
Evidence Driven Object Identi�cation in Procedural Code

Kostas Kontogiannis Prashant Patil

University of Waterloo

Dept. of Electrical & Computer Engineering

Waterloo, ON. N2L 3G1

Canada

Abstract

Software evolution is an integrated part of soft-
ware maintenance. It may take the form of porting
a legacy system to a new hardware platform operat-
ing system, translating the system to a new language,
or rearchitecting the system to take advantage of new
programming paradigms. This paper presents tech-
niques for the identi�cation and recognition of object
oriented structures in legacy systems that have been
implemented using a procedural language. The paper
examines methods for the selection of object classes
and the recovery of the possible associations between
the recovered classes.

1 Introduction

It is estimated that there are approximately 800

billion lines of source code worldwide. Most of this

code corresponds to legacy systems that have been

written decades ago using obsolete programming lan-

guages and paradigms. One of the most important

issues in keeping these legacy systems operational is

the inter-operability with other software applications

which may run in remote locations, in a totally dis-

tributed Network-Centric environment. Recent ad-

vances in Network-Centric computing allow for dis-

tributed applications to be built base on the concept

of object brokers. Standards such as CORBA, DCOM,

ActiveX have evolved from research prototypes to fully

commercial products. In addition, Java o�ers a unique

platform for deploying software applications in a vari-

ety of hardware and software operating environments.

In order to bridge the gap between the legacy sys-

tems that have been built decades ago and the modern

technologies provided by Network-Centric computing,

�This work was funded by IBM Canada Ltd. Laboratory -

Center for Advanced Studies (Toronto) and the National Rese
arch Council of Canada.

we have to allow for the legacy systems to communi-

cate with their operating environment in an and ex-

ible e�cient way. One way of achieve this objective

is to use object wrappers. Object wrappers allow for

legacy system components to be encapsulated and be-

have as objects in an distributed object oriented en-

vironment. In this context, the components of the

legacy system that compose a unit must be identi�ed.

One way to achieve this is to partition the legacy sys-

tem using clustering, data ow, or control ow analysis

techniques [Holt98],[Tzerpos98], [Tilley94]. Another

way is to restructure the legacy system in an object

oriented way. Once the legacy system is restructured

in an object oriented way, component selection, encap-

sulation and wrapping can be easily facilitated. This

paper examines di�erent techniques that can be ap-

plied in order to reveal object oriented structures in

a large procedural systems. In particular, it presents

techniques which are based on data type analysis, data

ow, and software metrics. The approach is based on

the premise that a system can be restructured in sev-

eral possible ways and that di�erent design alterna-

tives can be examined and ranked based on a vector

of quantitative and qualitative source code feature val-

ues. In such a way the user can assess the impact of

each restructuring design decision, so that he or she

can make the best possible choice among the di�erent

design alternatives. The paper discusses techniques to

identify object classes using legacy source code, trans-

form existing functions or procedures to methods and

consequently attach these methods to object classes.

Object classes are identi�ed by examining data types

that are used either for global communication between

legacy systemmodules, or as interfaces between legacy

system components (functions, procedures). Method

identi�cation is based on the examination of parame-

ter passing, side e�ects, metrics, and global data ow

analysis. Source code features and software metrics

are used to provide a global view of the di�erent al-

ternative design and code restructuring decisions that

may occur when a method can be attached to more

than one class. Di�erent design alternatives are then

ranked based on the impact they have on the charac-

teristics (cohesion, coupling, interface complexity) of

target system.

2 Related Work

The migration of procedural legacy systems to ob-

ject oriented systems have been discussed by a number

of research groups in the software engineering com-

munity. Overall, in the area of object oriented mi-

gration the research e�orts have focused on two main

issues. The �rst issue is the identi�cation of objects

and abstract data types (ADT's). In [Yeh95] an in-

teractive system that �nds candidate Abstract Data

Types and object instances in procedural systems is

presented. The basis of the analysis is the program's

Abstract Syntax Tree. A �eld reference graph provides
information on the dependencies and uses of di�er-

ent structure (or record) �elds by various functions or

procedures of the source system. In [Gall95] a system

that allows for the identi�cation of objects in procedu-

ral systems using domain knowledge and user interac-

tion is presented. A reverse generated object model

extracted form the source code is compared to an

independently developed object model of the under-

lying system. In [Haughton91] clustering techniques

are used to identify abstract data types from exist-

ing procedures. The technique is based on attaching

data types to existing procedures. A collection of a

data type with its associated operations is then iden-

ti�ed as an ADT. In [Ogando94] an object identi�ca-

tion method based on the global data and data types,

and on the use of formal parameters is proposed. In

[Sneed96a] a system for the identi�cation of objects

in COBOL programs is presented. The approach uses

slicing techniques to identify all of the elementary op-

erations which change the state of a data type.

The second issue deals with the reenginering and

the restructuring parts or the whole of an existing ap-

plication in an object oriented way. This includes

source code transformations, clustering, wrapping

and, integration with other systems. In [Newcomb95]

a reengineering tool that allows for the transforma-

tion of redundant, duplicated, and similar data and

processes to classes and methods. In [Canfora98] a

tool that allows for the decomposition of large legacy

system is presented. The technique can be used to

re-engineer a system into a client-server platform. In

[Sneed96b] a system for reengineering COBOL legacy

applications to distributed object oriented environ-

ments are presented. The system deals with the prob-

lem of encapsulating legacy system components in ob-

ject wrappers. Other interesting work in the area of

object oriented software migration can be found in

[Livadas94] and in [Jacobs91].

Our approach di�ers from other approaches in the

point that we adopt an incremental and iterative ob-

ject recovery process using an evidence model. The

�rst step is to select candidate objects by analyz-

ing global data types and function formal parame-

ters. Once an initial set of candidate objects have

been identi�ed, a set of supporting evidence is gath-

ered. This evidence includes state change information,

return types, and data ow patterns. Once an initial

object model has been created and an initial method

attachment has been created, the process iterates so

that new re�ned classes be identi�ed. Source code

features are gathered for each possible design alterna-

tive and an optimal design with respect to cohesion

and coupling is presented to the user. The process is

largely automated, and allows for domain knowledge

to be considered during the object identi�cation pro-

cess.

3 Object Identi�cation

The �rst step towards the migration of a procedural

system to an object-oriented system is the selection of

possible object classes. This task can be automated

to a large extend using a number of di�erent software

analysis techniques. However, no matter how sophisti-

cated the analysis techniques are, user assistance and

guidance is crucial on obtaining a viable and e�cient

object model. Signi�cant domain information can be

utilized by the user to guide the discovery process and

to obtain a better and more suitable object model. In

this paper we focus on the software analysis techniques

that can be both largely automated and also allow for

user interaction.

The object identi�cation techniques used in this pa-

per focus on two areas: a) the analysis of global vari-

ables and their data types, b) the analysis of complex

data types in formal parameter lists. The following

subsections discuss these techniques in more detail.

3.1 Global Data Type Analysis

Analysis of global variables and their corresponding

data types is focusing on the identi�cation of variables

that are globally visible within a module. A mod-

ule is de�ned as a consecutive set of program state-

ments that deliver particular functionality and can

be referred to by an aggregate name [Shari98]. For

our purposes a module takes the form of a �le or a

collection of �les, or a collection of functions. Any

variable that is shared or is visible (that is, it can be

fetched and stored) by all the components of a mod-

ule is considered as a global variable with respect to

this module. Examples include static variables visi-

ble within a C source �le, or extern variables shared

between two or more C source �les. In order to per-

form this type of analysis, a set of modules have to

identi�ed �rst. Clustering techniques, and architec-

tural recovery techniques presented in [Finni97] and

[Selby91] are used as a �rst step in order to obtain

an initial decomposition of a large system in terms of

module components. Once a module has been identi-

�ed then all the global variables with respect to this

module are primary candidates for analysis. For each

variable its corresponding type is extracted from the

Abstract Syntax Tree, and a candidate object class is

generated.

3.2 Data Type Analysis

Data type analysis is focusing on type de�nitions

that are accessible via libraries. Examples include

typedef C constructs. Data types that are used in

formal parameter lists become also primary class can-

didates. The union of data types that are identi�ed

by the global variable analysis and data type analy-

sis forms the initial pool of candidate classes. Once

an initial set of classes has been identi�ed method at-

tachment follows. The process is incremental and it-

erative. In each iteration the object is re�ned, object

classes are merged, and the model is simpli�ed. As an

example consider the following declarations that may

be obtained by di�erent source �les:

struct OBJECT {

char name[MAXLEN];

char idType[MAXLEN];

char superClass[MAXLEN];

char justification[MAXLEN];

struct LIST *startList;

struct ALIST ATTLIST[MAXATTRIBUTES];

int numOfAtts;

struct OBJECT *next;

};

typedef struct OBJECT OBJECT_TYPE;

The system identi�es and OBJECT, and OBJECT TYPE

as one candidate class with the name OBJECT. The

user may rename the candidate class through a menu

driven user interface. The name change is recorded

in a global table so that source code transformations

for generating the new object oriented code will take

these name mappings into account.

4 Method Attachment

Attaching methods to the candidate classes is an

iterative and incremental process that focuses on the

discovery of associations between classes (data types)

and methods (functions). This analysis focuses on

the examination of the formal parameters in the func-

tions of the original program. Basic types (i.e. char,

int, float are ignored and only aggregate types (i.e

struct, arrays) are considered. A special case applies

to arrays of basic types which become templates. A

detailed description of this type of program transfor-

mation can be found in [Konto98]. For the complex

and aggregate types the following simple rules are ap-

plied:

� For functions with no parameters the return type

and the type of global variables (in the scope of

the particular function) that are modi�ed/used

become the initial candidate classes for which the

particular function will become a method.

� For single parameter functions the parameter

type along with the return type and the global

types modi�ed become the candidate classes for

this method.

� For multiple parameter functions all the parame-

ter types along with the return type and the glob-

ally modi�ed/used types are considered.

For a large number of functions there is only one

aggregate data type involved (in parameters, globally

de�ned, or as a return type) and these functions are

immediately resolved as methods associated with the

class derived from this aggregate data type. However,

there are cases when a method is identi�ed as a can-

didate method to more than one class. In this case

we say that a method is in conict. The following

sections discuss in more detail the di�erent types of

evidence gathered to resolve methods that are in con-

ict and provide a ranking mechanism and di�erent

design choices that may occur.

4.1 Return Type Analysis

This type of analysis provides evidence based on

the return type of the function. The motivation for

using this criterion is that a return type usually in-

dicates state change for a given data type. Since we

are interested on complying with the concept of infor-

mation hiding for the new system, we focus on data

types that correspond to formal parameters modi�ed.

These data types become the the primary candidate

class for hosting the method that corresponds to a

function. However, poorly written code, or code with

side e�ects may not necessarily imply that a return

type corresponds to a formal parameter that has been

modi�ed. For these cases the state modi�cation anal-

ysis which is described in the following section is con-

sidered.

4.2 State Modi�cation Analysis

State modi�cation analysis is based on the principle

of information hiding and functional cohesion. The

premise is that we would like to have methods that

modify the state of their own class and minimize the

side e�ects (state changes) of other classes. For ex-

ample consider the following statements in a function

with its corresponding type declarations:

void InsertNode(RootPtr Root)

{

Node *newNode = new Node(10);

.......

Root->node = newNode;

will provide evidence of state change for the formal

parameter type RootPtr and use of the type Node.

This will be supporting evidence that the given func-

tion be assigned as method to the class that corre-

sponds to the modi�ed data type RootPtr. State

dependency tables can also be constructed and pro-

vide an overall picture of the data type dependencies

for a legacy application [Canfora98]. For our sys-

tem, state modi�cation analysis also involves possi-

ble state changes due to function calls in the original

procedural source code. Transitive closures of state

modi�cation via function calls and parameter passing

by reference is also considered. For example if func-

tion avlInsert calls btInstert and btInsert modi-

�es through parameter passing by reference a variable

whose data type is associated with avlInsert then

this data type is also added in the modi�ed data types

list for avlInsert.

State change information is recorded using entity-

relationship tuples speci�ed in RSF [Tilley94]. These

tuples have the form <entity> modifies <entity>

and can be loaded in a relational database for further

analysis if required.

4.3 Use analysis

This analysis focuses on the selection of data types

used in the body of a function. For this analysis all

the aggregate data that are involved in expressions,

casting, or in indirect component selections and can

be exported from a function (via parameter passing

or global variables) are considered. This type of anal-

ysis is useful on providing an overall coupling analysis

(data dependencies) and provides an overall data ow

view of the di�erent object oriented designs that are

possible.

4.4 Metrics Analysis

Metrics analysis provides another useful mechanism

for ranking possible alternative designs and help re-

solve situations when a method could be attached in

di�erent classes. For this work we focus on data ow

metrics and in particular the Information Flow and

the Function Point metric.

Function Point

The function point metric is a design level metric

[Adamov87], and is associated with the degree of func-

tionality that is delivered by a given software compo-

nent. An informal description of the metric is given

below:
8>>>><
>>>>:

p1 � jGLOBALS(a constr)j+

p2 � (jGLOBALS UPDATED(a constr)j+

jPARMS BY REF UPDATED(a constr)j)+

p3 � jREAD STATS(a constr)j+

p4 � FILES OPENED(a constr)

where, P1; ::P4 are integer coe�cients. For our

ranking purposes, this metric is an estimate of the

functionality that can be delivered by a method when

alternative designs are considered. In this context we

evaluate the metric for the method (that is the body

of the original function) as if a choice has been made.

The metric is re-evaluated per alternative and the re-

sults are ranked. Overall, we are interested on min-

imizing the functionality delivered by a method be-

cause this leads to a modular design for the target

system. That is, methods that perform a speci�c task

are applied on as few as possible data types (ideally

just one, in order to comply with functional cohesion)

[Shari98].

Information Flow

InformationFlow is another useful data ow related

metric and provides a measure of the interaction (fan-

in, fan-out) of a software component with the rest of

the system. Fan-in is de�ned as the number of data

and control ows terminating at a module, and fan-out

is de�ned as the number of data and ows emanating
from a module. A more detailed description of this

metric can be found in [Adamov87]. Similarly to the

Function Point, we are interested on computing the

metric for each method and for each possible design

choice (i.e. attachment of a given method to a class).

The di�erent alternatives are ranked and the one that

minimizes InformationFlow is considered as a primary

candidate. The reason for minimizing the metric is

that we would like to comply with the principles of

information hiding and encapsulation, that is to keep

data ows within the boundaries of a given module

(i.e. a class and the associated with it methods). The

motivation is to minimize a module's data interaction

with the rest of the system.

4.5 Function Call Analysis

Function call analysis focuses on the examination

of data types in the actual parameter lists of function

calls that occur within a body of the function that

is to be considered as a method of a class. For ex-

ample if method M that corresponds to function F

is in conict and can be attached to di�erent classes

C1; C2; C3 generated from data types T1; T2; T3 respec-

tively, function call analysis will examine the formal

parameter lists of all function calls within the body of

F . The data types that most often participate both on

the formal parameter list of F and on actual param-

eter lists of calls within the body of F are considered

primary candidate classes to attach method M . This

type of analysis allows for collecting under a single

class all methods that operate and alter the state of

the class.

5 Inheritance, Polymorphism, Basic

Patterns

Class identi�cation and method attachment are

tasks that can be automated to a large extent. How-

ever, obtaining a good design is a task that requires

user assistance. In this work we have identi�ed a num-

ber of source code features that can help a developer

obtain a better object oriented design from the origi-

nal procedural code.

Inheritance

Inheritance between object classes can be achieved

by examining data structures in the original code. If

two or more structures di�er on a few �elds, these

are candidate types to become subclasses to a more

general class. The more general class will contain the

common �elds and will inherit these �elds with pub-

lic inheritance to the subclasses. Other evidence that

supports inheritance is code cloning analysis, where

two functions are identical with the only di�erence

that they operate on di�erent data types. Then these

data types may become subclasses of a more general

class (type), and the method can be attached and in-

herited from the more general class.

For example the candidate classes OBJECT, CLASS,

SUBCLASS, MEMBER, may become one class or be orga-

nized in an hierarchy with OBJECT being the superclass

and the other three inherit from it.

struct OBJECT

{ char name[MAXLEN];

char idType[MAXLEN];

struct LIST *startList;

int numOfAtts;

struct OBJECT *next;

};

typedef struct OBJECT CLASS;

typedef struct OBJECT SUBCLASS;

typedef struct OBJECT MEMBER;

The di�erent design alternatives are assessed ac-

cording to the method attachment choices made for

these candidate classes. For example if there are meth-

ods that operate only in some of the candidate classes,

and some method found to be common, an object hi-

erarchy as suggested above will be formed.

Polymorphism, Overloading

Overloaded methods can be identi�ed using code

cloning analysis. If two or more functions are identi-

�ed as clones with minor di�erences in their structure

and on the data types they use, then these functions

can can be overloaded on the data types they di�er.

The constraint is that these functions should return

the same data type. In Fig.1, the results of apply-

ing the clone detection analysis is presented. These

results help identify potential overloaded methods.

Similarly, polymorphic functions can be identi�ed

by examining function parameters that are pointers

to functions. In this case, each possible function ref-

erence can become a class and their corresponding

source code becomes a polymorphic method. As an

example consider the case of a tree traversal function

that also takes as a parameter a pointer to a function

that performs an operation on the node that is visited.

Figure 1: Code cloning analysis. numeric values pro-

vide a measure of di�erence.

The tree traversal function may become a method for

the tree class, and each action may become a poly-

morphic method to a corresponding class. For exam-

ple, we may have an ActionOnNode class with sub-

classes PrintNodeAction, SwapNodeAction and one

polymorphic method called DoAction(). The follow-

ing example illustrates this case which is a standard

design pattern that is incorporated in the tool.

ubi_trBool ubi_btTraverse(

ubi_btRootPtr RootPtr,

ubi_btActionRtn EachNode,

void *UserData)

The corresponding migration yields:

ubi_trBool ubi_btRoot::ubi_btTraverse(

ActionOnNode * act,

void *UserData)

where ActionOnNode is:

class ActionOnNode {

public:

virtual void doAction(

ubi_btNode* p,

void *UserData) = 0; };

Figure 2: Evidence table for ubi btNode class.

A class that implements the printing of the data

items in a tree node can be de�ned as:

class PrintNodeAction:public ActionOnNode {

public:

virtual void doAction(

ubi_btNode* p, void *UserData)

{

p->PrintNode(UserData);

};

};

6 Method Attachment Resolution

The problem of discovering object oriented struc-

tures in procedural code may become a very complex

task as the quality of the original system may be very

poor. For example the use of global variables, side

e�ects and, code cloning to mention a few, can result

on misleading source code features and therefore to

erroneous object oriented structures will be identi�ed.

The proposed method is evidence driven and is based

on the premise that a user can discover a better ob-

ject oriented design once he or she has a global view

of the di�erent design alternatives. Each design alter-

native can be ranked based on the impact it has on

fundamental source code features.

Figure 3: Initial identi�cation step provides candi-

date classes and methods. Before conict resolution, a

method could be a candidate to more than one class.

The resolution strategy is based on a global evi-

dence table per candidate class such as the one pre-

sented in Fig.2. We construct one table per data type

that has candidate methods in conict. For example

Fig.2 provides evidence for ubi btNode class. The �rst

column indicates the name of the potential method

to be attached in ubi btNode The second column of

the table indicates if the method can be directly at-

tached to a class or not. A NIL value indicates that

the method is a candidate for another class as well.

The third column indicates if the function returns the

type for which the table is constructed, and the fourth

column indicates if a parameter reference of this type

is both modi�ed and returned. The �fth and sixth

columns indicate if Albrecht and Kafura metric (Func-

tion Point and Information Flow metrics respectively)

are minimized when a given method is assigned to

ubi btNode class. The seventh column indicates the

number of uses of ubi btNode data type in the body of

the method. The eighth column indicates the number

of function calls within the body of the method that

involve the ubi btNode data type in their actual pa-

rameter list. The ninth column indicates whether or

not there is a state change of the object for which this

method will be attached to (i.e. the object associated

with this keyword in C). Finally the tenth column

Figure 4: A resolution strategy based on global evi-

dence provides a way of attaching methods to classes

and eliminating conicts.

indicates the number of updates of type ubi btNode

which correspond to data that are local to the body

of the function.

Each evidence can also be given a weight factor

and the weighted sum is used to rank the alternatives.

Our experimentation has revealed that state change
evidence along with the return type evidence are the

signi�cant factors for performing method attachment

resolution. If these are not adequate to resolve method

attachment, thenmetrics and data type usage could be

the signi�cant factors for ranking alternative designs.

7 Experiments

For our experiments we used a number of di�erent

C-based systems. These included the expert system

shell CLIPS, binary tree libraries (AVL, Binary Search

Trees), modules from a proprietary speech recognition

software, and two UNIX shells (bash, tcsh). Man-

ual inspection classi�ed the results in two categories

1) Correct (a method has been correctly identi�ed

and attached to the right class), 2) False Negative (a
method has been missed, that is it has not been identi-

�ed and attached to a class that it should belong to).

False Positives can not be easily identi�ed as there

Feature Correct False Negative

State Change 36% 3%

Data Type Uses 26% 3%

Information Flow 17% N/A

Return Types 4% 4%

Modi�ed

Return Types 1% 4%

Function Point 1% N/A

Table 1: Impact of source code features on the method

conict resolution process.

may be many alternative designs that are correct and

acceptable.

The �rst experiment focused on computing the con-

tribution of the individual source code features and

provide an experimental view of the importance of

each source code feature for object discovery pro-

cess. The results were obtained by checking manu-

ally migrated source code, from three di�erent sys-

tems against the code that has been generated by the

system. The total size of the sample systems was

8.5KLOC, consisting of 235 functions and 53 major

data types. The manual migration was performed in-

dependently as part of another project. The evalua-

tion results are illustrated in Table.1 1.

The results indicate that the state change feature

is the one that dominates the method resolution pro-

cess. It has the highest impact among the other fea-

tures, and at the same time keeps the percentage of

False negatives low. The number of data type uses also

is an important factor on method conict resolution.

Finally, the Information Flow metric was identi�ed as

the third best source code feature to be used when

developing an object model. More experiments are

under way in order to cover more possible migration

cases that may occur in a large system. However, we

believe that these results provide an initial road map

for software practitioners who are involved in migrat-

ing procedural code to object oriented environments.

The second experiment was to examine the impact

of the migration process on a number of sample sys-

tems written in C and infer a new Object Oriented

architecture. One of the systems analyzed was a pub-

lic library written in C for Sparse Arrays, AVL, Splay

Trees and, Binary Search Trees [Hertel98]. The library

also includes code for implementing simple and doubly

linked lists. The original system was organized around

1The "N/A" ientry in the table indicates that there were not

enough cases in test data to provide a statistically signi�cant
result.

Figure 5: Tree library object model (uses view)

C structs and a quite elaborate set of macros for im-

plementing tree traversals and simulate Polymorphism

for insert, delete and tree balancing routines.

The proposed system has been applied to the li-

brary,identifying on the �rst step 19 classes and 69

possible methods with a method conict ratio of 49%.

The second step was to apply the conict resolution

strategy and visualize the library architecture from the

object oriented point of view. The object model for

the library is depicted in Fig.5 and in Fig.6. In Fig.5

nodes represent classes and arcs represent method in-

vocations. That is an arc from node A to node B im-

plies that there class A is a client of class B. Similarly,

in Fig.5 data ow information is depicted. In partic-

ular, nodes represent classes and arcs represent data

uses. That is an arc from node A to node B implies

that there is an instance of class B used in class A. Fig.6

and Fig.5 indicate the existence of 5 subsystems (clus-

ters on the top). The leftmost (upper left corner) is

the subsystem that now corresponds to all classes and

methods for the Single Linked List library (ub slList,

and ubi slNode. The second subsystem indicates the

Doubly Linked List Library. The third subsystem

corresponds to Sparse Arrays. The fourth subsystem

corresponds to Binary Trees (including AVL, Binary

Search Trees, and Sparse Trees). Finally the �fth sub-

system corresponds with the utilities and classes for

Figure 6: Tree library object model (calls view)

attaching data items to the nodes of the data types

implemented by the library (e.g. data values attached

to the nodes of the AVL trees).

8 Conclusion

In this paper a method for the identi�cation of ob-

ject models in procedural legacy systems is presented.

The method is based on an iterative and incremental

process. The process starts by identifying an initial set

of candidate classes and a set of candidate methods, by

analyzing data types and formal parameters. The pro-

cess iterates by re�ning the initial object model. The

re�nement is based on selecting a set of source code

features that need be optimized. These code features

include the number of object state changes, data ow

dependencies, interface complexity (fan-in, fan-out),

uses and updates of data types. The system allows for

major subsystems to be identi�ed, and facilitate the

encapsulation of the identi�ed subsystems in wrapper

classes in the case the original system is migrated to

a Network-Centric environment.

References

[Adamov87] Adamov, R. \Literature review on soft-

ware metrics", Institut fur Informatik der
Universitat Zurich, Switzerland, 1987.

[Canfora98] Canfora, G., Cimitile, A., DeLuccia,

A., DiLicca, A., \Decomposing Legacy Pro-

grams:A First Step Towards Migrating to

Client-Server Platforms", In Proceedings of
IEEE IWPC'98, June 1998, pp.136-144.

[Finni97] Finnigan , P. et.al \The Software Book-

shelf", IBM Systems Journal, vol.36, No.4,
1997.

[Gall95] Gall, H., Klosch, R., \Finding Objects

in Procedural Programs:An Alternative

Approach", In Proceedings of WCRE'95,
pp.208-216.

[Haughton91] Haughton, H., Lano, K., \Objects re-

visited", In Proceedings of IEEE Conf. on
Software Engineering, October 1991, pp.152-
161.

[Hertel98] Hertel, C.,

http://www.interads.co.uk/ crh/ubiqx/

[Holt98] Holt, R., \Structural Manipulations of Soft-

ware Architecture using Tarski Relational

Algebra", In Proceedings of WCRE: Work-
ing Conference on Reverse Engineering,
Honolulu, Oct 1998.

[Jacobs91] Jacobson, I.,

Lindstrom, F., \Re-engineering of old sys-

tems to an object-oriented architecture", In
Proceedings of OOPSLA'91, pp.340-350.

[Konto98] Kontogiannis K., martin, J., Wong, K.,

Gregory, R., Muller, H., Mylopoulos, J.,

\Code Migration Through Transformations:

An Experience Report", In Proceedings of
IBM CASCON'98 Conference, December

1998, Toronto ON..

[Livadas94] Livadas. P., Johnson, T., \A New Ap-

proach to Finding Objects in Programs",

Journal of Software Maintenance:Research
and Practice, Vol.6, 1994, pp.249-260.

[Newcomb95] Newcomb P., Kotik, G., Reengineering

Procedural into Object-Oriented Systems",

In Proceedings of WCRE'95, pp.237-249.

[Ogando94] Ogando, R., Yeu, S., Liu, S., Wilde, N.,

\An Object Finder for Program Structure

Understanding in Software Maintenance",

Journal of Software Maintenance:Research
and Practice, Vol.6, 1994, pp.261-283.

[Selby91] Selby R., Basili, V., \Analyzing Error-Prone

System Structure", IEEE Transactions on
Software Engineering, Vol.17, No.2, Febru-
ary 1991, pp. 141-152.

[Shari98] Shari, Lawrence, Pleeger, \Software En-

gineering, Theory and Practice", Prentice

Hall, 1998.

[Sneed96a] Sneed, H., \Encapsulating Legacy Soft-

ware for Use in Client/Server Systems", In
Proceedings of IEEE WCRE'96, November

1996, pp.104-119.

[Sneed96b] Sneed, H., \Object-Oriented COBOL Re-

cycling", In Proceedings of IEEE WCRE'96,
November 1996, pp.169-178.

[Tilley94] Tilley S., Wong, K., Storey, M., Muller,

H., \Programmable Reverse Engineering"

International Journal of Software Engineer-
ing and Knowledge Engineering, pp. 501-520,
December 1994.

[Tzerpos98] Tzerpos V., Holt, R., Software Botryol-

ogy: Automatic Clustering of Software Sys-

tems, In Proceedings of the International
Workshop on Large-Scale Software Compo-
sition, Vienna, August 1998.

[Yeh95] Yeh, A., Harris, D., Reubenstein, H., \Re-

covering Abstract data Types and Object

Instances from Conventional Procedural lan-

guage", IEEE Software, 1995, pp.227-236.

