
*This work is funded by IBM Canada Ltd. through the Toronto
Laboratory, Center for Advanced Studies.

Web-based Legacy System Migration and Integration*

Ying Zou and Kostas A. Kontogiannis

Dept. of Electrical & Computer Engineering
University of Waterloo

Waterloo, ON, N2L 3G1, Canada

ABSTRACT

With the exponential growth of the Internet and the multi-tier
distributed system architectures, there is an urgent demand to
develop Web-based and component-based applications to
reduce the time to the market and to leverage existing software.
This paper presents an approach to migrate the existing legacy
applications to a Web-enabled Network-Centric environment.
The migration process focuses on specifying the identified
legacy components in XML, consequently wrapping them by
CORBA objects, and finally deploying the distributed
component into the application server. A scripting language
that is encoded in an XML format can be used for allowing thin
clients to communicate with legacy components.

Keywords: Multi-Tier Distributed Architecture, Web-Based,
Wrapping, Legacy Software, Network-Centric Environment,
Integration, Migration.

1. INTRODUCTION

With the growth of the Internet, there is an urgent need to
develop Web-based applications. Initially the Web was
presented as a giant URL-based file server for publishing static
information in a hypertext electronic form. With the
incorporation of client/server architectures, CGI scripts, and
Java applets, the Web is evolved into an interactive medium
that provides dynamic information services. However, these
tools are slow and mostly support stateless transactions.
Moreover, downloading “fat” Java applets imposes many
limitations due to low bandwidth Internet access. Today, new
requirements for Web-enabled applications are emerging.

Organizations would like to take advantage of the Web in
its various forms (Internet, Intranet, and, Extranets), universal
access and 24-hours open for their enterprise computing. This
requires the IT departments to port their legacy software assets
to a distributed Web-enabled environment in order to leverage
the functionality of existing legacy systems without having to
rebuild these systems [1].

The largest problem faced by most large enterprises is the
integration of their existing applications with the new
applications. It is of no surprise that most of the new
applications are developed by integrating existing components.
In addition, legacy tools and legacy application libraries
constitute significant assets for IT organizations [11]. So the
integration of heterogeneous applications and systems is

dictated by market requirements due to the plethora of
operating systems, languages, networking protocols, and data
representations. With its universal access across heterogeneous
hardware and software platforms, the Web is the best choice to
address this challenge to make a loosely coupled, but
coordinated application [9].

Component-based software engineering has gained
significant attention in recent years. Borrowing the idea from
the “plug-and-play” hardware components, such software
components, with well-tested code, can increase the quality of a
software product, shorten the development time, reuse, and
extend the lifecycle of the large-scale pre-packaged software.
Business interest has been driven by competitive pressures to
deliver agile applications more rapidly and economically.

Moreover, there is a constant shift towards thin-clients in
multi-tier architectures away from the “fat-client” paradigm
that is predominant in the traditional client/server topologies.
Thin client architectures, which communicate with servers by
means of the HTML and HTTP protocols, shift the focus from
the client to the server, by leaving as little code as possible on
the client side. This results in faster applet downloading and
less client RAM requirements. Thin-clients require the servers
to process the data and to provide complete services, such as
transactional service, security service, and naming service.

Finally, the portability of code and applications is a critical
issue, as more and more types of devices and embedded
systems (i.e. handheld devices with wireless IP), become
integral part of distributed applications.

It is apparent that the current HTTP/CGI paradigm cannot
meet these requirements. The next generation of the Web, the
so-called Object-Web, applies distributed object computing
technologies to multi-tier architectures, and is gradually
adopted as the development and deployment platform for
distributed applications [5].

This paper is focusing on methodologies for the migration
of legacy systems to a Web-enabled environment in the form of
distributed software components and sketches the architecture
for the legacy system integration using the Web as the medium.

The remainder of the paper is organized as follows. Section
2 introduces the enabling technologies. Section 3 sketches the
overall architecture and major steps for the migration and
integration of legacy system. The concrete methodologies for

each step are explored in Section 4, Section 5, Section 6, and,
Section 7 respectively. Section 8 concludes the paper and
outlines areas of future work.

2. ENABLE TECHNOLOGY

2.1 Distributed Software Component

A complete definition for the software component is given in
[12] as:

“a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to
composition by third parties.”

With the advances in networking, the software
components are moving from the desktop paradigm towards
enterprise-wide, distributed, network-centric environments. A
distributed component possesses the following characteristics
[19]:

• An explicit and well-defined interface defining the
services it provides, and the structures of the passing
parameters it uses;

• An explicit specification for describing the behavior and
usage of the component, the required execution
environments, and the location of the component;

• Software independence from its clients by encapsulating
the detailed implementation;

• Communication with binders for registering with the
clients via the Internet, Intranets or Extranets;

• Means for remote access and remote invocation of
services;

• Provision for run-time dynamic component configuration.

The major middleware technologies, including CORBA,
RMI, Enterprise JavaBeans, and DCOM, meet the above
requirements and provide the integration environment for the
distributed software components. These are discussed in more
detail in the following sections.

2.2 Major Middleware Technologies

CORBA
CORBA connects and composes distributed objects with

client applications, including legacy applications and databases,
beyond the boundary of a single programming language.

OMG CORBA has several advantages over other
middleware, including platform, language, and vendor
independence. CORBA ORBs are available on almost all
operating systems, such as Windows/NT, Unix, AIX, and
Linux. The CORBA Interface Definition Language (IDL)
separates interfaces from implementations. IDL as the uniform
interface bridges different programming languages, including
Java, C++, C, Smalltalk, and COBOL. It hides the
implementation details from the client code and integrates
heterogeneous languages. CORBA ORBs serve as the
communication buses. They intercept any requests that the
client makes, and find an object that can implement that
request, then pass the required parameters to the server to
invoke remote methods, and then return the results to the client.

The client does not need to be aware of the physical location of
the remote object, its implementation language, and the
underlying operating system. CORBA IIOP over TCP/IP is an
open industry standard, which allows ORBs from different
ORB vendors to seamlessly inter-operate. IIOP is supported by
most web browsers, which enable the Internet access to
CORBA objects.

RMI
RMI is a Java-only solution for the distributed computing.

Since it is implemented in Java, it is platform-independent.
Similar to CORBA, it generates the stub and skeleton classes
for the client and server. RMI makes use of two other protocols:
Java Object Serialization and HTTP. The Object Serialization
protocol is used to marshal call and return data. It enables RMI
passing the full objects as RMI operation parameters and return
values, whereas, CORBA allows to pass only the object
reference back and forth. The HTTP protocol is used to
“POST” a remote method invocation and obtain return data
when circumstances warrant.

Enterprise JavaBeans
Enterprise JavaBeans is a Java-based, server-side

component architecture for developing, deploying, and
managing enterprise-level applications. It deals with the
“infrastructure” code for deploying distributed object
applications. It allows the developers to focus on the business
logic and provides the standard component infrastructure,
which enables the enterprise developers to quickly assemble
distributed components.

CORBA and Enterprise JavaBeans have been developed
independently. But they are complementary and can be
seamless integrated. JavaBeans provides CORBA/IIOP as the
transport mechanism for the pure CORBA client and server. An
EJB server can be built on top of an ORB by using CORBA
Naming Service and transactional services, etc.

DCOM
DCOM supports Windows platforms. DCOM-based

applications can take full advantage of existing Microsoft
services such as security and transactions. Some vendors are
migrating DCOM to other platforms such as UNIX. DCOM
may eventually become a truly cross-platform environment.

2.3 Distributing Components on the Web

XML (eXtensible Markup Language), is a metamodel for
structured document exchange based on the Standard General
Markup Language (SGML). It can be transferred via HTTP,
and provides the machine understandable and human readable
syntax, which allows the developers to define their own tags in
different domains. For example, XML tags can be used to
define the configuration information for the distributed
software component. By contrast, HTML limits the
expressiveness of a Web document by its pre-defined set of
tags. XML will be one of the key technologies for the future
Web application. Currently, XML is widely used as the
distributed data standard format for data representation, data
integration, data storage, message exchanging, or as a scripting
language. XML is especially suited to handle a large volume of
human-readable data [13, 14].

CORBA IDL (Interface Definition Language) is a standard
format to describe the distributed component on the Web via
the IIOP. It supports the basic specification for the distributed
component, such as the operations and attributes provided by
the component. However, IDL can not describe all of the
information needed by the client to make use of the distributed
component, for example, the configuration of the component
and requirements for execution.

The combination of XML and CORBA IDL can facilitate
to distribute the software component over the Web.

3. PROPOSED ARCHITECTURE

Businesses, agencies, and software houses have invested a lot
of money on their legacy applications. At this point, no one can
afford to spend the same money, effort, and risk again by re-
implementing the same systems for another platform or
programming language. One way to minimize risk and cost is
to translate the legacy code from one language to another by
using translator programs [7,15]. Even though this approach
solves the problems of porting a legacy application form one
platform to another, it does not solve the integration issues.
Another approach is to re-architect and to translate the legacy
system into an Object Oriented way and language (i.e. C++ or
Java) [2, 16, 17]. Each identified object along with its
associated methods is supposed to implement a specific
function of the original system. Wrappers can be applied to

Applet CORBA ClientJava Application

CORBA Server

Legacy Systems "Seas of Objects"

Database

Middle-Tier:
EJBs integrates
the CORBA objects
with Java objects and provides services

PDA

Servlet

Figure 1: Overall Architecture

encapsulate each C++ or Java object obtained from the original
system and make it available to a distributed Network-Centric
environment. Even though this approach is promising, it causes
a lot of network traffic due to the large number of objects
involved.

The proposed approach focuses on the use of Web as an
infrastructure medium, the utilization of Reverse Engineering to
identify coarse granularity, self-contained components, and the
use of Distributed Object Technologies to address issues that
stem from distribution (message passing, concurrency control,
interaction semantics). In brief, the proposed approach consists
of the following steps:

1. Use reverse engineering techniques and restructuring to
identify and generate a decomposition of the legacy
system into modules.

2. Analyze the interfaces of the selected legacy components
and store their signatures in a component repository using
XML format.

3. Generate the CORBA/IDL and CORBA wrappers from
the component repository.

4. Use EJBs (Enterprise JavaBeans), or Servlets to integrate
the CORBA wrappers and to provide the services to the
Web-based applications.

5. Define a scripting language using XML, to allow for the
utilization of Web technologies for legacy components to
be invoked and computational tasks to be specified.

The three-tier architecture is fundamental to deploy the
legacy systems into the web-based application, shown in Figure
1. In the back-end, the legacy systems are wrapped by the
CORBA as distributed objects. They serve as the object
repository and provide the building blocks for the other
distributed objects. The middle-tier such as application server
integrates the distributed objects and builds the available
services for the front-end clients. The front-end clients can be
the fully functioned desktop, the diskless PDA, or the network
computer.

4. IDENTIFICATION OF COMPONENTS

A software component can be considered as “an independently-
deliverable software package which offers services through
interfaces”[1]. It offers specific functionality and can be easily
integrated with other COTS or custom made software
components.

So far in the field of reverse engineering, most software
analysis efforts have been focused on clustering and
decomposition techniques based on cohesion, coupling, and
other source code features. In most cases, legacy system
decomposition has become a clustering problem. Clustering is a
successful technique on decomposing a legacy system into
subsystems. Nevertheless, these identified subsystems in most
cases are not good candidates for distributed software
components. The reason is that clustering heavily depends on
static code features (coupling, cohesion) as opposed to dynamic
requirements that are imposed by the architecture of the target,
distributed application. From the legacy procedural code, it is
especially difficult to recover clear interfaces via clustering due
to prolonged maintenance and extended modifications the
legacy system has undergone. A possible solution is to make
the whole legacy system a reusable unit by wrapping it as a
black box and provide the signature as an API obtained by the
original legacy interface. However, the larger the software
component, the less flexible it will be.

The proposed approach is to transform the procedural code
to object oriented classes and to identify the fine-grained
software components for maximizing reusability and flexibility.
Since object oriented languages provide mechanisms for
information hiding and encapsulation, it is easier to identify the
loosely coupled, small-scale, reusable software components.
The first step aims at the meta-level description of the software
component, in order to support automatic generation of the
CORBA IDL and CORBA wrappers that move the stand-alone
software components into a distributed platform.

public studentInfo{
 private:

int ID;
char LastName[20];
char FirstName[20];

 public:
char* get_LastName();
void set_LastName(char *lastName);
char* get_FirstName();
void set_FirstName(char *firstName);
int get_ID();
void set_ID(int id);

}

Figure 2: studentInfo Class Definition

With meta-level, self-descriptive information, the
distributed components can be published in the Web-enabled
distributed environment. The proposed specification of the
distributed components includes the following information
[18]:

• General compile-time and runtime properties, including
keywords for describing its functionality, execution
environment, where to find it and how to activate it, for
example, the URL links, the path name.

• Classes that specify the composition of the components.
• External references that point to the external specifications

that describe other components.
• Descriptions of public attributes, and methods.
• Attributes and methods that characterize the external

interfaces and disclose the source classes.
• Return types and parameters that specify the parameters

for method inputs and outputs.

Figure 3: StudentRecord Component Specification

In this environment, it is important to choose a standard
format to represent the specifications, so that, the identified
legacy software components can be easily understood by the
developers and integrated with other applications. XML

provides a natural way to represent configuration information
for components.

For example, suppose that the component consists of one
class as illustrated in Figure 2. and the developer only wants to
make the get_ID and set_ID methods available to remote
clients. An example specification script for this example is
illustrated in Figure 3. Such specifications supply rich
information for creating, assembling and deploying component-
based software. Moreover, they provide the possibility to
dynamically bind the component and execute the component
over the Web by extracting the URL of the component location.
For example, Internet Explorer 5.0 can interpret and display
XML documents, so that, the syntax of the specification can
checked right away, and the component catalog and
configuration can be searched and viewed on the Web.

5. WRAPPING IDENTIFIED COMPONENTS

CORBA is the appropriate infrastructure to integrate the
software components in a heavily heterogeneous distributed
environment. The mapping from C++ to CORBA IDL is fixed
by the CORBA specification. So the interfaces can be directly
generated from the component specification as the following
steps:

interface StudentRecord{
long get_ID();
void set_ID(int long id);

}

Figure 4: StudentRecord Interface Definition

First of all, a single IDL interface is generated, by
denoting the <interface> tag in the XML specification.
Secondly, externally visible operation identifiers are extracted
from the <operation> and registered in the CORBA IDL,
shown in the Figure 4. Finally, the IDL to C++ compiler
generates the client-side stub and the server-side skeleton
classes.

Client

Stub

Client

ORB

Skeleton

Wrapper

Op1();
Op2();
……;

Class1
Op1();
……;

Class2
Op2();
……;

C++ Component

Function Request
and Result Return

Figure 5: Wrapping a component

The CORBA wrapper inherits from the server-side
skeleton classes and encapsulates the C++ classes. The
operations in the interface are the public operations in the

CORBA wrapper. According to the “sourceClass” attribute
(Fig. 3) value in the XML <operation> tag, the wrapper re-
directs the invocation of its public operations to corresponding
methods in the encapsulated C++ class, shown in Figure 5.
Essentially, the wrapper acts as a façade: it offers clients a
single, simple interface to the underlying objects. It glues
together the CORBA distributed capabilities and the standalone
components. Moreover, new functionality can be introduced in
the wrapper, for example, emitting the run-time information,
getting the location of component on the fly. It is notable that
the object wrappers are housed within the CORBA server
infrastructure, providing the back-end services.

6. INTEGRATION OF CORBA OBJECTS

Application servers occupy the middle tier in multi-tier
distributed applications. They have been widely adopted as the
runtime environment of choice for integrating heterogeneous
applications. Different application servers are implemented on
different technologies. Enterprise Java Beans (EJBs) provide
means to facilitate the invocation of distributed objects in a
more standardized way than CORBA. CORBA is suitable for
the lower level aspects of distributed applications, leaving the
task of defining how components should inter-operate to the
programmers, while EJBs handle in a more standardized way
issues related to communication, security, and concurrency
control. EJBs are considered as a workbench for “plug and
play” components, and for developing application servers. The
application server assembles the individual CORBA wrappers,
integrates them with other remote objects, and makes services
available to a front-end Web-enabled application (i.e. a Web
browser). EJBs utilize the CORBA naming services to locate
the CORBA objects, and to dispatch the request to the CORBA
objects over the CORBA IIOP. They provide a link between
Web-based applications and the back-end diversity software
applications, databases, transactional systems.

The EJBs provide a higher level solution for integration.
However, they add another layer on the top of the distributed
objects and therefore contribute to degradation in performance
time.

Another way for integration is to utilize the CORBA IIOP,
which is the OMG solution for the distributed objects to
communicate over the Internet. Netscape browser supports
IIOP. Web applications can take the form of Java applets for
directly integrating distributed objects via IIOP. Initially, Java
applets are downloaded via HTTP. Once an applet is fully
downloaded, it takes over communication with remote object
using IIOP. This approach is suitable for the “fat-client”.

Based on the IIOP, another web integration scenario takes
advantage of servlet, which enables the “thin-client” in HTML.
Servlet becomes the integrator for the remote objects, and hosts
in the web server instead of downloading object to the local
machine. The use of IIOP as the directly communication
protocol will improve the performance and transparency to the
end users.

7. SCRIPTING LANGUAGE FOR THIN CLIENTS

In a thin-client environment, applications are downloaded to the
clients on-request. Clients can issue individual requests to
specific servers using CORBA or any other message passing

mechanism. However, given the infrastructure that the IIOP,
http, CORBA and mark-up languages now offer, it is much
more efficient to allow thin-clients issue multiple requests to
many servers. These requests can be building blocks of
aggregated tasks that are requested by a thin-client. In addition,
the requests can be implemented in a more sophisticated
paradigm, such as the Event-Condition-Action paradigm, where
specific requests and actions are carried out only after specific
events have been intercepted and specific conditions have been
fulfilled. In order to allow for thin-clients to poses such
functionality, we must define a scripting language that allows
for the composition of services available in the application
servers, and the formation of aggregating on-demand tasks. The
scripting language can be implemented using XML and sent to
servers by the standard http protocol. Servlets can be used to
intercept and interpret the transmitted scripts from the thin-
client. Therefore, the client can take advantage of a Web
browser to compose scripts (i.e. Web forms), and does not need
a special compiler, or script interpreter.

In such a scenario, XML becomes the primary candidate
as the implementation vehicle for the scripting language. An
XML-CORBA or XML-EJB bridges are servlets. Once the
script is sent to a servlet, the servlet resolves the script, calls the
corresponding components in the application server, and returns
the result to the front-end client. The servlet translates the
scripts into CORBA requests or EJBs requests, and vice versa.
From the client’s point of view, the scripting language is
directly executable.

To interpret the scripts, the bridges should maintain the
repository for the mapping between the script keywords and the
available services in order to be directly runnable by the servlet.
The repository stores the component specifications, which
provide the keywords, which describe the services, and the
location of the component. Following the keyword, the servlet
can easily find the appropriate service and extract the URL
location from the repository. The XML-based component
specification makes it possible to dynamically register new
services to the repository.

8. CONCULSION

The emergence of electronic commence, mobile computing,
and embedded wireless systems create new requirements for
Web-enabled applications. A particular requirement is to port
existing legacy systems into the Web.

The multi-tier architecture provides numerous advantages
for legacy system migration and integration with other
applications. The key step is to specify the component
configuration in XML, to provide rich information for the
consequent automatic wrapping, integration and searching for
the services provided by the legacy component. Currently, we
are using for our prototypes VisualAge C++, Refine, Rigi and
PBS [3], for reverse engineering, program analysis, and legacy
system decomposition. Moreover, we have selected the IBM
Visualage Enterprise Edition to develop the Enterprise
JavaBeans application server [8], the IBM Websphere as the
EJBs deployment environment, and the Visibroker as a
CORBA implementation.

On-going work, with IBM Canada Center for Advanced
Studies, focuses on the exploration of the appropriate

framework for the integration and dynamic service registration
of services with the application server.

9. ACKNOLEDGEMENT

We would like to thank Richard Gregory and Kelvin Cheung
for the valuable comments they provided on the preparation of
this paper.

10. REFERENCES

[1] Brown, A., Barn, B., “Enterprise-Scale CBD: Building
Complex Computer Systems From Components”, In
Proceedings of STEP’99, Pittsburgh, PA. September,
1999.

[2] G. Canfora, G., A. Cimitile, A. DeLuccia, ``Decomposing
Legacy Programs:A First Step Towards Migrating to
Client-Server Platforms'', In Proceedings of IEEE
IWPC'98, June 1998.

[3] P. Finnigan et.al. “The Software Bookshelf”, IBM
Systems Journal, Vol. 36, No. 4, November 1997.

[4] Gamma, E., Helm, R., Johnson, R., Vlissides, J., “Design
Patterns: Elements of Reusable Object-Oriented
Software”, Addison-Wesley, 1994.

[5] Held, J., Susch, C., Golshan, A., “What Does the Future
Hold for Distributed Object Computing”, StandardView
Vol. 6, No.1, March/1998.

[6] Hoque, R., “CORBA 3”, IDG Books Worldwide, Inc.,
1998

[7] Kontogiannis, K., Martin, J., Wong, K., Gregory, R.,
Muller, H. and Mylopoulos, J., “Code Migration Through
Transformations: An Experience Report”, In Proceedings
of CASCON’98, Toronto ON., November 1998.

[8] Picon, J., Edwards, C., Scenini, G., “Using VisualAge for
Java Enterprise Version 2 to Develop CORBA and EJB
Applications”, International Technical Support
Organization, http://www.redbooks.ibm.com.

[9] S. Tilley, et.al. "On Using the Web as Infrastructure for
Reengineering", In Proceedings of IWPC ’97: Dearborn,
MI; May 1997.

[10] Vogel, A., Rangarao, M., “Programming with hEnterprise
JavaBeans, JTS and OTS: Building Distributed
Transactions with Java and C++”, John Wiley & Sons,
Inc, 1999.

[11] David Curtis, “Java, RMI and CORBA”,
http://www.omg.org, 1997.

[12] Clemens Szyperski, “Component Software: Beyond
Object-Oriented Programming”, Addison-Wesley, 1998.

[13] “CORBA and XML; Conflict or Cooperation?”,
http://www.omg.org, 1999.

[14] Mark Elenko, Mike Reinertsen, “XML & CORBA”,
http://www.omg.org, 1999.

[15] De Lucia, G.A. Di Lucca, A.R. Fasolino, P. Guerra, S.
Petruzzelli, “Migrating Legacy Systems toward Object-
Oriented Platforms”, 1997, IEEE.

[16] Prashant Patil, Ying Zou, Kostas Kontogiannis and John
Mylopoulos, “Migration of Procedural Systems to
Network-Centric Platforms”, CASCON’99, Toronto,
1999.

[17] Kostas Kontogiannis, Prashant Patil, “Evidence Driven
Object Identification in Procedural Code”, STEP’99,
Pittsburgh, Pennsylvania, 1999.

[18] David Krieger, and Richard M. Adler, “The Emergence
of Distributed Component Platforms”, Computer, IEEE,
March 1998.

[19] Cynthia Della Torre Cicalease, Shmuel Rotenstreich,
“Behavioral Specification of Distributed Software
Component Interfaces”, Computer, July 1999 IEEE.

