
On the Role of Services in Enterprise Application Integration

Abstract
Recent advances in Web and middleware technologies
offer a promising solution for a number of enterprise
integration problems. The convergence of the Internet and
distributed-object technologies, which has been referred
to as the Internet’s third wave, extends this “information-
based” Internet to a worldwide “services-based” Web. In
this paper we present a model for Enterprise Application
Integration (EAI) and we discuss the role of emerging
technologies, as they relate to the specification of
services, registration of services, data integration, and
control integration.

1. Introduction

In recent years the business world is experiencing
significant changes due to the growth of new computer
technologies. Modern software systems must conform to
requirements, such as flexibility, adaptability, time to
market, and continuous business process reengineering.
Driven by these requirements, the migration of legacy
systems towards new network-centric operating platforms
and their consequent integration with other back-end
applications using Web technologies has become a very
effective strategy for many organizations to maintain a
competitive edge. This strategy focuses on leveraging
existing legacy software assets by minimizing the risks
involved in re-implementing large-scale mission-critical
legacy applications [7].

Specifically, the Web browser technology, the so-called
first-wave of the Internet [8], allowed for the explosive
usage of the Internet in terms of shared information
resources. The convergence of the Internet and
distributed-object technologies extends this “information-
based” Internet to a worldwide “services-based” Web [8],
where software services and content are distributed

openly over the Internet, Intranets, and Extranets. Such
distributed services are specified in the form of
components in the Web domain and can be dynamically
deployed by a Web-server upon the request of arbitrary
Web clients. In this context, non-functional requirements
such as interoperability, flexibility, customizability, and
conformance with continuous business process
reengineering activities, are fundamental for the
successful deployment and integration of services in a
Web-based environment.

As an example, consider a scenario in the new “services-
based” Web, whereby a global infrastructure enables
software components that have been developed
independently, be integrated with each other in order to
facilitate complex business tasks. In this way, content
(data) and, software components located within an
organization, can be combined on an as required basis,
forming thus collaborative information systems.
However, systems integration requires more than the
ability to conduct simple interactions by using standard
protocols. The full potential of web services [4] as an
integration platform will be achieved only when
applications and business processes are able to integrate
their complex interactions by using a standard process
integration model.

In this paper we present a prototype model for enterprise-
wide service integration, and we discuss the issues and
emerging technologies that support such a service
integration model.

The paper is organized as follows. Section 2 and 3
discusses component-based software development and
distributed architectures respectively. Section 4 presents
issues in legacy system integration and enabling
technologies. Section 5 presents a model for Enterprise
Application Integration. In Section 6 the conclusion and
further insights on research directions in the field of

Kostas Kontogiannis
Department of Electrical & Computer

Engineering
University of Waterloo

Waterloo, Ontario, N2L 3G1, CANADA
+1 519 885 1211 ext. 2840
kostas@swen.uwaterloo.ca

Dennis Smith and Liam O’Brien
Software Engineering Institute

Carnegie Mellon University
4500 Fifth Avenue

Pittsburgh, PA 15213 USA
{dbs, lob}@sei.cmu.edu

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

Enterprise Application Integration are discussed. Finally,
Section 6 concludes the paper.

2. Component Based Software
Engineering

In general, a software component denotes different
entities, such as: class libraries, encapsulated software
modules, framework environments, CASE models, or
simply existing legacy applications [12]. A software
component is defined as: “a unit of composition with
contractually specified interfaces and explicit context
dependencies. A software component can be deployed
independently and is subject to composition by third
parties” [7], [13]. This definition reflects three
characteristic properties of components namely that, a
component is a unit of independent deployment; a
component is a unit of third-party composition and; a
component has no persistent state. These properties have
several implications related to the use and integration of
components.

For a component to be independently deployable, it must
be accessible only through well-defined interfaces.
Moreover, a component encapsulates highly cohesive
functionality and as an atomic unit of deployment, it can
not be deployed partially. In this context, a third party can
not access the implementation details of all the
components involved.

We can distinguish three major facets for a component
[14] namely packaging, functionality, and integrity. The
packaging perspective considers a component to be an
organizational concept, focusing on the identification of a
set of elements that can be reused as a unit. However, the
emphasis here is on reuse. The functionality perspective
considers a component to be a software entity that offers
services (operations or functions) to its consumers. It also
emphasizes the notion of a contract between the provider
and the consumer of those services. In the major
component model infrastructure standards such as
DCOM, CORBA, and JavaBeans, services are grouped
into coherent, contractual units called interfaces. The
emphasis here is on separation of providers and users of
services leading to a services-based architecture. Finally,
the integrity perspective defines a component as an
implementation encapsulation boundary that collectively
maintains the integrity of the data it manages, and is
therefore independent of this data and of the
implementation of other components. This criterion is a
necessary condition for components to be readily

Figure 1. Monolithic Applications

configurable. The emphasis here is on replacement and
transparent upgrades, achieving thus a “plug-and-play”
behavior.

3. Distributed Component-Based
Applications

3.1. Enterprise Computing Architecture

Evolution

There is a steadily increasing trend in the industry away
from the monolithic, single processor, mainframe systems
towards distributed, network centric environments. The
network centric computing utilizes a LAN or WAN as the
communication vehicle between components of
application and leverages the computing power of more
than one system.

In monolithic one-tier applications such as the one
illustrated in Figure 1, all data access, business and
presentation logic data are in the same machine namely,
the mainframe. Common data can not be easily shared, so
multiple copies of data must be consistently replicated
and managed in each operating mainframe environment.
This results in significant overhead for the consistency
maintenance and data synchronization..

An improvement to “one-tier” architecture is the two-tier
architecture, illustrated in Figure 2. This architecture is
also called client/server architecture and divides a
monolithic application in two components enacted as two
processes, a client and a server process [18]. The server
process provides access to data resources possibly
through a relational database management system
(RDBMS) and implements some of the business logic.
The client process implements the presentation and some
business logic which may be shared by the server process.
Such client processes are called “fat clients”.

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

Figure 2. Two-tier Application

Finally, in a multi-tier architecture such as the one
illustrated in Figure 3, the client’s tasks are further
reduced. Ideally, a client process implements only the
user interface, for example, web browser. The business
logic and services are realized by the middle-tier [15].
The databases and the repositories of the distributed
components reside in the back-end to carry out the
requests or data queries originating from the middle-tier.
In this way, services can be deployed on-request to the
clients, instead of being statically pre-installed at the point
of use.

3.2 Distributed Components

With the recent advances in networking, the software
components are moving from the desktop paradigm
towards enterprise-wide, distributed, network-centric
environments. In this respect, distributed component
possesses the following characteristics [9], [16]:

• An explicit and well-defined interface defining the
services it provides, and the structures of its formal
parameters;

• An explicit specification for describing the behavior
and usage of the component, the required execution
environments, and the location of the component;

• Software independence from its clients by
encapsulating the detailed implementation;

• Communication with binders for registering with the
clients via the Internet, Intranets or Extranets;

• Means for remote access and remote invocation of
services. and finally;

• Provision for run-time dynamic component
configuration.

Figure 3. Three-tier Architecture

The major middle-ware technologies, including CORBA,
RMI, Enterprise JavaBeans, and DCOM, meet some of
above requirements and provide the integration
environment for the distributed software components.

Overall, two factors are required for software component
to inter-operate. First, they must have the common
infrastructure to communicate with each other. The
network and the major middle-ware components provide
this service. Second, they must have access to the
interfaces of the available services (methods) in each
component. For example, the CORBA Interface
Definition Language (IDL), indicates how services can be
accessed by clients [19]

The specifications of a component’s interface can be
further divided into four levels [17]. The first level
provides a syntactic contract and is usually specified in
IDL. The IDL interface ensures that client and server can
communicate across heterogeneous computing
environments and operating platforms. The second level
provides behavioral contracts, and is expressed in some
specification language. In this case, pre- and post-
conditions denoted as Boolean assertions can provide
some of the operational behavior for each service offered.
The third level provides synchronization contracts, and
describes the dependencies between services such as,
sequencing, parallelism, path expression, and
synchronization constraints. Finally, the fourth level
provides quality-of-service contracts and quantifies the
quality of services.

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

4. Legacy System Integration
Integration of legacy applications with new applications is
a very attractive strategy for several reasons. First, it
extends the life cycle of a legacy system by making it
available to new applications. Second, it hides the
implementation details of the original system from other
client applications. Third, it leverages existing legacy
software assets by taking advantage of their mission
critical functionality. Finally, it minimizes the risk and
cost associated with complete re-development or
application conversion.

Object wrappers play a vital role in integrating legacy
applications. These wrappers can integrate the services
provided by a single software component, or can be used
as an integration gateway that allows for multiple
resources from a diverse range of components to inter-
operate. Object wrappers may also provide access to high-
level system services such as, transaction services,
naming services, security services, and persistence
services.

In this sense, Distributed Object Computing (DOC)
introduces a new paradigm for application development.
In DOC, applications and services are viewed as objects
with well-defined interfaces. Client applications are
restricted to access the server objects only through their
public interface. Similarly, DOC allows for flexibility
because client applications can be added at any time, as
long as they conform to the existing published interfaces.

4.1. Technologies for Web-based Legacy System

Integration

The technologies to access and integrate enterprise
information with the World Wide Web consist of different
types of “Web gateways”. Web gateways bridge the gap
between Web browsers and the legacy applications and
databases. At present, the approaches that are mostly used
to develop Web gateways include, Common Gateway
Interface (CGI), Server Side Includes (SSI), Gateways as
stand-alone servers, Mobile code systems (Java
gateways), Service registration languages (UDDI,
WSDL), Web Service flow languages (WSFL, WSEL),
Web Service invocation protocols (SOAP)

For legacy access, however, CGI and Java-based
gateways, and servlets, are the most commonly used
technologies [7]. The following section presents an
overview of the enabling technologies for service
description, registration, localization, composition, and
invocation using the Web as the communication and
integration medium.

Figure 4. The Services Oriented Architecture Model

4.2 Web Services

Web Services are self-contained, modular applications
that can be described, published, located, and invoked
over a network, generally, the World Wide Web. The
Web Services architecture describes three roles: service
provider, service requester and service broker; and three
basic operations: publish, find and bind. A network
component can play any or all of these roles [1].

In essence, Web Services are a way of realizing dynamic
e-business, focusing on the integration and infrastructure
complexities of B2B by leveraging the benefits of Internet
standards and common infrastructures [2], [3].

The model on which current web-service technologies are
built is known as the Service-Oriented Architectures
(SOA) (Figure 4). Technologies like UDDI, WSDL, and
WSFL are based on the SOA [2].

Each of the three components -- Service Provider, Service
Requester, and Service Broker -- can be conceptualized as
nodes on a network.

• A Service Provider provides a service interface to a
software component that manages a specific set of
tasks. A Service Provider can represent the services
of a business entity or the service interface for a
reusable subsystem.

• A Service Requester discovers and invokes software
services, either locally or remotely via remote
procedure calls (RPCs).

• A Service Broker acts as a repository for software
interfaces published by service providers.

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

4.3. Enabling Technologies

4.3.1 XML

The eXtensible Markup Language 1.0 standard is a text-
based markup language specification from the World
Wide Web Consortium (W3C) [5]. Unlike HTML, which
uses tags for describing presentation and data, XML is
strictly for the definition of portable structured data. It can
be used as a language for defining data descriptive
languages, such as markup grammars or vocabularies and
interchange formats and messaging protocols.

4.3.2 SOAP
Simple Object Access Protocol (also known as Service-
Oriented Architecture Protocol) is an XML-based
lightweight protocol for the exchange of information in a
decentralized, distributed environment. SOAP defines a
messaging protocol between requestor and provider
objects, such that the requesting objects can perform a
remote method invocation on the providing objects in an
object-oriented programming fashion. SOAP forms the
basis for distributed object communication in most vendor
implementations of SOA. SOAP is vendor-neutral, and
independent of platform, object model, operating system,
and programming language [6].

4.3.3 WDSL
As the need grows within the software community to have
software distributed over several systems communicate
with each other, it becomes important to have a
standardized way of doing so. The Web Services
Description Language (WSDL) does just that. WSDL
defines an XML grammar for describing network services
as collections of communication endpoints capable of
exchanging messages [3].

4.3.4 UDDI

The Universal Description, Discovery and Integration
(UDDI) standard is an XML based specification to
publish and discover information about remote services.
Remote services may include legacy systems wrapped
using Distributed Object Technology (i.e. CORBA
wrappers) [10], [11], or specific software applications that
deliver specific business functionality exposed by an
organization through Internet protocols. The core
component of the UDDI specification is the UDDI
business registration module. The business registration
module consists of three major parts namely, “white
pages” denoting the address, contact, identifiers for the
service offering; “yellow pages” for providing a
categorization of the offered service according to standard
taxonomies and; “green pages” for denoting technical

information about the offered services. The UDDI
specification also includes programmatic interfaces so
that technical details about the offered services can be
linked to WSDL descriptions, and service invocation can
be accomplished by utilizing the SOAP protocol. Other
UDDI programmatic interfaces allow for the localization,
and selection of remote services on behalf of clients given
specific search criteria.

The UDDI protocol has already been implemented by
various corporations. A UDDI client is available at IBM
Alphaworks site [20].

4.3.5 WSFL

Using the aforementioned protocols, services can be
discovered and published. What is further needed is a
mechanism to describe the composition, interaction, and
execution of services in a meaningful and standardized
manner. WSFL deals with two types of Web Service
compositions: the Flow Model, and the Global Model.
The Flow Model is normally used to describe a business
process. This is done by specifying the appropriate usage
pattern of a collection of Web Services, in such a way that
the resulting flow composition describes how to achieve a
particular business goal. A Flow Model can be converted
into a Web Service by wrapping it within a WSDL
document.

The Global Model is normally used to describe overall
business partner interactions. These interactions are
modeled as links between endpoints of the Web Services
interfaces. Each link corresponds to the interaction of one
Web Service with another Web Service. In fact, a
collection of Web Services is in itself another Web
Service. Thus, WSFL provides also support for the
recursive composition of Web Services.

4.3.6 Event Condition Action

Event-Condition-Action (ECA) is a well-investigated
paradigm that has been used for modeling reactive
systems and especially active databases. ECA workflows
are implemented in terms of a scripting language. A script
is primarily a collection of ECA rules. In a nutshell, the
rule engine reacts to incoming events issued, either by the
external environment or by the rule engine itself. These
events trigger service requests upon the validation of
specific local or global conditions, or constraints. The
termination of a service may generate more events for
new rules to be considered. In the context of workflow
specification, the Event-Condition-Action has solid
theoretical support and relates with the foundations of
Extended Finite State Machines, Petri-Nets, and Logic
specifications [21].

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

4.4 Enterprise Application Frameworks

Enterprise architectures are high level definitions of the
data, applications, and technology needed to support the
business. They derive from a framework originally
proposed by Zachman [22] that creates a matrix with data,
functions and network as the columns and a set of
different views (contextual, conceptual, logical, physical
and detailed representation) as rows. Planning decisions
involve logical clustering of data and business processes
into applications. These approaches, which are widely
used, enable the important task of developing a high level
integration blueprint. They also offer a method for
discussing issues at different levels of detail, and for
isolating information requirements from their
dependencies on existing legacy systems.

These architectures provide a starting point for
developing an overall scope for enterprise integration.
Their results are an input to software architectures which
will then provide the detailed blueprint for application
development. Often however, enterprise architectures
impinge on the work of software architectures, resulting
in redundant and confusing effort. These issues are
discussed in more detail in [23].

5. A Model for Enterprise Application
Integration

Enterprise integration has the goal of providing timely
and accurate exchange of consistent information between
business functions to support strategic and tactical
business goals in a manner that appears to be seamless.
Although there have been some successes, in general
there is not a clear roadmap for how to achieve effective
integration of information systems. To-date, full-scale
enterprise integration efforts tend to focus on inter-
departmental system integration, or on Business-to-
Business (B2B) applications, between organizations. In
this respect, focused and incremental integration models
that are applied either within specific related clusters of
applications, or between sets of related clusters for
resource planning (logistics, production, distribution),
may be able to provide a higher return on investment and
control in a better way the risks associated with large
scale the reengineering, porting, and system evolution
related activities.

Based on what we’ve learned from other models we
propose a model for Enterprise Application Integration
that aims to focus on the following aspects. First, we
consider Requirements and Principles that refer to
strategic functional and non-functional requirements that
need to be met and drive the whole integration activity.

Second, Business Integration that refers to the seamless
collaboration between business processes to achieve
specific quality and performance objectives. Third, Data
Integration that refers to seamless exchange of
information between applications. Fourth, Control
Integration that refers to publish/subscribe protocols as
well as workflow and transaction management. Fifth,
Connectivity that relates to protocols for messaging and
networking. Sixth, Quality Attributes that refer to user
oriented product characteristics: quality, cost, and
schedule. Finally, Application Integration that refers to
remote invocation protocols, and middleware
components.
The layout of the proposed Enterprise Application
Integration model is depicted in Figure 5 while its
components are discussed in detail in the following
sections. Moreover, we aim for a model that can be
implemented and deployed by open Web-based protocols.

Figure 5. A Model for Enterprise Application Integration

5.1 Requirements and Principles

The state of practice in requirements engineering and
management is such that both are subject to interpretation
and the maturity level of the organization and the
software development processes used.
To make the situation more complex, IEEE and ISO
standards are rarely followed during the requirements
phase of the project. In this respect, business drivers and
the organization’s vision, mission and goals are the main
input for developing a business architecture. These inputs
are obtained from strategic assessments that provide

Q
 u a l I t y

A
 t t r I b u t e s

A
 p p l i c a t i o n

I n t e g r a t i o n

Requirements and Principles

Business Integration

Presentation Integration

Data
Integration

Control
Integration

Connectivity

Q
 u a l I t y

A
 t t r I b u t e s

A
 p p l i c a t i o n

I n t e g r a t i o n

Requirements and Principles

Business Integration

Presentation Integration

Data
Integration

Control
Integration

Connectivity

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

linkage between the business drivers and down-stream
design decisions. Therefore, it is important that every
technological, management or strategic decision be
traceable to a business driver. Moreover, every functional
and non-functional requirement should also be traceable
to one or more business drivers. In many cases after
requirements have been generated they are often ill-
represented, violated, or altered.

Organizations and development teams are progressively
beginning to become aware of the need for precise
requirements. Developing specific scenarios is one of the
techniques for capturing and managing requirements [24].
For the specific model we present in this paper, we argue
that requirements for enterprise integration should address
the areas of: autonomy; security, performance,
customizability, heterogeneity; transaction management,
information hiding; distribution hiding and; location
transparency.

Requirements engineering for Enterprise Application
Integration provides the formalization of strategic,
technical, and management drivers that allow for the
realization of specific Business Integration model as
discussed below

5.2 Business Integration

Business integration involves business process
development, business process design and modeling, real-
time decision support, and state management. Business
processes are abstractions of user perceived models of
operations, whereas business workflows become
abstractions of computer-enacted models. In this respect,
processes relate to the perception of the delivered function
while workflows relate to the specific algorithmic
sequence of steps required to perform a specific task.

Business processes are evaluated and assessed from the
perspective of the business user while specialized
protocols automate parts of a workflow and have a direct
impact on it, by adding or eliminating some steps.

Business processes are often highlighted when companies
merge, or collaborate to achieve a strategic or business
objective. The merged organization usually has to alter
existing processes and assist in making business process
reengineering decisions in compliance with enterprise
integration requirements, and objectives.

In this context, there are many questions that need to be
addressed with regard to business integration. Some of
these related to:

• The organization’s capabilities to undertake this
process. Independent assessment of capabilities
might be more feasible than internal assessment.

• The primary goal of the integration. Understanding
the goal can help to define what way to go.

• The boundaries and scope of the integration effort, as
well as its possible side effects.

Although technology can often improve business
processes and workflows sometimes it doesn’t.
Development teams and users alike get entangled to
processes embedded in the existing systems. In many
cases the documentation and the meta-data of the old and
the new processes are not detailed or adequately
understood. As a remedy to this problem some well-
defined methodologies for modeling and documenting
business process could be applied. These include,
Integrated Definition (IDEF), Structured Analysis and
Design, Rational Unified Process/Unified Modeling
Language (RUP/UML). Moreover, the Capability
Maturity Model (CMM)® has raised the bar concerning
the focus on process and its importance.

Therefore, for modeling, evolving, and implementing
complex business processes, organizations have to decide
if it is worth changing business processes to match a
particular integration solution, such as, an ERP or change
the solution to match the business or a mix of both. Up to
now there are no objective tools or methods an
organization can use to support such a decision making
process. In the proposed model, the user at the
presentation level observes the effects of Business
Integration. Presentation integration techniques and
criteria that will be discussed below, aim to provide
seamless access of contextual information and the actual
realization of the business integration.

5.3 Presentation Integration

Presentation integration covers several aspects in the
proposed model.

• Search and retrieval of text and graphics: To be
effective, results of searches must be ranked by how
well they match the search criteria e.g., exact, close
or distant match, as well as precision and recall
metrics. Technologies to assist in this area include
Boolean search, Bayesian inference, fuzzy logic,
genetic algorithms and natural language processing.
Other techniques such as user-defined search agents
for common or frequent searches exist and can be
extended for searching distributed and heterogeneous
non-text data sources, such as audio or video files.

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

• Knowledge mapping through taxonomies or
categorization
This complements full-text searching by allowing
users to navigate information repositories.
Taxonomies are being created using approaches that
can be manual, automated or, a combination thereof.
Moreover, industry-specific templates and wizards
are also available and are classified either a priori
(pre-defined) or free. Both use natural language
processing, statistical algorithms and clustering
techniques such as Bayesian inference, word co-
occurrence, and noun-phase extraction. Metadata can
also be used to establish contextual spaces that limit
the computational effort for searching and assessing
content. Visualization techniques are especially
useful for maintainers to create visual maps of
interrelated concepts. Examples of such techniques
include Semio’s SemioMap, Inxight’s Star Tree, and
ClearForest. Most such taxonomies are hierarchical
however non-hierarchical ones are emerging through
products like Inxight’s Hyperbolic Tree which
produces map-like and 3-D representations.

• Document and workflow management
In this category, several issues are involved including
physical location of information and versioning of the
information. On the one hand, it is important to
consider techniques for organizing and maintaining
the integrity of unstructured data in documents. On
the other hand is important to customize and enact in
an efficient way complex workflows that automate
specific business process models.

• Personalization and targeted filtering
This area involves techniques for allowing users to
specify the types and amount of content relevant to
them, and its presentation. It requires user profiling
that is, collecting information about a user’s identity,
interests, expertise, roles, responsibilities, and access
control privileges. This is often done through
software agents (called spiders). Collaborative
filtering uses correlation matrices of users’ actions
and preferences to filter non-relevant information.
Examples include Amazon.com and NetPerceptions
for Knowledge Management.

• Collaboration
Enables users to share data and meta-data
synchronously or asynchronously. Technologies that
assist in this area are tools for collaborative document
editing, document change alerts, group discussions,
and publishing tools to searchable repositories.

• Other system level issues

There are many other issues involved in the
presentation integration engine such as its ease of
use, intuitiveness, and convenience. In this context,
several criteria should be considered when assessing
a presentation integration solution. Examples of such
criteria deal with whether the presentation fully
integrated and functional, whether it is customizable
by the enterprise and personalizable by the user,
whether it is cost-effective (e.g., thin client access)
whether it is scalable and whether it is reliable,
maintainable and secure. To address these issues
several vendors are offering products and services for
presentation integration including Viador, Plumtree,
Epicentric, and Top Tier.

Finally, the choice of the presentation engine depends on
who are the main users of the portal – customers,
employees, partners, suppliers, what are the major
applications that will be used by the users, what is the
current state of the portal, if any – (i.e., Intranet,
Extranet), the protocols employed for the users to gain
access to the content sources, the use of models to
catalogue and classify the offered content, the techniques
used for eliminating content of redundancies, irrelevant or
obsolete information and finally, on techniques used for
delivering content to the end-user in a personalized,
reliable and secure manner.

Related technology is available that can go a long way to
achieving presentation integration. However there does
not seem to be much awareness of that technology within
the community and one of the main reasons for this is that
the field is very new. Current implementation of
presentation integration is appearing on Intranet
architectures and with a few organizations developing
portals in the Internet domain such as Yahoo, Excite, and
iWon. Presentation Integration is based on underlying
technologies that achieve data and control integration as
discussed below.

5.4 Data Integration

Data integration relates to seamless exchange and
interpretation of data and meta-data between different
services and users that possibly operate on different
contexts. Issues to be addressed in this area include the
following.
• Data syntax - deals with the format of the data and

whether or not it needs to be translated when is
accessed by various services and users into possibly
different contexts.

• Data semantics – deals with the meaning and the
denotation of the data.

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

• Data normalization – deals with defining data
structures and architectures that are most flexible and
adaptable for the specific organizational applications.

• Data integrity and validation – deal with the quality,
consistency and, integrity of the shared and
exchanged data.

• Data models – deal with the development of
conceptual maps facilitating data related discussions
between technical and organizational users.

• Data reengineering – deals with transformation of
data structures from an existing format to new
formats

Tools and protocols for data integration are already
available and well defined. In particular, Schema
Transformation technologies for federated databases and
XML (eXtended Markup Language) offer promising
leads. However, more work is needed in the area of
metrics for data integration and there is a need for better
understanding of how data representation affects
enterprise integration failure as it relates to data. For
example there is a misconception that integration between
packages and legacy data is easy. As part of integration
work, data needs to be reengineered and kept current
while reengineering of code, data and business processes
must occur in synchronized yet incremental manner.

5.5 Control Integration

Control Integration deals with the specification, and the
seamless localization, selection, messaging, and
invocation of distributed and heterogeneous services.
Issues to be addressed in this area include the following.

• Events – deal with control messages that are
autonomous and asynchronous between components
that are registered to receive them

• Queuing – deals with processing of messages that are
sent to various services.

• Transactions – deal with an identified set of
operations, which, when executed alone, constitute an
indivisible operation that transforms from one
consistent state into a new consistent state. Either the
whole set is applied (commit) or none of it (abort)

• Interrupts – deal with the asynchronous transfer of
control to some pre-arranged location in response to
some event

• Invocation sequencing – deals with the sequencing of
interactions between components and the enactment
of workflows

• Messaging – deals with the invocation and data
exchange protocols for the information that is passed
between the various components

• Communication modes – deal with the type of
communication between components which can be
synchronous (send and wait) or asynchronous (send
and no wait)

• Service integration protocols – deal with
specification, registration, localization, selection, and
invocation of distributed services from various
possibly thin clients.

Certain control integration techniques such as RPC
(Remote Procedure Call), point-to-point,
publish/subscribe and CORBA (Common Object Request
Broker Architecture), aim to address these issues.
However some are based on proprietary protocols, other
are heavy weight and other are too brittle to be suitable
for large scale deployment, while other may not be
generally applicable for heterogeneous environments. In
this respect there is a need for open readily available
protocols, and Web Services seem to offer some
promising solution in this area. Such Web-based
emerging protocols have been discussed earlier in this
paper. Finally, organizations, such as Australia’s
CSIRO/CMIS [25], are carrying out independent
evaluations of technologies to support control integration
such as the IBM MQSeries, the Microsoft Message
Queue, or the TIBCO Rendezvous.

Other issues that the community is aiming to address in
this area are how to assess the general limitations of
control integration solutions or their impact on the overall
performance of the system, and how to address the steep
learning curves for using and understanding the control
integration technology. Data and Control Integration
techniques depend on the underlying connectivity and
network related protocols in the proposed model.
Connectivity issues are discussed below.

5.6 Connectivity

Connectivity deals with protocols and techniques to
address both process connectivity and data exchange
between applications and computing environments.

Process connectivity deals with the following methods of
message passing protocols such as send/receive, RPC
(Remote Procedure Call), sockets, object messaging
(CORBA, etc). It also deals with message handling
services such as queuing, message management) and the
semantics of the various protocols.

Data exchange deals with methods of transferring data
between systems such as file transfer. It also deals with
data replication services and data integrity.

Connectivity between systems could be handled by:

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

• Application Bridges and Gateways – UDDI
(Universal Description, Directory Integration) and
Registry. These provide services for describing,
publishing and locating services.

• Application Interaction Styles – publish/subscribe,
file transfer, request reply.

• Message Handling Services – queuing, security,
message management, and administration.

• Basic Communications – communication protocols,
point-to-point, broadcast, IP multicast IIOP/ORB,
database, and the Web.

5.7 Quality Attributes

In the proposed model, quality attributes pertain to user-
oriented product characteristics: quality, security, cost,
and schedule. These touch upon most of the elements of
the model namely, the Business Integration, Presentation
Integration, Data Integration, Control Integration, and
Connectivity. These quality attributes are assessed as a
realization of the Requirements and Principles by which
the Enterprise Integration was designed for. While cost
and schedule can be predicted and controlled by mature
organizational processes, process maturity does not
translate automatically into product quality. If the
technology is lacking, even a mature organization will
have difficulty producing products with predictable
performance, dependability, or other attributes.
Eventually poor quality affects cost and schedule because
software requires tuning, recoding, or even redesign to
meet original requirements. Quality requires mature
technology to predict and control attributes.

When the software architecture is specified, designers
need to determine the extent to which features of the
software architecture influence quality attributes and
whether techniques used for one attribute may support or
conflict with those of another attribute. Finally, the extent
to which multiple quality attribute requirements can be
satisfied simultaneously may be considered as a factor for
selecting a specific implementation technique.

In this respect, there has been a significant amount of
work over the years that lead to techniques for addressing
selected attributes (performance and dependability), and
to evaluation techniques (Markov models for analyzing
performance, TMR for analyzing dependability).
However, research in certain attributes, such as
modifiability, is still not that mature. Moreover, some
evaluation methods don’t have quantifiable mathematical
techniques and rely on informal techniques such as survey
of users. Finally, there is a need to for better definition of
quality attributes such as security, performance,
modifiability, dependability, usability, and more research

on how to translate business requirements and drivers into
quality attribute requirements.

5.8 Application Integration

Application integration involves the interoperability of
possibly diverse and heterogeneous software applications.
Issues related to application integration span across
several layers of the integration model as shown in Figure
5. Specifically, application integration involves business
event processing issues such as automatic event
notification, flow control, content routing, as well as run
time application and presentation issues such as
transactional integrity, context management, and
transformations across presentation platforms.

In this respect, there are several research questions that
need to be addressed with regard to application
integration. Some of these relate to the ordering of the
requirements in terms of their importance, the deployment
platform, the user base, the criticality of the application,
the usage profile, and whether the application is custom-
made or, acquired as off the shelf components.

Clear techniques for making decisions about which
application to integrate and what the nature of the
problem are also not generally available. However, some
standards for integration do exist such as LISI (Levels of
Information System Integration), which has a model for
levels of integration maturity. This could be used as a way
of classifying the level of integration maturity within an
organization. Other related application integration support
frameworks are the C4ISR, the Architecture Tradeoff
Analysis Method (ATAM) [26] for assessing architectural
design decisions, and various reference distributed
architectures for B2B. However the current state of the
practice is ad hoc and each organization sets its own rules
for defining integration. In this respect more research is
needed for quantifying the impact design decisions have
on an organization, and for identifying meta models for
Enterprise Application Integration that link various
protocols and standards. The following section presents
possible research directions in this area.

6. Conclusion

The issue of enterprise application integration is a critical
one for modern organizations to address. The problem is
multi-faceted and will rely on marshalling an array of
technology methods and tools, mature processes and
organizational expertise.

This paper has focused on technology solutions, paying
specific attention to the emerging role of Web services

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

and middleware technologies. Open, standards-based, and
vendor-neutral platforms with which one can perform
system integration across the enterprise provide an
important prerequisite for future success.

The challenges in adopting a services based approach are
also large. Web services technology is still maturing, and
the underlying technologies—XML, SOAP, WSDL, and
UDDI— are relatively new. From the developer point of
view, there are a large number of new technologies, and
engineering paradigms encompassing such disparate areas
as distributed components, databases, and networks. From
the customer or service-provider point of view, there are
infrastructure issues that must be addressed before Web
services become as ubiquitous as other operating systems
services. However, more development and research is
needed before service-based approaches become routine
practice.

Emerging web services need to provide a technical
advantage over previous solutions and provide a business
advantage for the company over its competitors. Web
services need to integrate well with technologies already
used in existing systems—systems that are mission-
critical business assets. Web services should be simple to
develop and deploy, with benefits accruing even in
smaller scale trials, and with results that are clear and
definable. Without a critical mass of other Web service
providers and requestors, exposing one's system via a
Web service interface would lead to little business
benefit.

References

1. http://www-106.ibm.com/developerworks/webservi
ces/library/w-ovr/

2. http://www-106.ibm.com/developerworks/webservi
ces/library/ws-arc1/?dwzone=webservices

3. http://www.w3.org/TR/wsdl
4. http://www-4.ibm.com/software/solutions/webservi

ces/pdf/WPS.pdf
5. http://www.xml.org
6. http://www.w3.org/2000/xp/Group/
7. Umar, Amjad, “Application (Re)Engineering:

Building Web-Based Applications and Dealing with
Legacies”, Prentice Hall PTR, 1997.

8. Paul Dreyfus, “The Second Wave: Netscape on
Usability in the Services-Based Internet”, IEEE
Internet Computing, March/April 1998.

9. Cynthia Della Torre Cicalease, Shmuel Rotenstreich,
“Behavioral Specification of Distributed Software
Component Interfaces”, Computer, July 1999 IEEE.

10. Ram Prabhu, Robert Abarbanel, “Enterprise
Computing: The Java Factor”, Computer, P115, June
1997 IEEE.

11. David Curtis, “Java, RMI and CORBA”,
http://www.omg.org, 1997.

12. “New Age Tools for Network Computing: the Future
of Application Development Today”, IBM White
Paper, 1997.

13. Clemens Szyperski, “Component Software: Beyond
Object-Oriented Programming”, Addison-Wesley,
1998.

14. A. Brown, B. Barn, “Enterprise-Scale CBD: Building
Complex Computer Systems From Components”, In
Proceedings of STEP’99, Pittsburgh, PA, September,
1999.

15. David Krieger, and Richard M. Adler, “The
Emergence of Distributed Component Platforms”,
Computer, IEEE, March 1998.

16. Barry Keepence, Campbell McCausland, Mike
Mannion, “A New Method for Identification of
Reusable Software Components”, 1996, IEEE.

17. Antoine Beugnard, Jean-Marc Jezequel, Noewl
Plouzeau, and Damien Watkins, “Making
Components Contract Aware”, Computer, IEEE, July
1999.

18. Harry M. Sneed, “Encapsulating Legacy Software for
Use in Client/Server Systems”, Proceedings of
WCRE’96, 1996, IEEE.

19. Mowbray, Thomas J., Zahavi, Ron, “The Essential
CORBA: Systems Integration Using Distributed
Objects”, John Wiley & Sons, Inc, 1995.

20. http://www.alphaworks.ibm.com
21. N. W. Paton, Active Rules in Database Systems.

Springer, New York, 1998.
22. Zachman, J. “A Framework for Information Systems

Architecture,” IBM Systems Journal, Vol 26, No. 3,
1987.

23. Smith, D., O’Brien, L. Barbacci, M, and Coallier, F.
A Roadmap for Enterprise Integration. Proceedings
of STEP 2002. IEEE Press, 2003.

24. Clements, P, Kazman, R., and Klein, M. Evaluating
Software Architectures. Addison-Wesley, 2002.

25. http://www.cmis.csiro.au/adsat/
26. http://www.sei.cmu.edu/ata/ata_method.html

Proceedings of the 10th International Workshop on Software Technology and Engineering Practice (STEP’02)
0-7695-1878-8/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

