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Abstract

Recent works by Sowa and by Rayside & Campbell
demonstrate that there is a strong connection between object-
oriented programming and the logical formalism of the syllo-
gism, first set down by Aristotle in the Prior Analytics. In this
paper, we develop an understanding of polymorphic method
invocations in terms of the syllogism, and apply this under-
standing to the design of a novel editor for object-oriented
programs. This editor is able to display a polymorphic call
graph, which is a substantially more difficult problem than
displaying a non-polymorphic call graph. We also explore
the design space of program analyses related to the syllo-
gism, and find that this space includes Unique Name, Class
Hierarchy Analysis, Class Hierarchy Slicing, Class Hierar-
chy Specialization, and Rapid Type Analysis.

1 Introduction

Discovering the relations between program entities is one
of the most important tasks in understanding a program. We
propose that the kinds of relations that are unique to object-
oriented programming are expressed in the form of the syl-
logism — in other words, that object-oriented programs are
distinguished by their syllogistic structure.

Our enquiry has four main parts: a methodology for deriv-

ing structural queries from a logical formalism, an analytical

Jframework composed of these queries, an evaluation of some
common programmer’s aides based on this framework, and
the novel design of a program editor for understanding poly-
morphic method invocations.

The purpose of the methodology is to systematically ex-
plore the design space of program analyses that are based
on the syllogistic structure of object-oriented programs. This
approach has three objectives: to identify the kinds of ques-
tions that programmers may ask about the syllogistic struc-
ture of their programs, to provide a basis for evaluating
object-oriented programmer’s aides, and to present a prin-
cipled means for designing programmer’s aides.

This kind of methodology could be based on a formalism
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other than the syllogism: we could use a more sophisticated
formalism to derive more sophisticated queries. However,
using the syllogism establishes some reasonable grounds for
the common claim that object-oriented programming is easy
to understand: the syllogism is both simple and well known.
The study of formal logic began with the syllogism and was
focused on it almost exclusively until the nineteenth century.

The concrete technical contribution of this paper is to
demonstrate how polymorphic method invocations can be
understood in terms of the syllogism, and how this insight
can be applied to the design of a novel program editor. This
editor is designed to display a polymorphic call graph, which
may be computed statically by techniques such as Rapid Type
Analysis (2], or more advanced analyses such as [16, 18].
Displaying a polymorphic call graph is a substantially more
difficult problem than displaying a non-polymorphic call
graph, precisely because each invocation in a polymorphic
call graph may have many potential targets.

2 Background

Sowa [14] and Rayside & Campbell {12] show that deduc-
tions such as the following two examples are the characteris-
tic structures of class-based, single-dispatch, object-oriented
programming languages:

Every animal is mortal.
Every human is an animal.
.. Every human is mortal.

Every human is mortal.
Socrates is human.
.. Socrates is mortal.

The main difference is that the first deals with classes only
(i.e. the specialization relation), whereas the second moves
from class to object (i.e. the instantiation relation).

The first argument (i.e. deduction) is an example of a syl-
logism in the first figure, universal affirmative mood: the
figure of the syllogism refers to the logical arrangement of
the terms, and the mood refers to the quality (affirmative or



negative) and quantity (universal or particular) of the state-
ments. The other figures of the syllogism are discussed
in[1, 10, 12, 13] and many other works.

The field of formal logic was initiated by Aristotle’s ex-
ploration of this kind of argument in the Prior Analytics [1].
This form of argument was inspired by Plato’s method of log-
ical division, and was called perfect by Aristotle. Rose [13]
provides a fairly comprehensive catalogue of the reason for
considering this form of argument as perfect. Logicians in
the Middle Ages named these syllogisms BARBARA, accord-
ing to an intricate naming convention that codified much of
the medizval knowledge of the syllogism as a formalism
(this convention is discussed briefly by Sowa [14], and in
more detail by Rose [13]). The first modern mathematical
formalism of the syllogism was developed by Lukasiewicz
in the middle of the twentieth century [10].

In the original Greek texts, Aristotle usually gives syllo-
gisms in the implicational (if, then) form, rather than the in-
ferential (therefore) form commonly used in Latin texts and
object-oriented programming.

The second example argument was first given by Sex-
tus Empiricus (as noted by Lukasiewicz [10]), and Empiri-
cus attributed it to Aristotle. However, as Eukasiewicz quite
adamantly argues, Aristotle would not consider such an ar-
gument in the Prior Analytics because it contains a singular
term (‘Socrates’). Consequently, these kinds of arguments
do not have a name in the traditional Latin nomenclature,
which was developed only for the forms of the syllogism
discussed in the Prior Analytics. Nevertheless, some authors
have referred to this second kind of arguments as BARBARA
or DARII (e.g. [14]).

Syllogistic Terminology. Every statement and every term
in a syllogism has a name. The three terms in the syllo-
gism are the major extreme, the minor extreme and the middle
term. From the first example, the major extreme is ‘mortal’,
the minor extreme is ‘human’, and the middle term is ‘ani-
mal’. The reason for these names can be seen more clearly
when the example is grammatically re-arranged so that the
ordering of the terms is the same as in the Greek:

‘mortal’ js said of ‘animal’ A ‘animal’ is said of ‘human’
.. ‘mortal’ is said of ‘human’

The three statements are the major premise, minor premise
and conclusion. The major premise is so named because it
contains the major extreme term, whereas the minor premise
contains the minor extreme term. The premises may be given
in any order but, it is customary to give the major premise
first. Both premises also contain the middle term. The con-
clusion brings the two extreme terms together through (‘be-
causeof’) the middle term.
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3 Methodology

Here we develop a methodology for deriving structural
queries about object-oriented programs from the form of the
syllogism. Our intention is to systematically explore the de-
sign space of object-oriented program analyses by identify-
ing the questions that programmer’s may ask about the syl-
logistic structure of their object-oriented programs.

Each statement in a syllogism expresses a simple relation
between two things: subject and predicate. A syllogism as
a whole expresses a complex relation between three things:
the major extreme, the minor extreme, and the middle term.

We can derive two queries from the simple relation ex-
pressed in each statement by binding one term to a program
entity; the result of the query is the set of program entities
that may be bound to the other term. Likewise, we can de-
rive three queries from the complex relation expressed in the
syllogism as a whole by binding two terms to program enti-
ties; the result of the query is the set of program entities that
may be bound to the third term.

3.1 Scope

We are focused on the syllogistic structure of object-
oriented programs. There are many other important things
that the programmer may wish to know about a given pro-
gram other than its syllogistic structure: e.g. data flow, con-
trol flow, comments ezc. This simply indicates that program-
ming languages are more sophisticated than the syllogism,
but also that they share its basic structure.

This kind of methodology could also be developed for for-
malisms that are more general or sophisticated than the syl-
logism. However, the criteria upon which to judge a formal-
ism’s suitability to this kind of methodology is not generality
or sophistication but, rather, if the queries derived from it are
useful and resonate with the programmer’s understanding of
the program. As we shall show, the syllogism meets this cri-
teria very well. '

This paper focuses on class-based object-oriented pro-
gramming languages that support single-dispatch, static typ-
ing, and method overriding semantics, such as JAVA [8]
and C++ [15]. It should be fairly easy to relax most of
these criteria for languages like SELF [20] (prototype-based),
SMALLTALK [7] (dynamic typing), or BETA [11] (method
extension semantics). Multiple-dispatch languages, such as
CECIL [4], may present a greater challenge.

3.2 On Interpretation

Some care needs to be taken when comparing the form of
the syllogism as expressed in prose with the form of the syl-
logism as expressed in code. There are three major areas of
concern: the verbs chosen to express each relation; whether
the relation expressed in the minor premises is meant in a di-
rect or in a transitive sense; and whether singular terms refer
to variables or to objects.



Verbs. Each of the example ‘syllogisms’ given in the back-
ground section of this paper may be characterized by the re-
lation expressed in the minor premise: either specialization
or instantiation. Therefore, we will refer to these two kinds
of syllogisms as the ‘specialization syllogism’ and the ‘in-
stantiation syllogism’.

The major premise (e.g. ‘“Every animal is mortal’) usually
tells us something about the subject other than what itis [12]:
in other words, the ‘is’ in the example is used in a strictly
copulative sense. Within the context of object-oriented pro-
gramming, the term ‘declares’ may be used to describe the
relation expressed in the major premise.

In prose, the conclusion usually employs the same verb
copula as the major premise, since both statements have the
same predicate (but different subjects). However, in object-
oriented programming we commonly use the term ‘inherits’
as the verb copula in the conclusion, to indicate the differ-
ence between the conclusion and the major premise. It has
been pointed out that this ‘inheritance’ metaphor is not par-
ticularly appropriate within the context of class-based pro-
gramming languages and syllogistic logic [12]. We may now
rephrase the first example syllogism as:

Animal declares Mortal
Human specializes Animal
.*. Human ‘inherits’ Mortal

In programming languages with method overriding seman-
tics it is useful to interpret the conclusion in both ways: as
‘declares’ and as ‘inherits’. For example, the following query
may be interpreted as “Which members from class X does
class Y override?’:

X declares {members}
Y specializes X
Y declares {members}

If we use the term ‘inherits” in the conclusion, rather than
‘declares’, we get the query ‘Which members from class X
does class Y ‘inherit’?’. Notice that the ‘therefore’ symbol
(..) has been removed from the ‘declares’ conclusion: when
expressed in this way, it is not a conclusion in any meaningful
sense; it is merely a juxtaposition of statements.

Transitivity of Relations. Sometimes it is convenient to
interpret the relation in the minor premise (i.e. specializes
or instantiates) in a transitive rather than a direct sense. In
other words, to use the argument on the right (below) as a
short form for the argument on the left (which is known as a
‘sorites’ in traditional logic):

Every animal is mortal
Every mammal is an animal
.. Every mammal is mortal
Every human is a mammal
.". Every human is mortal

Every animal is mortal
Every human is an animal

.". Every human is mortal
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Singulars. Finally, we need to be careful about how we in-
terpret singular terms (e.g. ‘Socrates’) in the instantiation
syllogisms, because programs have two notions of the sin-
gular: objects and variables. Moreover, we can consider the
identity of objects in both a static and dynamic sense: the lat-
ter is usually what is meant by the identity of an object, but
the former is often used in program analysis, where objects
are identified by their instantiation site.

4 Analytical Framework

This section presents an analytical framework derived us-
ing the methodology presented in the previous section. This
framework identifies the design space that includes analy-
ses such as Unique Name [3], Class Hierarchy Analysis [5],
Class Hierarchy Slicing [17), Class Hierarchy Specializa-
tion [19], and Rapid Type Analysis [2]. We also show how
this framework explains the fundamental tasks of type check-
ing polymorphic method invocations and dynamic dispatch.

Tables 1, 2, 3 and 4 list the queries that make up the frame-
work. Tables 1 and 3 list the queries derived from individual
statements in the specialization and instantiation syllogisms,
respectively. Tables 2 and 4 list the queries derived from the
specialization and instantiation syllogisms, respectively, in
their entirety. The queries are numbered according to the ta-
ble, section, and order that they appear in. The notation used
for the queries is explained below.

One might initially think that the framework contains 18
queries: two per statement times six statements, plus three
per syllogism times two syllogisms. However, there are ac-
tually 28 queries, since some structures may be meaningfully

.interpreted in more than way (as discussed previously).

Notation. Capital letters signify classes; plain lower case
letters (‘y’) signify variables; lower case letters with a dot
(‘y’) signify objects. Four symbols are used to signify the
different kinds of query results: ‘o’ represents a set of mem-
bers (i.e. fields or methods); ‘00" represents a set of classes;
‘0’ represents a set of variables; ‘¢’ represents a set of ob-
jects. Since it is difficult to express particularly quantified
statements in most object-oriented programming languages,
statements tend to be universally quantified [12]. Therefore,
for convenience, we have simply dropped the quantifiers.

4.1 Discussion of Selected Queries

This section clarifies some of the queries presented in Ta-
bles 1,2, 3 and 4, and discusses their importance in object-
oriented programming.

Command Completion. The query [Q3Cl] (‘Which
members may be used by variable y?’) is equivalent to mem-
ber command completion. (‘Member command completion’
is the task performed by many IDE’s when the programmer
types ‘v .’ and then the IDE lists all of the members that may
be used by variable y.)



| Statement | Query | Interpretation No. |

Maior Premise X declares o What members are declared by class X? Qlal

jor ’ O declares M Which classes declare member M? (i.e. unique name [3]) | QlA2

. . Y specializes O (transitive) | What are the super-classes of class Y? QlBl
Minor Premise — —

O specializes X (transitive) | What are the sub-classes of class X? QIB2

Conclusion .Y ‘inherits’ o ‘What members are ‘inherited’ by class Y? Qlcl

u .. O “inherits’ M Which classes ‘inherit” member M? Qlc2

Table 1. Queries derived from the specialization syllogism — per statement

| Missing Term | Query | Interpretation [ No. ]
X declares o 1
Y specializes X (transitive) Which members from class X does class Y ‘inherit’? | Q2al
Major Extreme X dYeclltalllrl ::LS °
Y specializes X (transitive) Which members from class X does class Y override? | Q2A2
Y declares o
X declares M
[ specializes X (transitive) Which classes ‘inherit’ member M from class X? Q2B1
Minor Extreme X dDecllr;?:: (tgr 1‘\i/lnheritﬂ«s’) M
O e . Which sub-classes of class X override member M?
specializes X (transitive) (i.e. lower part of Class Hierarchy Analysis [5]) Q282
[ declares M T i K
Middle Term 5 S;:i?;;ixa (transitive) Which super-classes of clgss Y declare mt?mber M? Q2c1
Y ‘inherits’ (and/or declares) M (i.e. upper part of Class Hierarchy Analysis [S])
Table 2. Queries derived from the specialization syllogism — whole argument
| Statement | Query | Interpretation [ No. |
Major Premisc Y declares or ‘inherits’ o | What members does class Y have? (c.f Q1Al & Q1cl) | Q3Al
[ declares or ‘inherits’ M | Which classes have member M? (c.f. Q1A2 & Q1cC2) Q3A2
y instantiates [J (direct) What is the declared type of variable y? Q381
. . y instantiates J (direct) What is the actual type of object y? Q382
Minor Premise Q instantiates Y (direct) ‘Which variables arey geclarcdl as c)l,ass Y? Q3B3
4 instantiates Y (direct) Which objects instantiate class Y? Q384
y may use member o Which members may be used by variable y? Q3cl
y uses member o Which members are used by variable y? Q3c2
Conclusion y may use member o Which members may be used by object y? Q3c3
Q uses member M Which variables use member M? Q3c4
4 may use member M Which objects may use member M? Q3cs

Table 3. Queries derived from the instantiation syllogism — per statement
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| Missing Term | Query | Interpretation [ No.
: Y declares o Which members from class Y are used by variable y?
y instantiates Y (transitive) (i.e. Class Hierarchy Slicing [17] & Specializa- Q4Aal
. y uses o tion [19])
Major Extreme ¥ declares o
¥ instantiates Y (transitive) Which members from class Y may be used by object y? | Q4A2
¥y may use o
Y declares M Which variables use member M from class Y?
¢ instantiates Y (transitive) (i.e. Class Hierarchy Slicing [17] & Specializa- Q481
. O uses M tion [19])
Minor Extreme Y declares M
¢ instantiates Y (transitive) Which objects use member M from class Y? Q482
¢ may use M :
O declares M Which classes that variable. y instantiates declare
y instantiates O (transitive) member M? (i.e. static type safety: an empty result Q4cl
Middle Term y[:I u;:zlxeg - set indicates that this invocation is illegal)
7 instantiates 01 (most immediate) What is the most immediate class that y instantiates 4c2
? u;es M " ; that declares M?(i.e. dynamic method dispatch) Q

Table 4. Queries derived from the instantiation syllogism — whole argument

Unique Name. The basis of the Unique Name analysis pro-
posed in [3] is expressed in [Q1A2]:

O declares M

In other words, “Which classes declare member M?” For ex-
ample, if the program contained both a Shape and a Cow—
boy class, then the result of the query would contain both of
their draw methods. [This example is borrowed from Boris

Magnusson.] The Unique Name analysis evaluates this query -

for each member M in the program and looks for result sets
with cardinality one.

Class Hierarchy Analysis. Class Hierarchy Analysis
(CHA) [5] is areasonably well known technique for the static
construction of a (conservative) call graph. CHA can be ex-
pressed as a combination of two of the queries in our frame-
work: [Q2B2] and [Q2C1]. The query “Which sub-classes of
class X override member M?” is expressed as [Q2B2]:

X declares (or ‘inherits’) M
O specializes X (transitive)
O declares M

We will refer to this as the ‘lower.part’ of CHA, since it looks
‘down’ the class hierarchy. CHA also looks ‘up’ the class
hierarchy, and the ‘upper part’ of CHA is expressed in our
framework as [Q2C1]:

[ declares M
Y specializes OJ (transitive)
Y ‘inherits’ (and/or declares) M

In other words, ‘Which super-classes of class Y declare
member M?’ This query is concerned with the middle term.
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The Importance of the Middle Term. The middle term
plays a crucial role in syllogistic: it is the ‘cause’ of the ar-
gument, the reason why subject and predicate are brought
together in the conclusion. The queries derived with respect
to the middle term are particularly interesting, e.g. [Q4C1]:

O declares M
y instantiates {J (transitive)
y uses M

In other words, ‘Which classes that variable y instantiates de-
clare member M?’ This query is essentially equivalent to the
task of statically type-checking a polymorphic method invo-
cation: if the result set of this query is empty, then the invo-
cation is illegal; if the result set of this query is non-empty,
then the invocation is legal. In programming terms, the task
is to determine if method M can be invoked on variable y;
in logic terms, the task is to determine if the subject (e.g. y)
and the predicate (e.g. M) can be combined. If we interpret
the singular term in this query as an object instead of as a
variable, we get a query of similar interest, [Q4C2]:

0 declares M
y instantiates [ (most immediate)
y uses M

In other words, ‘What is the most immediate class that y in-
stantiates that declares M?* This query is essentially equiv-
alent to dynamic method dispatch (in a single dispatch lan-
guage with method overriding semantics). That is, the pur-
pose of a virtual function table is to resolve this kind of query.



Class Hierarchy Slicing & Specialization. The essential
task in Phase 1 of Class Hierarchy Specialization [19] is to
resolve queries such as [Q4A1] and [Q4B1] (“Which vari-
ables use member M from class Y?* and ‘“Which members
from class Y are used by variable y?’). It is important to
note, however, that the queries as stated here are only valid
for static member access in a language with single ‘inher-
itance’ (i.e. without the full generality of the C++ ‘inheri-
tance’ mechanism). The formulation given in [19] addresses
both of these substantial difficulties. Moreover, hierarchy
specialization requires further analysis that is beyond the
scope of our approach.

Class Hierarchy Specialization can be viewed as a refine-
ment of Class Hierarchy Slicing [17]: the main difference
is that hierarchy slicing only addresses cases where the re-
sult set of [Q4A 1] is empty, whereas hierarchy specialization
can also work with cases where the result set is non-empty.
A possible refinement of hierarchy specialization may be an
analysis based on [Q4A2] and [Q4B2], which interpret sin-
gulars as objects instead of as variables.

Rapid Type Analysis. Rapid Type Analysis (RTA) [2] is
a fast and effective technique for statically resolving poly-
morphic method invocations. The basic insight of RTA is
to prune the results of Class Hierarchy Analysis by elimi-
nating classes that are never instantiated by the program. In
other words, to prune the results of [Q2B2] with the results of
[Q3B4]. However, like Class Hierarchy Slicing and Special-
ization, RTA also involves analysis that is beyond the scope
of our approach.

5 Evaluation

In this section we use the framework developed in the
previous section to evaluate four common aides for work-
ing with object-oriented programs: Source code with a basic
text editor; UML/CD class diagrams; javadoc (JDK v1.3);
and IDE, IBM’s VisualAge for Java (v3.5).

The purpose of this evaluation is to assess how well these
programmer’s aides reveal the syllogistic structure of object-
oriented programs. As we have mentioned, there is more to
an object-oriented program than its syllogistic structure, and
so the scope of our evaluation is limited. Moreover, these
aides are not all directly comparable with each other: one
couldn’t choose to use javadoc instead of a text editor. For
these reasons, this evaluation should not be seen as an at-
tempt to rank these aides against each other but, rather, to
rank them against the framework we have just developed.

‘We use a very simple scoring system for the evaluation:
‘e’ indicates the aide is explicitly structured to provide the
desired information in a convenient fashion; ‘o’ indicates that
the programmer can get the information from the aide with
a modest amount of effort; ‘-’ indicates that it is possible for
the programmer to derive the information, although perhaps
with much effort;  * (a blank space) indicates that it is not
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possible for the programmer to derive the desired informa-
tion from the aide’s representation.

The evaluation is presented in Table 5. Two queries,
[Q3A1] and [Q3A2], have been omitted from the table be-
cause they are equivalent to queries [QlAal, Qlcl] and
[Q1A2, Qlc2], respectively. The reason for this equivalence
is that the conclusion of the specialization syllogism is used
as the major premise of the instantiation syllogism. _

First, notice that the structure of the source code makes it
difficult to discern almost anything at all about the program’s
syllogistic structure. In other words, text editors are made to
work with linear documents, and this is in fundamental con-
flict with the inherent syllogistic structure of object-oriented
programs. The consequence of this conflict is that the pro-
grammer must either expend substantial cognitive effort to
understand the syllogistic structure of the program, or enlist
the use of some other aide.

The other three aides all support the queries derived from
the specialization syllogism reasonably well, with UML pro-
viding the weakest support and IDE providing the strongest
support. From this we conclude that if UML or javadoc are
used in addition to IDE, then it is because of other informa-
tion that they provide and not because they reveal the syl-
logistic structure of the program. We do note, however, that
other IDE’s may not provide the same functionality as IBM’s
VisualAge for Java (v3.5).

Of course, IDE provides much better support for queries
derived from the instantiation syllogism than either UML
class diagrams or javadoc, neither of which support these
queries at all (nor are they intended to0). Certain queries, such
as [Q3B2] (‘What is the actual type of object ¥?’) have an
inherently dynamic nature that the debugger in IDE is partic-
ularly well suited to. Others, such as [Q3C1] (“Which mem-
bers may be used by variable y?’; i.e. command completion)
represent one of the advantages of using an IDE over a basic
text editor.

6 Proposed Program Editor

Polymorphic method invocations present a number of
important technical challenges: efficient implementation
(e.g. [6]); static resolution (e.g. [3, 5, 2, 16, 18]); and pro-
gram understanding. Many aides provide support for un-
derstanding non-polymorphic invocations using HTML-style
hyperlinks. This approach is obviously insufficient for poly-
morphic invocations, precisely because they may have many
potential targets, and an HTML-style hyperlink has only one
target. Moreover, it is not just a question of showing multiple
targets but, of showing why each target should be included.
This is the technical problem that our proposed program ed-
itor is designed to address.

To understand a polymorphic method invocation, one
must know why this subject (i.e. variable) and this predi-
cate (i.e. method) can be combined, and what this combi-



[ No. | Query /Interpretation [| Source | UML/CD | javadoc | IDE |

QlAl | What members are declared by class X? o o .
QlAa2 | Which classes declare member M? o °
QIB1 | What are the super-classes of class Y? . . .
Q1B2 [ What are the sub-classes of class X? ° ° °
Qlcl | What members are ‘inherited’ by class Y? o . .
Qlc2 | Which classes ‘inherit’” member M? o o
Q2A1 | Which members from class X does class Y ‘inherit’? ) . °
Q2A2 | Which members from class X does class Y override? o o °
Q2B1 | Which classes ‘inherit’ member M from class X? o o
Q2B2 | Which sub-classes of class X override member M? o °
Q2cl | Which super-classes of class Y declare member M? o o B
Q3B1 | What is the declared type of variable y? .
Q3B2 | What is the actual type of object y? .
Q3B3 | Which variables are declared as class Y? o
Q3B4 | Which objects instantiate class Y? o
Q3c1 | Which members may be used by variable y? °
Q3c2 | Which members are used by variable y? o
Q3c3 | Which members may be used by object y?

Q3c4 | Which variables use member M? . )
Q3¢5 | Which objects may use member M?

Q4A1l | Which members from class Y are used by variable y?

Q4A2 | Which members from class Y may be used by object y?

Q4B1 | Which variables use member M from class Y?

Q4B2 | Which objects use member M from class Y?

Q4cl | Which classes that variable y instantiates declare member M?

Q4cC2 | What is the most immediate class that y instantiates that declares M?

Table 5. Evaluation of object-oriented programmer’s aides

package ca.uwaterloo.swen; package ca.uwaterloo.graphics;
import ca.uwaterloo.graphics;
abstract class Drawable {
public class Main { abstract void draw();
public static void main(String(] args) { }
Shape shape; abstract class Shape extends Drawable {}
shape = new Circle(); class Cirele extends Shape {
foo (shape) ; void draw() { printf ("Circle"); }
shape = new Square(); }
foo (shape) ; class Triangle extends Shape {
} void draw() { printf("Triangle"); }
static void foo(Shape s) { }
s.draw () ; class Rectangle extends Shape {
} void draw() { printf ("Rectangle"); 1}
} }
class Square extends Rectangle {}

Figure 1. Source code for example (c./. Figure 2)
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nation means. The ‘why’ is the missing middle term, as seen
in [Q4C1], and the ‘what’ is missing minor extreme, as seen
in [Q2B2]. The ‘what’ may be refined by a more advanced
analysis, e.g. [2, 16, 18]. Both [Q4c1] and [Q2B2] are com-
plex queries that require an entire syllogism to express.

In light of this understanding, we have designed our pro-
gram editor around the form of the syllogism. There are a va-
riety of different concrete forms that can be used to express
the abstract form of the syllogism, some of which are dis-
cussed in [13]. These include both text-based and diagram-
matic notations. One of the most common forms is the one
that we have used throughout this paper, that of a three-line
stanza: major premise / minor premise / conclusion. Con-
sequently, we have designed our editor with three horizontal
panels, roughly corresponding to each of these three state-
ments, as illustrated by the sketch in Figure 2.

In overview, the bottom panel contains the polymorphic
method invocation that the programmer wishes to under-
stand; the top panel informs the programmer why this in-
vocation is legal, i.e. [Q4C1]; and the middle panel presents
what this invocation means, i.e. [Q2B2]. The rest of this sec-
tion describes our design in more detail, using the example
source code listed in Figure 1 to illustrate specific points.

The Example. The sketch in Figure 2 shows our proposed
program editor working with the source code presented in
Figure 1 — a trivial program for the sake of the illustra-
tion. The program contains only one polymorphic invo-
cation, from Main: : foo (Shape) to Shape: :draw ().
The sketch in Figure 2 shows how our proposed editor can
help in understanding this polymorphic invocation.

Simply reading the code of this trivial example reveals
some obvious facts: the draw method is actually declared
in Drawable, which is a super-class of Shape; the Cir-
cle, Triangle and Rectangle classes implement the
draw method; the Square class ‘inherits’ the implemen-
tation from Rectangle. All of these facts (and more) are
formally represented by the proposed program editor.

Bottom Panel. The bottom panel contains the polymor-
phic method invocation that the programmer wishes to un-
derstand, because a method invocation corresponds to the
conclusion of the instantiation syllogism. The information
presented in the top two panels is context sensitive to the
particular invocation under examination in the bottom panel.
It is this context-sensitivity that allows our editor to display
the results of advanced call graph construction algorithms,
e.g. [2, 16, 18]. Note that the context sensitivity of the editor
does not mandate a context sensitive program analysis.

The bottom panel of Figure 2 is similar to the inter-
face of conventional IDE’s: the left-hand side shows the
hierarchical structure of the program (organized by pack-
age/directory), and the right-hand side shows the text for the
selected program element. In the example, we can see that
Main::foo (Shape) is selected in the hierarchy on the
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left and its code is displayed on the right. The polymorphic
invocation s .draw () is highlighted as the current editing
point; the information presented in the top and middle panels
is with respect to this editing point.

Top Panel. The purpose of the top panel is to show where
the method invoked in the bottom panel (e.g. draw) is intro-
duced into the hierarchy, and to show the API documentation
for it. The left-hand side shows all super-classes of the de-
clared type of the variable selected in the bottom panel: in
the example, variable s is selected, which is of type Shape,
and so the super-classes of Shape are shown here in the top
panel. It is possible to use this space to show multiple super-
types (i.e. ‘multiple inheritance’), and one way to do this is
to use an inverted hierarchy, as we have suggested. There
are, no doubt, other ways in which that information could be
conveyed in this space.

The (inverted) hierarchy on the left-hand side is annotated
in two ways: to distinguish the declared type of the variable
selected in the bottom panel (e.g. Shape), and to distinguish
the signature type (e.g. Drawable) of the method invoked
on that variable (e.g. draw).

The right-hand side of the top panel displays the text cor-
relating to the element selected on the left-hand side: in
the example, Drawable is selected, so the text for Draw—
able: :draw () is displayed (and this is where the API for
draw is documented). This differs slightly from the com-
mon convention, because it is not the text of the selected ele-
ment (e.g. Drawable) that is displayed but, rather, the text
of the correlating element (e.g. Drawable: :draw ()).

Middle Panel. The purpose of the middle panel is to show
all of the potential target implementations of the polymor-
phic method invocation selected in the bottom panel. The
middle panel is similar to the top panel, except that it dis-
plays the sub-classes of the variable’s declared type, rather
than the super-classes. The hierarchy on the left-hand side
is annotated in three ways: to distinguish the declared type
of the variable selected in the bottom panel (e.g. Shape), to
distinguish the classes that implement the method invoked on
that variable (e.g. Circle, Rectangle & Triangle),
and, to distinguish the classes that may potentially reach the
invocation statement selected in the bottom panel (e.g. Cir—
cle & Square). Rapid Type Analysis [2] is sufficient to
compute the potential types for the given example program;
a more accurate analysis may also be used, e.g. [16, 18].

The Call Stack. Figure 2 shows our proposed editor dis-
playing a single polymorphic method invocation: in other
words, a call stack of depth one. Our design can easily be
generalized for call stacks of arbitrary depth by adding a UI
control for the programmer to transfer a method from being
viewed in the middle (or top) panel to being viewed in the
bottom panel. Another UI control can list these transfers,
each of which represents another slot in the stack.



Object ca.uwaterloo.graphics.Drawable::draw()
Drawable®
Shape?
/ * %
* API Comments for draw()
*/
abstract void draw();
Shape? ca.uwaterloo.graphics.Rectangle::draw()
Circle’?
Rectanglet
Square? /**
Triangle? * Comments about this
* specific implementation
* of draw()
*/ ,
void draw() {
printf ("rectangle");
}
ca.uwaterloo.graphics ca.uwaterloo.swen.Main::foo()
Circle
Drawable /**
Rectangle * A polymorphic invocation
Shape * of Shape::draw().
Square */
Triangle

ca.uwaterloo.swen
Main
foo(Shape)
main(String[])
java.lang
Object

static void foo(Shape s) {

}

LHS:

e inverted super-class hierarchy [Q1B1]
(super-classes of the declared class of
variable s)

e distinguish declared class (%) {Q3B1]
o distinguish signature class (°) [Q2cC1]
o distinguish selected class

RHS:

e signature and source code of method
corresponding to class selected on LHS

e API comments (i.e. ‘javadoc’)

LHS:
e sub-class hierarchy [Q1B2] (sub-classes
of the declared class of variable s)
o distinguish declared class () {Q3B1]

e distinguish implementing classes (*)
[Q2B2] and [Q2B1]

o distinguish potential classes (P)
o distinguish selected class

RHS:

e signature and source code of method im-
plementation corresponding to class se-
lected on LHS

e implementation specific comments

LHS:

e containment hierarchy [Q1A1]
o distinguish selected item

RHS:

o signature and source code of item se-
lected on LHS

o distinguish (cursor)

Figure 2. Sketch (left) and summary description (right) of proposed program editor
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7 Conclusion

In this paper, we have reasoned from Aristotle’s Prior An-
alytics [1], the treatise that defined the form of the syllogism
and thereby began the study of formal logic, to the design of
a novel editor for object-oriented programs.

In pursuing this line of reason, we have developed an un-
derstanding of polymorphic method invocations within the
context of syllogistic logic. We have also explored the design
space of program analyses related to the program’s syllogis-
tic structure, and found that this space includes such analy-
ses as Unigue Name (3], Class Hierarchy Analysis [5], Class
Hierarchy Slicing [17], Class Hierarchy Specialization [19],
and Rapid Type Analysis [2]. In general, the syllogism is
only sufficient to describe the basic idea of these analyses,
and more intricate formalisms must be developed to imple-
ment them in actual programming languages.

We have applied our understanding of polymorphic
method invocations to the design of a novel editor for object-
oriented programs. This editor can display a polymorphic
call graph, constructed with analyses such as [2, 16, 18]. Dis-
playing a polymorphic call graph is a substantially more dif-
ficult problem than displaying a non-polymorphic call graph,
and we are not aware of any other aide that performs this
function as well as our proposed editor.

This paper advances earlier work on the syllogistic struc-
ture of object-oriented programming by Sowa [14] and by
Rayside & Campbell [12] with a more in depth examination
of the structural similarity between object-oriented program-
ming and the syllogism. We support their conclusion that if
object-oriented programming is easy to understand, it is be-
cause of its similarity with syllogistic logic. The syllogism,
specifically in the first figure, universal affirmative mood, is
the formalism at the very beginning of logic: it is simple, it is
well known, and it is considered perfect by many (including
Aristotle). It seems to be a very reasonable structure to base
a class of programming languages on.

Future Work. In the future, we would like to build a work-
ing prototype of the proposed editor and conduct some em-
pirical studies of its effectiveness, both for expert program-
mers and for teaching. A more expansive future version of
this work may give greater consideration to languages such
as BETA [11], SELF [20], SMALLTALK [7] and CECIL [4].
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