure, semantics, and the architecture
of the application.

Proceedings of the Seventh European Conference On Software Maintenance And Reengineering (CSMR’03)
0-7695-1902-4/03 $17.00 © 2003 IEEE

Classes in
Object Model

OO Metrics
Detected

Design Flaws
Re-engineered

Classes

OO Metrics

Results

Apply Metrics Transformations Apply Metrics

Improvement
Evaluate (from Detected Design Flaws)

Metrics Data
(From Re-engineered Classes)
Metrics Data

Apply

Figure 2. Re-engineering Strategy for Design Flaws.

Based on our proposed classification, it is possible to dis-
tinguish among design flaws relative to any combination
of syntactic, structural, semantic, or architectural defects.
These categories also allow differentiating among design
flaws that root in one category and imply changes in an-
other one. For example, duplicate code across classes is de-
tected into internal structures (SF) of the classes, but result-
ing flaws appear in both internal structures (SF) and their
architecture (AF).

Our concern for improving the quality of object-oriented
design of legacy systems is related to apply the changes
which preserve the behavior of the system. It means that the
behavioral flaws are out of the scope of this research work.
Due to this assumption, we only focus on SF, AF, and the
intersections between them which can cause decreasing the
design quality.

3 Design Flaws Re-engineering Framework

During the development of object-oriented legacy sys-
tems, an incremental approach is used [5, 26]. The initial
design model created in the first increment may have good
design properties. However, over subsequent increments,
the quality may be deteriorated. It means that there is a risk
that the class design will deteriorate in quality with each
increment. Over time, such classes may become difficult
to maintain and become prone to errors. Consequently, we
need to devise a technique not only for detecting these de-
sign flaws but also for correcting them.

Figure 2 shows the proposed re-engineering strategy us-
ing object-oriented metrics. As known, an object model has
several levels of representation, including application level,
subsystem level, class level, and function level. While de-
sign flaws can occur at any level, our focus here is on class
deterioration. We believe that this is the most fundamen-
tal level that constitutes a system. Improving deteriorated
classes should help to keep object-oriented legacy systems

operational. After extracting an object model at class level
through reverse engineering, the proposed strategy as de-
picted in Figure 2 makes use of the the following steps :

� Step 1 : To measure and record the object-oriented
metrics in order to detect classes for which quality has
deteriorated. While there are several reasons for a de-
sign to lose quality over time, here the focus is on de-
tecting the classes that have high complexity and high
coupling. For detecting such classes, there is a need to
have a classification of object-oriented design metrics
which relate to different categories of quality design
heuristics. In Section 5, we will propose and discuss
this useful catalogue.

� Step 2 : To re-engineer detected design flaws using
proper transformations. For correcting such design
flaws through software transformations, we need to
study the impact of a predefine set of transformations
on a predefined set of metrics. In Section 7, we not
only select the transformation that are of our interest
in this research work but also discuss their impact on
the predefined catalogue of object-oriented metrics.

� Step 3 : To re-apply and record the same object-
oriented metrics to the re-engineered classes and fi-
nally compare the recorded results to evaluate design
improvement. Once the transformation and the role of
the class are determined, it is necessary to verify that
the transformation makes sense in the particular con-
text of the application. Based on the preconditions for
each transformation, we can find all possible transfor-
mations based on the source code features that can be
applied when our proposed framework detects a symp-
tomatic situation.

Proceedings of the Seventh European Conference On Software Maintenance And Reengineering (CSMR’03)
0-7695-1902-4/03 $17.00 © 2003 IEEE

4 Quality Design Heuristics

One way to detect design flaws at the class level is to
identify violations of a “good” object-oriented software de-
sign by performing source code analysis. However, some
guidelines and principles exist [27] to build a “good” de-
sign, but there is no consensus on what a “good” design
really is.

While there are several reasons for a class to lose qual-
ity over time, here the focus is on the classes that have high
coupling and low cohesion. These characteristics often re-
sult in loss of abstraction and encapsulation. They are those
highly coupled classes that often loose cohesion during the
course of development. Based on this assumption, the qual-
ity design heuristics will be proposed to detect design flaws
at the class level. The following subsections will discuss
in detail these concepts. In a similar manner, other design
principles can be checked and violations can be detected by
using different heuristics [27]. Due to the lack of space, we
focus in this paper only on the two of these heuristics.

4.1 Design Heuristic 1 : Key Classes

A proper way to detect design flaws at the class level
is to identify which classes implement the key concepts of
the system. Usually, the most important concepts of a sys-
tem are implemented by very few key classes [3] which can
be characterized by the specific properties. These classes
which we called them as key classes manage a large amount
of other classes or use them in order to implement their
functionality.

The key classes are tightly coupled with other parts of the
system. Additionally, they tend to be rather complex, since
they implement much of the legacy system’s functionality.
Finding these classes is a starting point in our framework
to detect potential design flaws and correct them properly
based on meta-pattern transformations. Figure 3 illustrates
such an analysis. The classes of the object-oriented legacy
system are placed into a coordinate system according to
their complexity and coupling measurements. Classes that
are complex and tightly coupled with the rest of the system
fall into the upper right corner and are good candidates for
these key classes.

Mathematically, we can combine the two metrics by
computing the distance d of a class from the origin of the
coordinate system. If x denotes the complexity value of a
class, and y its coupling value, we compute the combined
value d as :

d =
p
x2 + y2

In some cases, if the metrics use a very different scale,
some normalization might be required. We can then use the

following formula :

d =

s�
x

xmax

�2

+

�
y

ymax

�2

This combined value allow us to compare classes.
Classes with higher values for d are better candidates to be
considered key classes of the system than classes with lower
values for d. The value of d provides a good means to iden-
tify the key classes of the system that may represent design
flaws which needs to be taken care of.

4.2 Design Heuristic 2 : One Class-One Concept

A very basic principle in object-oriented software engi-
neering states that a class should implement one single con-
cept of the application domain. Some violations of this prin-
ciple can be detected by using the following assumptions :

� A class that implements more than one concept, has
probably low cohesion measurements, since these con-
cepts can be implemented separately.

� A class that by itself does not implement one con-
cept (the implementation of the concept is distributed
among many classes) is probably tightly coupled to
other classes.

Therefore, by collecting cohesion and coupling values of
an object-oriented legacy system, possible violations of the
principle “one class - one concept” can be found. These
classes tend to have either low cohesion values or high cou-
pling values. The classes that have very low cohesion val-
ues can often be split [25]. Sometimes this leads to a more
flexible design, since the two separate classes are easier to
understand and are more reusable. Low cohesion values
also indicate deteriorated classes. These classes are not im-
plementing a self contained object from the application do-
main, they just group methods together, acting as a module.

5 Object-Oriented Metrics Suite

Each of design flaws identified in Section 2 and each of
the quality rules for detecting these flaws represent an at-
tribute or the characteristic of a design. These characteris-
tics are sufficiently well defined to be objectively assessed
by using one or more object-oriented metrics. Metrics are
particularly suitable to check, whether the object-oriented
legacy system adheres to design principles or contains vio-
lations of these principles.

In this section, we present object-oriented metrics de-
fined in the literature and can be used to assess object-
oriented system qualities. These metrics fall into different

Proceedings of the Seventh European Conference On Software Maintenance And Reengineering (CSMR’03)
0-7695-1902-4/03 $17.00 © 2003 IEEE

Class 3

tightly coupled with other parts
of the system.

Classes that are tightly
coupled with other
parts of the system. Class 4

Classes that are
rather complex.

Class 1 Class 5

Class 6
Class 2

Complexity

Coupling

Core classes are complex and

Figure 3. Key Classes in an Object-Oriented Legacy System.

categories depending on the aspects of design flaws that we
plan to detect and correct them in the proposed design flaws
re-engineering framework. The proposed selection of the
object-oriented metrics are classified in three major cate-
gories [34] : complexity metrics, coupling metrics, and co-
hesion metrics as depicted in Table 1 on the alphabetic order
of the metric names and described as follows.

� Complexity Metrics
We consider those metrics because they may give us
indications about the level of complexity for a given
class. One of the well established metrics to measure
the complexity of a class is WMC (Weighted Meth-
ods per Class) measures the complexity of a class by
adding up the complexities of the methods defined in
the class [9, 12]. A special case of WMC (which is very
simple to compute) is NOM (Number Of Methods)
which measures the complexity of a class by count-
ing the number of methods defined in that class [18] as
well which is called RFC (Response Set For A Class)
metric [9]. Such metrics measure the attributes of the
objects in the class and express the potential commu-
nication between the class that is measured with other
classes i.e., how many methods local to the class and
methods from other classes can be potentially invoked
by invoking methods from the class. Complexity mea-
surements for methods are usually given by code com-
plexity metrics like LOC or the McCabe Cyclomatic
complexity [23]. Class Definition Entropy (CDE) [1]
metric identifies complex classes in an object-oriented
system. Classes with higher values of CDE can be ex-
pected to have a complex implementation and a more
than average number of errors and changes. Obvi-
ously, complexity metrics play an important role when
re-engineering software systems as classes with high
complexity measurements are difficult to understand
and consequently difficult to change.

� Coupling Metrics
Another important aspect when dealing with an object-
oriented legacy system is the coupling level between
classes. A class is coupled to another class, if it de-
pends on that class, for example by accessing variables
of that class, or by invoking methods from that class.
Classes that are tightly coupled cannot be seen as iso-
lated parts of the system. Understanding or modify-
ing them requires that other parts of the system must
be inspected as well. Conversely, if other parts of a
system change, classes with high coupling measure-
ments are more likely to be affected by these changes.
Additionally, classes with high coupling tend to play
key roles in the system, making them a good starting
point when trying to understand an unfamiliar object-
oriented legacy system. Analyzing the viewpoints sug-
gested for the different coupling metrics, we are able
to remark the reuse degree and maintenance effort for
a class are decisively influence by the coupling level
between classes. DAC (Data Abstract Coupling) mea-
sures coupling between classes that results from at-
tribute declarations [19, 20, 21]. DAC counts the num-
ber of abstract data types defined in a class. Essen-
tially, a class is an abstract data type, therefore DAC re-
flects the number of declarations of complex attributes
(i.e., attributes that have another class of the system as
a type).

� Cohesion Metrics : The cohesion of a class describes
how closely the entities of a class (such as attributes
and methods) are related. Often, cohesion is measured
by establishing relationships between methods of the
class in the case where the same instance variables
are accessed. A useful metric measuring this property
is TCC (Tight Class Cohesion) [4, 13, 19, 20] which
measures the cohesion of a class as the relative num-
ber of directly connected methods, where methods are
considered to be connected when they use at least one

Proceedings of the Seventh European Conference On Software Maintenance And Reengineering (CSMR’03)
0-7695-1902-4/03 $17.00 © 2003 IEEE

Metric Name Category Definition

CDE [1] Class Definition Entropy Complexity CDE computes a decimal number to indicate a class definition
complexity based on the usage and frequency of different name
strings in a class declaration. Consider n1 is the number of
unique name strings used in the class definition, N1 is the
total number (non-unique) of name strings used in the class
definition, fi for 1 � i � n1 is the frequency of
occurrence of the ith name string used in the class, then
CDE = �

Pn1

i=1
(fi=N1)log(fi=N1).

DAC [21] Data Abstraction Coupling Coupling DAC is the number of ADT’s defined in a class.
LCOM [18] Lack of Cohesion in Methods Cohesion Consider a class C , its set M of m methods M1; :::;Mm , and

its set A of a data members A1; :::;Aa accessed by M . Let
�(Ak) be the number of methods that access data attribute Ak

where 1 � k � a. Then,LCOM(C(M;A)) =

�
1

a

P
a

j=1
�(Aj)

�
�m

1�m .
NOM [21] Number Of Methods Complexity NOM is the number of local methods defined in a class which

may indicate the operation property of a class
RFC [9] Response For a Class Complexity The Response Set for a Class (RS) is a set of methods that can

Coupling be potentially executed in response to a message received by
an object of that class. Mathematically it can be defined using
elements of set theory, as : RS = fMg[ifRig where fRig
is the set of methods called by method i and fMg is the set of
all methods in the class. RFC is the cardinality of the response
set for that class. Then, mathematically RFC = jRSj.

TCC [4] Tight Class Cohesion Cohesion A class can be represented as a collection of abstract methods
(AM) where each AM corresponds to a visible method in the
class. The representation of a class using abstract method is
called an abstracted class (AC) which is a multi-set and can
be formally expressed as : AC(C) = kAM(M)jM V (C)k
where V (C) is the set of all visible methods in a classC
and in the ancestors of C . Let NP (C) to be the total number of
pairs of abstract methods in AC(C). Let NDC(C) to be the
number of directed connection in AC(C), then TCC is the
relative number of directly connected methods which can be
expressed as : TCC(C) = NDC(C)=NP (C).

WMC [9] Weighted Methods per Class Complexity Consider a class C1 , with methods M1; :::;Mn and c1; :::; cn
are the static complexity of the methods,
then : WMC =

Pn

i=1 ci.

Table 1. Selected Object-Oriented Metrics.

common instance variable. In the literature, several
formulas have been introduced to compute Lack of Co-
hesion [9, 18, 21]. We adopted a definition in [18]
which measures dissimilarity among all the methods
of a class except the inherited methods but including
overloaded methods. The LCOM value denotes the
number of pairs of methods without shared instance
variables, minus the number of pairs which do share
instance variable.

6 A Diagnosis Algorithm

Based on the discussion in Section 3, a diagnosis algo-
rithm shown in Figure 4 summarizes the detection and cor-
rection activities as implemented by our proposed design

flaws re-engineering framework.

The first step is to apply the key classes (DH1) rule by
using both a complexity and coupling metrics. A very high
level quality goal for a software system could be main-
tainability, thus coupling measurements should not be high
in order to ensure that changes to the system do not trig-
ger changes throughout the system. Therefore, monitor-
ing DAC values can be promising. When a significant
number of classes evolves to higher DAC measurements,
some refactoring operations [15] or meta-pattern transfor-
mations [32, 30] of the system could be appropriate, to re-
duce coupling.

Good object-oriented design styles usually require that
classes have high cohesion, since they should encapsu-
late concepts that belong together. Classes with low co-

Proceedings of the Seventh European Conference On Software Maintenance And Reengineering (CSMR’03)
0-7695-1902-4/03 $17.00 © 2003 IEEE

EndFOR

- End IF

 extracted from a legacy system
AC is a set of classes in an object model

 C because of its features
 corresponnd to the context of
+ Apply the transformations that

 that can correct the flaws
+ Select potential transformations

- IF it is a deteriorated class

FOR each class C of AC do

- Calculate the metric values from
 the predefined catalogue

- Apply quality design heuristics
 to detect design flaws

Figure 4. Description of Diagnosis Algorithm.

hesion often represent violations to a flexible, extensible
or reusable design. All of these are issues that must be
dealt with during the object-oriented re-engineering pro-
cess. Therefore, by applying cohesion metrics like TCC and
coupling metrics like DAC and RFC to the object-oriented
legacy system, possible violations of the principle one class
- one concept (DH2) rule can be found. These classes tend
to have either low TCC values or high DAC and high RFC
values. For example, classes that have very low TCC val-
ues, can often be split [15]. Sometimes this leads to a more
flexible design, since the two separate classes are easier
to understand and are more reusable. Low TCC measure-
ments may indicate classes that have not been designed in
an object-oriented way. These classes are not implementing
a self contained object from the application domain, they
just group methods together, acting as a module. In a simi-
lar manner, other design principles can be checked and vio-
lations can be detected by using metrics [27].

If a class exhibits low method cohesion, it indicates that
the design of the class has probably been partitioned incor-
rectly. In this case, the design could be improved if the class
was split into more classes with individual higher cohesion.
The LCOM metrics helps to identify such design flaws.

7 Impact of Applying Meta-Patterns on Met-
rics

Once a symptomatic situation is detected using object-
oriented metrics, the next step is to propose possible trans-
formations that improve the quality of the program while
preserving its behavior. In Sections 4, 5, and 6, we estab-

lished a cause-to-effect relationship between some combi-
nations of metrics and a poor design quality. It means that
we showed that by changing the code to improve the values
of certain metrics, we presume that we can also improve
the quality of an application or program. The problem to
solve now is how the code should be changed to improve
the corresponding metrics. An intuitive solution is to find
out which transformation (or a set of transformations) al-
lows changing the value of a particular metric (or a set of
metrics). To respond to such a kind of question, we need to
consider two steps : i) propose a catalogue of transforma-
tions as a predefined set of transformations that can be ap-
plied both at the internal and the external structures of the
classes, and ii) analyze the impact of each transformation
on the predefined set of metrics.

There is a synergy between design heuristics and design
patterns. Design heuristics can highlight a problem in one
facet of a design while patterns can provide the solutions.
In our context, meta-pattern transformations are changes in
the design whose purpose is to improve the quality of a sys-
tem while preserving its behavior. For this work, we use the
meta-pattern transformations proposed in [32, 30]. These
transformations modify the structure of a program which
will possibly modify the values of the metrics. As we are
interested in class level metrics, we study the metric varia-
tions for all classes involved in a transformation. The possi-
ble impact of applying each meta-pattern transformation on
metrics for the classes involved is shown in Table 2. Note
that ‘+’ means that there is a positive impact, ‘�’ means
that there is a negative impact, and ‘NI’ means that there is
no impact.

8 A Case Study: Java Expert System Shell

To illustrate the approach proposed in this paper, we
present an example of the application of the diagnosis algo-
rithm in this section. We apply the proposed re-engineering
strategy for design flaws on Java Expert System Shell
(JESS) 1.

JESS is a rule engine and scripting environment writ-
ten entirely in Sun’s Java language by Ernest Friedman-Hill
at Sandia National Laboratories 2. Jess was originally in-
spired by the CLIPS expert system shell, but has grown into
a complete, distinct, dynamic environment of its own. Us-
ing JESS, one can build Java applets and applications that
have the capacity to “reason” using knowledge you supply
in the form of declarative rules. JESS is surprisingly fast,
and for some problems is faster than CLIPS itself. The core
JESS language is still compatible with CLIPS, in that many
Jess scripts are valid CLIPS scripts and vice-versa. Like
CLIPS, JESS uses the Rete algorithm [14] to process rules,

1http://herzberg.ca.sandia.gov/jess/
2http://www.sandia.gov/

Proceedings of the Seventh European Conference On Software Maintenance And Reengineering (CSMR’03)
0-7695-1902-4/03 $17.00 © 2003 IEEE

Meta-Pattern Name Description CDE DAC LCOM NOM RFC TCC WMC

adds an interface to a class which enables
ABSTRACTION another class to take a more abstract view of � NI NI + + � NI

the first class by accessing via interface
constructs an abstract class from an

EXTENSION existing class and creates an extends NI + + NI + + �

relationship between the two classes
moves parts of an existing class to a

MOVEMENT component class and sets up a delegation � + + NI � + �

relationship from the existing class to
its component
weakens the association between two

ENCAPSULATION classes by packaging the object creation � + + NI � + +

statements into dedicated methods
BUILDRELATION operates the relationship between the classes + + NI NI � + +

in a more abstract fashion via an interface
wraps an existing receiver class with another
class in such a way that all requests to

WRAPPER an object of the wrapper class are passed to + + NI NI + + �

the receiver object it wraps and similarly
any results of such requests are passed
back by the wrapper

Table 2. Impact of the Meta-Pattern Transformations on OO Metrics Suite.

a very efficient mechanism for solving the difficult many-
to-many matching problem. JESS adds many features to
CLIPS, including backwards chaining and the ability to ma-
nipulate and directly reason about Java objects. Jess is also
a powerful Java scripting environment, from which one can
create Java objects and call Java methods without compiling
any Java code.

Metrics Deffacts Deffunction Defglobal

CDE 3.794 3.374 2.321
DAC 0 2 1
LCOM 9 5 5
NOM 9 9 5
RFC 30 15 24
TCC 11.3 25.7 34.6
WMC 16 30 50

Table 3. Object-Oriented Metrics for Three
classes of JESS.

We use the Re-engineering Tool Kit for Java 3 for ex-
tracting facts from the source code in order to provide a
high-level view of the systems. For our analysis approach
for detecting design flaws, and performing proper transfor-
mations of any kind, the Java source code and/or the Java
class file must be parsed. The Re-engineering Tool Kit for

3http://www.alphaworks.ibm.com/tech/ret4j

Java parses the source code (JavaML) and generates XML
documents that are easier to read and work with. Also, for
collecting software metrics, we use the Datrix Tool [11].

Three classes were detected by the assessment strat-
egy as a bad design from the maintainability point of
view according to one class-one concept heuristic. These
three classes are called respectively, Deffacts, Deffunction,
and Defglobal. Deffacts is a public class which extends
java.lang.Object and implements java.io.Serializable. One
can create deffact objects and add them to a Rete engine
using Rete.addDeffacts(). Deffunction is a public class
which extends java.lang.Object and implements Userfunc-
tion and java.io.Serializable. One can create such objects
and add them to a Rete engine using Rete.addUserfunction.
Defglobal is a public class which extends java.lang.Object
and implements java.io.Serializable. One can create Def-
globals type objects and add them to a Rete engine using
Rete.addDefglobal.

The values for the object-oriented metrics suite of these
classes are given in Table 3. To avoid that the DH2 rule ap-
plies for each of the three classes, we have to increase the
value of TCC, to decrease the value of DAC and to decrease
the value of RFC. From Table 2, we can suggest to apply
“WRAPPER” meta-pattern transformation. This can create
an abstract class for the three classes. As these three classes
have three common methods (accept, getname, tostring),
the NOM and LCOM do not change which is sufficient to
avoid the application of “WRAPPER” meta-pattern trans-

Proceedings of the Seventh European Conference On Software Maintenance And Reengineering (CSMR’03)
0-7695-1902-4/03 $17.00 © 2003 IEEE

formation. This transformation is appropriate according to
the context of the application.

Another suggestion can be the application of “EXTEN-
SION” meta-pattern transformation which proposes to cre-
ate a set of specialized subclasses for each class. The three
classes Deffacts, Deffunction, and Defglobal are small and
are already pretty much specialized, then this correction for
removing the design defects can be rejected.

9 Related Work

Related work cuts across several research areas and par-
ticularly object-oriented re-engineering and object-oriented
quality estimation. Basili et al. [2] and Briand et al. [6]
showed that most of the metrics proposed by Chidamber
and Kemerer [9] are useful to predict fault-proneness of
classes during the design phase of object-oriented systems.
In the same context, Li and Henry [21] showed that mainte-
nance effort could be predicted from combinations of met-
rics collected from source code of OO components.

Re-engineering of object-oriented software using trans-
formations to improve its quality has been address by sev-
eral researchers. Some techniques involving decomposition
of class hierarchy transformations in smaller modifications
are proposed by Casais [8] and Opdyke [25]. In [8], a set of
primitive update operations that can be used to decompose
class modifications are enumerated. The completeness and
correctness issues are presented but not formally addressed.
Similar work has been conducted by Opdyke [25]. He in-
troduced the notion of behavior preserving transformations
named refactorings. A set of low level refactorings is used
to decompose high level refactorings without introducing
new errors in the system and modifying the program be-
havior. Preservation of the program behavior for each low
level refactoring is guaranteed when some preconditions are
verified. A tool called The Refactoring Browser [28] was
created using these transformations in the SmallTalk en-
vironment. Recently, Tokuda and Batory [35] show that
programs can automatically re-engineered using design pat-
terns. In this work, authors proposed transformations that
can implement some design patterns. Most of the efforts
in this research directions concentrated on the definition of
transformations and their implementation. To the best of
our knowledge, there is no effort on the automatic detection
of the situation where these transformations can apply.

Several authors have addressed the particular problem
of class hierarchy design and maintenance. In their works,
transformations are used typically to abstract common be-
havior into new classes. Work in the context of the Demeter
System has addressed the design of class hierarchies using
an optimization process [22]. The objective function used
in the optimization process is a global class hierarchy metric
that measures the overall complexity of the class hierarchy.

This work is therefore a first step in using metrics to guide
the choice of useful transformations. Godin and Mili [17]
proposed the use of concept (Galois) lattices and derived
structures as of formal framework for dealing with class hi-
erarchy design or re-engineering that guarantees maximal
factorization of the common properties including polymor-
phism. The GURU tool [24] dealt with refactoring of meth-
ods and class hierarchy in an integrated manner.

However, not much effort has been invested for system-
atically documenting object-oriented metrics as a guide not
only for detection design flaws in the reverse engineering
process but also for correction it through proper transforma-
tions in the forward engineering process. In this context, the
catalogue of object-oriented metrics and the proposed trans-
formation framework allow for achieving specific quality
requirements in the migrant system.

10 Conclusion

This paper addressed a process activity that can detect
and rectify design defects from a practical point of view.
This comprehensive process model focused on class deteri-
oration primarily due to lack of cohesion induced by high
coupling which is prevalent in object-oriented legacy sys-
tems.

We have investigated the use of metrics for detecting
potential design flaws and for suggesting potentially use-
ful transformations for correcting them. Initial experiments
with this re-engineering strategy have demonstrated the fea-
sibility of the approach and its usefulness. Indeed, our ap-
proach can help a designer or programmer by suggesting
proper meta-pattern transformations. This also help to fo-
cus on a particular part of a large system.

We believe that the explicit nature of our proposed
framework is very useful to develop and maintain good
quality object-oriented systems. This strategy can be used
to prevent loss of maintainability or restore it through re-
engineering.

A direction that we will explore in our future work is to
associate the metrics to be used with context and appropri-
ate domains. This will enable us to refine the suggestions
by eliminating those that are not relevant.

References

[1] J. Bansiya, C. Davis, and L. Etzkorn. An entropy-based
complexity measure for object-oriented designs. Theory and
Practice of Object Systems, 5(2):111–118, 1999.

[2] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of
object-oriented design metrics as quality indicators. IEEE
Transactions of Software Engineering, 22(10):751–761, Oc-
tober 1996.

Proceedings of the Seventh European Conference On Software Maintenance And Reengineering (CSMR’03)
0-7695-1902-4/03 $17.00 © 2003 IEEE

[3] M. Bauer. Analyzing software systems using combinations
of metrics. In O. Ciupke and S. Ducasse, editors, Proceed-
ings of the ECOOP Workshop on Experiences in Object-
Oriented Re-Engineering, May 1999.

[4] J. Bieman and B. Kang. Cohesion and reuse in an object-
oriented system. In Proceedings of ACM Symposuim for
Software Reusability (SSR), pages 259–262, 1995.

[5] E. J. Braude. Software Engineering: An Object-Oriented
Perspective. Addison-Wesley, 2001.

[6] L. C. Briand, S. Morasca, and V. R. Basili. Defining
and validating measures of object-based high-level design.
IEEE Transactions of Software Engineering, 25(5):722–
743, September/October 1999.

[7] K. Brown. Design reverse-engineering and automated de-
sign pattern detection in smalltalk. Technical report tr-96-
07, University of Illinois at Urbana-Champaign, 1996.

[8] E. Casais. An incremental class reorganization approach.
In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), LNCS 615, Springer,
pages 114–132, Utrecht, The Netherlands, June 1992.

[9] S. R. Chidamber and C. F. Kemerer. A metric suite for
object-oriented design. IEEE Transactions of Software En-
gineering, 25(5):476–493, June 1994.

[10] O. Ciupke. Automatic detection of design problems in
object-oriented re-engineerin. In Proceedings of the IEEE
Technology of Object-Oriented Languages and Systems -
TOOLS 30, pages 18–32, 1999.

[11] Datrix metric reference manual, version
4.1. Bell Canada, 2000. Also available at
http://www.iro.umontreal.ca/labs/gelo/datrix.

[12] L. H. Etzkorn, J. Bansiya, and C. Davis. Design and code
complexity metrics for oo classes. Journal of Object Ori-
ented Programming, 12(1):35–40, March 1999.

[13] L. H. Etzkorn, C. Davis, and W. Li. A practical look at
the lack of cohesion in methods metric. Journal of Object
Oriented Programming, 11(5):27–34, September 1998.

[14] C. L. Forgy. Rete : A fast algorithm for the many pattern/
many object pattern match problem. Artificial Intelligence,
19:17–37, 1982.

[15] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[16] E. Gamma, R. Helm, R. Jahnson, and J. Vlissides. Design
Patterns : Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[17] R. Godin and M. Hafedh. Building and maintaining
analysis-level class hierarchies using galois lattice. In Pro-
ceedings of the ACM 8

th Annual Conference on Object-
Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA), pages 394–410, Washington, DC, Septem-
ber 1993.

[18] B. Henderson-Sellers. Object-Oriented Metrics : Measures
of Complexity. Prentice Hall, 1996.

[19] M. Hitz and B. Montazeri. Chidamber and kemerer’s metrics
suits : A measurement theory perspective. IEEE Transac-
tions on Software Engineering, 22(4):267–271, April 1996.

[20] M. Hitz and B. Montazeri. Measuring coupling in object-
oriented systems. Object Currents, 1(4), 1996.

[21] W. Li and S. Henry. Object-oriented metrics that pre-
dict maintainability. Journal of Systems and Software,
23(2):111–122, 1993.

[22] K. J. Lieberherr, P. Bergstein, and I. Silva-Lepe. From ob-
jects to classes : Algorithms for optimal object-oriented de-
sign. IEEE Journal of Software Engineering, 6(4):205–228,
1991.

[23] T. J. McCabe. A complexity measure. IEEE Transactions
on Software Engineering, 2(4):308–320, 1976.

[24] I. Moore. Automatic inheritance hierarchy restructuring and
method refactoring. In Proceedingsof the ACM 11

th Annual
Conferenceon Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), pages 235–250, San
Jose, California, October 1996.

[25] W. Opdyke. Refactoring Object-Oriented Framework. PhD
thesis, University of Illinois, 1992.

[26] V. T. Rajlich and K. H. Bennett. A staged model for the
software life cycle. IEEE Computer, 33(7):66–71, 2000.

[27] A. J. Riel. Object-Oriented Design Heuristics. Addison-
Wesley, 1996.

[28] D. Roberts, J. Brant, and R. Johnson. A refactoring tools for
smalltalk. Theory and Practice of Object Systems, 3(4):253–
263, 1997.

[29] L. Tahvildari, R. Gregory, and K. Kontogiannis. An ap-
proach for measuring software evolution using source code
features. In Proceedings of the IEEE Asia-Pacific Software
Engineering (APSEC), pages 10–17, Takamatsu, Japan, De-
cember 1999.

[30] L. Tahvildari and K. Kontogiannis. A methodology for de-
veloping transformations using the maintainability soft-goal
graph. In Proceedings of the IEEE 9

th International Work-
ing Conference on Reverse Engineering (WCRE), pages 77–
86, Richmond, Virginia, November 2002.

[31] L. Tahvildari and K. Kontogiannis. On the role of design pat-
terns in quality-driven re-engineering. In Proceedings of the
IEEE 6

th European Conference on Software Maintenance
and Re-engineering (CSMR), pages 230–240, Hungary, Bu-
dapest, March 2002.

[32] L. Tahvildari and K. Kontogiannis. A software trans-
formation framework for quality-driven object-oriented re-
engineering. In Proceedings of the IEEE International Con-
ference on Software Maintenence (ICSM), pages 596–605,
Montreal, Canada, October 2002.

[33] L. Tahvildari, K. Kontogiannis, and J. Mylopoulos. Quality-
driven software re-engineering. Journal of Systems and Soft-
ware, Special Issue on : Software Architecture - Engineering
Quality Attributes, to appear.

[34] L. Tahvildari and A. Singh. Categorization of object-
oriented software metrics. In Proceedings of the IEEE Cana-
dian Conference on Electrical and Computer Engineering,
pages 235–239, Halifax, Nova Scotia, May 2000.

[35] L. Tokuda and D. Batory. Evolving object-oriented de-
signs with refactorings. In Proceedings of the IEEE 14

th

International Conference on Automated Software Engineer-
ing (ASE), pages 174–181, Cocoa Beach, Florida, October
1999.

[36] S. G. Woods, A. E. Quilici, and Q. Yang. Constraint-Based
Design Recovery for Software Re-engineering. Kluwer Aca-
demic Publishers, 1998.

Proceedings of the Seventh European Conference On Software Maintenance And Reengineering (CSMR’03)
0-7695-1902-4/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

