
Refactoring Web sites to the Controller-Centric Architecture

Yu Ping and Kostas Kontogiannis
Dept. of Electrical & Computer Engineering

University of Waterloo
Waterloo, ON, N2L 3G1, Canada

{yping, kostas}@swen.uwaterloo.ca

Abstract

A Web site is a hyperlinked network environment,
which consists of hundreds of inter-connected pages,
usually without an engineered architecture. This is often a
large, complex Web site that is difficult to understand and
maintain. In this paper, we propose an approach that
aims to restructure an existing Web site by adapting them
to a controller-centric architecture. In particular, this
approach is twofold. First, it defines a domain model to
represent dependencies between Web pages in order to
abstract current structure of the Web site. Second, it
designs a system architecture as a reference model for
restructuring the Web site to the new structure. These
principles will be illustrated through a case study using a
reengineering tool that implements the refactoring
process for a JSP-based Web site.

Keywords: Refactoring, controller-centric, link type,
page flow, JSP.

1. Introduction

Just a few years ago, web sites were mainly composed
by a few simple and static HTML pages, which were used
to share information over the Internet. The structure or the
topology of the web site was easy to be discovered and
maintained manually. Today, however, the rapid growth
of the Internet and World Wide Web in their contents and
scopes has significantly increased the complexity of the
web sites. Because of such a decentralized nature of their
growth, conventional Web sites usually lack a well-
engineered architecture [11]. This has caused several
problems for managing and maintaining such Web sites,
where broken links and inconsistent page contents pose a
major operational problem [2].

Therefore, to improve the maintainability and
scalability of existing Web sites, a common effort is to
adapt them into well-engineered architectures supported
by open standards and technologies that are introduced as

part of the reengineering process. By applying these open
architectures, the new Web site would be more scalable
and maintainable than the original one.

In this respect, to facilitate the reengineering of
existing Web sites with new open structures, we present a
technique to support the refactoring of Web sites towards
a controller-centric architecture. The proposed technique
is based on a refactoring strategy concerning page
dependency analysis, page flow modeling, and
implementation architecture. Specifically, we extract and
classify the link information from the Web page analysis.
Consequently, we group the extracted links together to
form the page flow, which is represented in a XML
format. Moreover, a system architecture is proposed with
the aim of providing a reference model for the
implementation of the refactoring task.

The rest of this paper is organized as follows. Section 2
discusses relevant work in this area. Section 3 introduces
the concept about the controller-centric architecture. Our
proposal refactoring strategy is described in Section 4.
Section 5 provides the link classification. In Section 6, we
define an XML representation for modeling the page flow
according to the link classification. A general architecture
of the system to implement the refactoring process is
introduced in Section 7. Section 8 presents a case study
used for evaluating our techniques. We summarize our
conclusions in section 9 and close with pointers to future
research directions.

2. Related Work

Several works on the Web site restructuring have been
proposed in the literature. Ricca et. al. [5] sketch several
possible Web site transforms with the aim of improving
their qualities. They have classified HTML
transformations into six categories: syntactic clean up,
page restructuring, style renovation and grouping,
improving accessibility, update to new standards, and
design restructuring. A case study has been provided
based on transforming original navigation structure into

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering (CSMR’04)
1534-5351/04 $ 20.00 © 2004 IEEE

HTML frames by utilizing the DMS Software
Reengineering Toolkit, an integrated tools infrastructure
for automating customized source program analysis and
modification of large-scale software systems [19]. In
another paper, Ricca and Tonella [4] propose a migration
process aimed at restructuring static Web sites into
dynamic ones using the software clustering technique,
where a common template is extracted from the HTML
pages in the same cluster, and the variable information is
isolated from the template and then moved into a
database. They introduce a re-engineering tool, called
ReWeb, which is able to perform source code analysis
and graph representation on Web sites.

These works focus on the analysis of static Web sites
in which the Web pages are not generated by the server-
side scripting language. By contrast, our approach
includes the analysis of dynamic aspects of Web sites. We
share with [5] the idea of using the reengineering
technique to transform the Web site to a new structure.
However, we aim to restructure the Web site by adopting
a controller-centric architecture instead of the frame-
based one described in [5].

There have been also some considerable activities and
prototype tools on the analysis and representation the
Web site by means of XML [9,15,16,20] or UML
[6,7,10,18] models. The referred contributions mostly
focus on modeling the entire Web site. However, much
like [15,16], our approach only aims at representing
relationships among Web pages. In contrast to [15,16], we
support the extraction of the link information from the
server side, while [15,16] only concerns the HTML
documents at the client side.

Finally, there has been extensive research work
conducted on the Web page/link management, such as the
author-oriented link management [14] and the
connectivity server [12,13]. The main difference with our
work is that the approaches presented in [12,13,14] keep
the Web structure untouched. Our approach achieves the
page/link management in a way that restructures the Web
site to a well-engineered architecture by connecting Web
pages to controllers.

3. Controller-centric Architecture

The controller-centric architecture, as illustrated in
Figure 1, is an architectural approach based on the Model-
View-Controller (MVC) design pattern. In this approach,
a controller is built on the top of a Web system to perform
the central management for the client request processing
and Web page forwarding. More specifically, the front-
end controller provides a single entry point for
intercepting HTTP requests coming from end users. It
takes control of the page flow that is originally managed
by individual Web pages. In other words, each Web page
is not directly linked to another page. Instead, it is

connected to its associated controller, and the controller
then forwards the request to the target page. The page
control flow is often stored either in a flat file or a
database, which can be accessed by the controller in order
to select corresponding Web pages to forward the request
to.

Controller Web Pages

Web Pages

Web Pages

Request Response

Page Control
Flow

Figure 1: Controller-centric Architecture

Page A Page B

Page X Page Y Page Z

Page A Page B

Page X Page Y Page Z

Controller

Part 1: Link modifications in a
traditional Web site

Part 2: Link modifications in a
controller -centric Web site

Figure 2: Page Management

To this end, the page management becomes a simpler
and easier task. For example, when Page A is changed to
Page B, all the links to Page A are broken until these links
are updated. On a traditional Web site, as illustrated in
Part 1 of Figure 2, link references are maintained by
individual Web pages, where we need to search all the
pages (Page X to Z) that have link references to Page A
and updating these links to Page B. However, on a
controller-centric Web site, as shown in Part 2 of Figure
2, we do not need to find and modify all the pages (Page
X to Z) that have link references to the old page (Page A).
Instead, we only need to update the page control flow
information maintained by the controller, and change the
corresponding link reference to the new page (Page B).
Comparing to Part 1, Part 2 significantly simplifies the
page modification process as well as eliminate the broken

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering (CSMR’04)
1534-5351/04 $ 20.00 © 2004 IEEE

link or the missing link, particularly in a large scale Web
site.

In addition to providing the central control for the page
flow, adapting Web sites to the controller-centric
architecture allows us to remove potential duplication
codes from Web pages. This can be achieved by including
common services, such as page access authentication, to
the controller. Moreover, this refactoring approach can
facilitate the migration of an existing Web site to the
MVC architecture [22,23], which separates business rules,
presentation logic, and application control. As a result, a
Web system is decoupled into three core components: the
model, the view, and the controller.

4. Refactoring Strategy

To ensure that the transformation process is organized
in a systematic way, a refactoring strategy for
restructuring Web sites to a controller-centric architecture
is formulated, as depicted in Figure 3. The activities
described in the refactoring strategy are performed in a
sequential manner and the whole process is divided into
three major phases.

Page Dependency
Analysis

Page Flow
Modeling

Implementation
Architecture

Figure 3: The Refactroring Strategy

Phase 1: Analyzing and classifying the Web page
dependency

Pages and links are two fundamental elements in a
Web site in which pages are interconnected by links. Each
link represents a relation or dependency between Web
pages. In the first phase, we focus on analyzing link
information in a Web site. Furthermore, we classify the
link information into several link types, such as reference
link type and condition link type. With the aid of link
types, Web pages can be easily grouped into clusters, and
thus to provide a roadmap for the generation of controller
components. Moreover, links with different types may
have different transformation rules to direct Web pages to
the associate controller in the new system.

Phase 2: Modeling and representing the page flow in a
XML format

The preliminary requirement to reengineer a software
system to a new platform is representing the source of the
system being analyzed at an appropriate level of
abstraction. In this context, we model the structure of an
existing Web system by using an XML representation,
denoted in the form of a page flow. A page flow model

represents a set of relations between all the pages in a
Web site. It describes the navigation path from the main
pages to their various subroutines that could be branched
to. In our proposed approach, a page flow model tends to
focus on page links rather than page contents, where the
link type is one of major elements to compose the page
flow.

It is important to note that a page flow is a different
concept with a page control flow because the latter is used
by the controller to forward the request to the target page.

Phase 3: Designing and developing an implementation
architecture

The objective of our work is for the new Web system
to be adapted to modern and customizable architectural
patterns such as the controller-centric architecture. Hence,
in the third phase, we design and develop a system
architecture with the aim of providing a reference model
for the transformation of existing Web sites to a
controller-centric structure. This general refactoring
architecture consists of four implementation steps,
including page preprocess, link information extraction,
control integration, and link rewriting.

In the following sections, we provide further
discussion about page dependency analysis, page flow
modeling, and implementation architecture, respectively.

5. Page Dependency Analysis

A link represents a connection from one Web page to
another. It is directed and thus has two endpoints, the
source from which the link starts, and the target where the
link ends [8]. A link type is used to describe a relation or
a dependency between the source and the target of a link.

Moreover, a Web page may contain several
intertwined languages dealing with different aspects of
the system. These typically involve client side elements
processed on the browser, such as HTML, plug-ins, and
JavaScript, as well as server side elements running on the
Web server to generate dynamic contents, using
JavaServer Pages (JSP) or Active Server Pages (ASP) for
instance. Therefore, the actual implementation method for
each link type is really dependent of which programming
languages are applied to the Web system.

In this section, we describe two categories of links,
which are reference link and condition link, as well as
possible implementation methods used in either static or
dynamic Web pages.

5.1 Reference Link

We classify links into the reference type according to
how a target page is referenced by a source page. The

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering (CSMR’04)
1534-5351/04 $ 20.00 © 2004 IEEE

reference link has four different types: inner link,
handover link, include link, and invocation link (Figure
4).

source source

target

source

target

source

target

Inner link handover link include link invocation link

Figure 4: Reference Link

Inner Link

An inner link represents that both source page and
target page are a same Web page. When an inner link is
selected in the source page, it does not connect to a new
page. Instead, the target page that is the destination of the
inner link is still the same page as the source page, but
most likely, may have different output to the client based
on the request, or just moves the focus from one position
to another one within the same Web page.

A typical link of this sort in a Web page is the link (we
name it as static inner link), which starts at the source
page and points to a new position in the same page. For
instance, the links connect a table of contents to each
chapter that following it in the same page. Another type
of the inner link is a dynamic inner link. When activating
a dynamic inner link, the source page actually sends a
request to the server, even though the destination of the
link is the same page as the calling page. An example of a
dynamic inner link is a link in a JSP page, which serves to
validate the client input in the server side. The JSP page
points to itself each time after clients select the link to
submit their data. It checks the data and displays the error
message if any until there is no mistakes in the input.

The static inner link can be ignored in the refactoring
process because the link action only makes the windows
to focus on a different position in the current page, and
the page itself keeps static all the time. The dynamic inner
link has different behavior. It involves the server side
process and changes the state of a Web page. Thus, we
include the dynamic inner link in the prefactoring process.

Handover Link

A handover link represents that a source page transfers
the page control to a target page when activating a link.
The target page cannot be the same one as the source page
or a part of the source page. It disconnects any
connections with the source page after the handover link
is selected, and thereafter, takes over the page or

application control and starts to process the user or
program's request. In another hand, the possession in the
source page is permanently terminated as soon as the page
is connected to the target page, and the source page does
not expect any response from the target page.

The handover link is a very common link type used in
Web pages. There are some sample implementations of
the handover link:

Navigation: Navigation link is a link defined by the
<A> element with specifying a URL value for the href
attribute in a HTML document. For example, a source
page has a handover link to target.html: <A href =
“target.html”> Handover Link .

HTML Form: A HTML Form, <FORM action =
relativeURL method = MethodName>, allows the user to
enter the information and sends them to the target page
specified by the action attribute for processing.

JSP Forward Action: A JSP Forward Action,
<jsp:forward Page = “relativeURL” />, dispatch the client
request information from the current page to another
resource, which can be a HTML page, a JSP page or a
Servlet in the same context as the forwarding JSP page.
The forward action effectively terminates the execution of
the current page, and the source codes after the
<jsp:forward> element are not processed further.

Include Link

An include link represents a relation that a source page
includes a target page when activating the link. The target
page can be a static page (HTML file) or a dynamic page
(JSP file). If the target page is static, its whole content is
included in the source page. If the target page is dynamic,
it acts on a request and sends back the results to be
included in the source page. When the include action is
finished, the source page continues processing the
remainder of the page.

A static include link in a JSP page is an Include
Directive. By contrast, an example of dynamic include
link in a JSP page is an Include Action.

Invocation Link

An invocation link represents a communication link
between a source page and a target page. The link
information is actually encapsulated in a function or a
class, which can be called by a source page in order to
read from and to write to a target page.

In general, an Internet connection is initialized before a
actual connection to a target page is made. The possession
of the invocation link is similar to the dynamic include
link: a source page sends the request to a target page by
invocation of a function or a class which implementing
the invocation link, and the target page acts on the request

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering (CSMR’04)
1534-5351/04 $ 20.00 © 2004 IEEE

and sends back the results to the calling page. The source
page continues processing the remainder of the page after
the connection is made to the target page.

An example implementation of an invocation link is a
link that sets up an http connection in a JSP page by using
the Java API, HttpURLConnection.

5.2 Condition Link

Another classification of links, condition links,
describes the relations according to whether or not the
connection between a source page and a target page
depends on certain conditions. Therefore, we can define
two link types of the condition link: the conditional link
and non-conditional link (Figure 5).

non-conditional link conditional link

target

source

target

source

Figure 5: Condition Link

Conditional Link

The conditional link represents that there is a condition
or some conditions on which a source page depends to
make a connection to a target page. In the other word, the
conditional link in a source page is activated only when
meeting certain criteria. It is obviously that all of the links
within a control statement, such as IF-ELSE, SWITCH-
CASE and DO-WHILE, are conditional links. Whether or
not a source page includes a link to a target page is
decided at run time.

Non-conditional Link

The non-conditional link represents that there is no any
conditions, where the source page depends on to make the
connection to the target page. The source page always
contains the link to the target page. The non-conditional
link should not be found within any control statements.

 In addition, the classification and the relationship of
the link type can be represented in a UML model shown
in Figure 6.

Figure 6: UML Model of Link Type

6. XML Representation Model for Page
Flows

A basic consideration of building an information
model for the page flow is to express it in a language that
can describe the interconnection between Web pages in a
general and formal way. XML has been widely
recognized as the representation of the Metadata on the
Web. It provides a unified framework for annotating
structured data. It is extensible, and can define meaningful
tags that link syntax with the semantics of the entities of a
given domain. Therefore, we use XML as the language to
represent the page flow in a Web site.

Another consideration for the representation model is
to describe it in a standard way. This can be accomplished
by creating an XML DTD document that defines the
XML structure with a list of legal elements and attributes.
Figure 7 illustrates the page flow DTD and its elements
and attributes are explained in the following.

From the definition of the page flow, the page and the
link are two basic building blocks of the page flow. As a
result, a page flow DTD document mainly contains the
information about pages and links.

The root of a page flow document is a pageflow
element. It can have an arbitrary number of sourceset sub-
elements and no attributes. The use of an asterisk * in the
DTD reflects the non-mandatory constraints for these
roles.

The sourceset element specifies a collection of source
pages where the links start. The source pages are grouped
together into a single source set if they reside in the same
directory. The information about these source pages is
described in the source element, the sub-element of the
sourceset element. The sourceset element includes two
attributes that declare the file directory: the path attribute
that represents a local directory, and the uri attribute that
represents a Web directory (URI) mapping to the local
directory.

Using the directory structure to cluster the source
pages induces two benefits. First, it allows shorter path
name contained in the sub-elements of the sourceset
element. In this context, the corresponding attributes in
the sub-elements use relative path names instead of

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering (CSMR’04)
1534-5351/04 $ 20.00 © 2004 IEEE

absolute path names. The relative path name need not
specify all the components of a local path or a URI. The
missing value is inherited from the fully specified path
(the path attribute in the sourseset element) or URI (the
uri attribute in the sourseset element). This approach can
significantly reduce the size of generated XML files.
Second, it provides a possible solution to build up the
controller components based on the directory hierarchy. A
controller can be created to manage the Web pages either
in the same directory or having a common parent
directory.

<!ELEMENT pageflow (sourceset*)>

<!ELEMENT sourceset (source*)>
<!AT TLIST sourceset

path CDATA #REQUIRED
uri CDATA #REQUIRED>

<!ELEMENT source (target*)>
<!AT TLIST source

name CDATA #REQUIRED>

<!ELEMENT target EMPTY>
<!AT TLIST target

name CDATA #REQUIRED
uri CDATA #REQUIRED
condit ion (yes

 | no) “no”
reference

 (inner
 | handover
 | include
 | invocat ion) #IMPLIED

method (link
 | form
 | frame
 | object
 | javaconnection
 | jspforward
 | errorpage
 | include
 | jspinclude) #IMPLIED>

Figure 7: Page Flow DTD

The source element specifies the page and link
information for a Web page that exists in the directory
denoted by the sourceset element. It has a name attribute
whose value is the local file name of the source page. For
example, if the directory of the source set is
“C:\workspace\myweb\jsp”, the value of the name
attribute would be “index.jsp” that is a shorthand for the
full path name “C:\workspace\myweb\jsp\index.jsp”.

The source element has a target sub-element, which
represents a collection of the target pages that the
specified source page points to. The target element has
five attributes: name, uri, condition, reference, and
method. The name attribute indicates the file name of the
target page without including the Web directory. The
Web directory, where the target page resides, is specified
by the uri attribute. It can be either a relative path name or
an absolute path name depending on whether the target
page is in the same context as the source page. The

relation or the link type between the source and target
pages is declared in the condition attribute representing
the condition link, and the reference attribute representing
the reference link. If the link is the conditional type, the
value of the condition attribute will be “yes”, whereas the
value will be “no” (default) if the link is the non-
conditional type. The reference attribute can have a pre-
defined value that is, “inner”, “include”, “handover”, or
“invocation”. The actual use of the link types is specified
by the method attribute that has a set of pre-defined
values. Figure 8 illustrates a sample XML document
using the page flow DTD.

<?xml version="1.0" ?>
<pageflow>
 <sourceset path="c:\workspace\myweb\jsp"

 uri="http://localhost/myweb/jsp">
 <source name="category-edit.jsp">
 <target name="category-index.jsp" uri="*"
 condition="yes" reference="handover" method="link" />
 <target name="category-edit.jsp" uri="*"
 condition="no" reference="inner" method="form" />
 <target name="header.jsp" uri="\commonfiles\"
 condition=”no” reference="include" method="include" />
 <target name="header.jsp" uri="\commonfiles\"
 condition=”no” reference="include" method="include" />
 </source>
 </sourceset>
</pageflow>

Figure 8: Page Flow XML

7. System Architecture

In this section, we describe the system architecture for
the overall refactoring process. The proposed architecture
aims to provide a reference model presenting major
components and implementation phases to be applied for
refactoring a Web site towards a new controller-based
system. As a result, the target system would be more
maintainable than the original system. In the following we
will discuss the general architecture of the refactoring
system as this is depicted in the Figure 9.

The first step, the Page Preprocess, in our approach is
to perform preliminary processing on a Web site in order
to make Web pages ready to be analyzed in the second
step. In particular, this step focuses on identifying the
control block in Web pages. The control block can be
recognized as either control statements such as IF-
statement, WHILE-statement, and SWITCH-statement, or
custom tags that implement the control logic. Any links
found in the control blocks are conditional links according
to the categorization of the link type. Moreover, it
discovers any implicit link information that cannot be
directly handled by using the pattern matching technique
in the following steps, specifically, the links inside Java
codes, VBScript or JavaScript. Then it makes these

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering (CSMR’04)
1534-5351/04 $ 20.00 © 2004 IEEE

implicit links to be explicitly specified by using a pre-
defined method.

There are some possible solutions to implement Web
page preprocessing tasks. One possibility is to create a
page analyzer, which usually contains a parser and a
lexical analyzer for the Web programming language [1].
It aims to represent the page source at an appropriate level
of abstraction, for instance, in the form of an Abstract
Syntax Tree (AST) [21]. Therefore, the linkage
information can be easily obtained by accessing the
generated AST. JSP pages involve several intertwined
languages dealing with different aspects of the system,
such as JSP elements, Java codes, HTML and JavaScript.
This makes the implementation of a page analyzer a
tedious and complicate work.

Page
Preprocess

Repository

Link
Extraction

Page Flow
XML

Visualization

Control
Integration

Link
Rewriting

Page
Controller

Page
Control

Flow

Link
Patterns

Web Pages

New Web
Pages

1 2

3

4

Figure 9: System Architecture

Another solution to preprocess Web pages is to use a
lightweight preprocessor instead of a heavyweight
analyzer. Since the page preprocessing aims to identify
the control statements and locate implicit links, a page
preprocessor can be developed by focusing on the
analysis of this information included in Web pages and
ignoring irrelevant elements. Generally, the denoted page
preprocessor will bypass HTML and custom tags in the
Web pages because the control statements and linkage
information contained in these objects can be easily
matched by the specific lexical patterns, which are used in
the link information extraction in the next step. But such
information cannot be directly mapped to the pre-defined
patterns if they are included in Java codes, VBScript, or
JavaScript. Therefore, the page preprocessor only need to
recognize the corresponding representation of the control
statements and implicit links inside the Java codes,
VBScript, or JavaScript, and consequently make them
pattern-ready format. Thus the generation of such a page

preprocessor is much simpler than that of a full-function
page analyzer.

The Link Information Extraction step aims to analyze
the preprocessed Web pages and to extract the embedded
link information by using the pattern-matching technique.
The lexical patterns, which are used to represent link
relations, are stored in the Link Pattern component, and
may be defined in different forms of expressions
according to the actual implementation of Web
programming language specifications. Figure 10 shows
some examples of link patterns used in a JSP-based Web
site. The Link Information Extractor, the implementation
program of the Link Information Extraction step, will
create an XML file to include the discovered link objects
for each Web page. Then it will combine these newly
generated XML file into a single XML file to represent
the page flow for the whole Web site. Such XML file
should conform to the page flow DTD document defined
in the previous section. As an extension of the Link
Information Extraction step, the page flow XML file can
be translated to an appropriate graphic language and thus
the current Web site structure can be displayed by using
the associated graph visualization tool.

//JSP Link Patterns

//JSP Forward
jspforward = <jsp:forward[\\s]+page=[\"][\\s]*[^\"]+[\"][\\s]*((>)|(/>))

//JSP Include
jspinclude = <jsp:include[\\s]+page=[\"][\\s]*[^\"]+[\"][\\s]+flush=

 [\"][\\s]*[^\"]+[\"][\\s]*((>)|(/>))

//Java Bean
javabean = <jsp:useBean[\\s]+id=[\"][\\s]*[^\"]+[\"][\\s]+scope=
 [\"][\\s]*[^\"]+[\"][\\s]+class=[\"][\\s]*[^\"]+[\"][\\s]*((>)|(/>))

//Include
include = <%@[\\s]+include[\\s]+file=[\"][\\s]*[^\"]+[\"][\\s]*%>

//Tag Lib
taglib = <jsptag:choose>.*?</jsptag:choose>

//JSP Plug-in
jspplugin = <jsp:plugin.*?</jsp:plugin>

//HTML Href
href = <a[\\s]+href=[\"][\\s]*[^\"]+[\"][\\s]*>

//HTML Form
form = <form[\\s]+method=[\"][\\s]*[^\"]+[\"][\\s]+action=[\"][\\s]*[^\"]+[\"][\\s]*>

//HTML Frame
frame = <frame[\\s]+src=[\"][\\s]*[^\"]+[\"][\\s]*>

Figure 10: JSP Link Patterns

During the Control Integration step, controller
components of the new architecture is generated, as well
as a corresponding page control flow is created according
to the control structure. This can be accomplished by
applying certain software clustering techniques based on
the analysis of the page flow identified in the Link
Information Extraction step. A server side program, such
as Java Servlet, then implements the functionalities of the
controller components. The newly created page control

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering (CSMR’04)
1534-5351/04 $ 20.00 © 2004 IEEE

flow can be stored in either a flat file in an XML format
or a database system.

The last step of the refactoring process is referred to
the rewriting of the original Web pages by conforming to
the generated control-centric architecture. This is
performed by modifying the link information included in
Web pages. As a result the destination of the link in a
source page is replaced by an associate controller
specified in the page control flow.

The above components store and share the results
produced over the refactoring process in the Repository.
In addition, the Repository contains the information
related to the file directory, the Web site, the custom tag
library, and other useful data, which are input from users
or generated by other tools. The Repository can be either
a database system or a set of collections of flat files.

8. A Case Study

The strategy and the architecture described in previous
sections have been used in an experiment to restructure a
JSP-based Web site, which was originally developed to
publish photography information to the Web. The Web
site allows the user to browse and manage photographs by
the categories or the location. It is implemented by using
a free software, called PhotoDB, which is mainly
composed of JSP pages and HTML pages [17].

<jsptag:choose>
 <jsptag:when test="${folder.isNew()}">

<input type="submit" name="store" value="Create">
 </jsptag:when>
 <jsptag:otherwise>

<input type="submit" name="store" value="Store">
<input type="submit" name="delete" value="Delete">

Thumbnails |
Browse

 </jsptag:otherwise>
</jsptag:choose>

<% if (folder.isNew()) { %>
 <input type="submit" name="store" value="Create">
<% } else { %>

<input type="submit" name="store" value="Store">
<input type="submit" name="delete" value="Delete">

Thumbnails |
Browse

<% } %>
IF Statement (Before Preprocess)

IF Statement (After Preprocess)

JSP Page Preprocess

Figure 11: JSP Page Preprocess

We developed a reengineering tool used to support the
refactoring process. Such a tool consists of four
components, JSP page preprocessor, link information
extractor, control integrator, and link rewriter, which are
designed in accordance with the system architecture
previously presented.

During the step of the JSP page preprocess, the source
code was analyzed for identifying the Java control
statement included in the JSP page. We converted these
statements to predefined JSP control tags, for instance,
using <jsptag:choose> tags to replace JSP IF-Statements
(Figure 11). Therefore, we can use a simple pattern form
to match the control statement in the link information
extraction step.

The link information extractor firstly examined
conditional and non-conditional links, where the former
was inside control blocks marked by JSP control tags, and
the latter as not. Then, it analyzed each link in order to
determine the link type and the implementation method.
Consequently, it exported results into a page flow XML
file. Moreover, by using XSLT, we transformed the page
flow file to the dotty format, which is a graph layout
representation from AT&T Lab [3].

<?xml version="1.0" ?>
<controlflow>
 <controller uri="/servlet/WebController">
 <sourcepage id="001" uri="/jsp/folder-edit.jsp">

<targetpage id="002" uri="/jsp/header.jsp"/>
<targetpage id="006" uri="/jsp/category-edit.jsp"/>
<targetpage id="008" uri="/jsp/login.jsp"/>

 </sourcepage>
 </controller>
</controlflow>

Figure 12: Page Control Flow

In the third step of the process, JSP pages need to be
clustered together when they share common attributes,
such as the structure, the connectivity, or the content.
However, the clustering technique for JSP pages is
outside the scope of this paper. Thus, we did not include
any clustering algorithms in the refectorying tool. Instead,
we grouped all JSP pages into one cluster, which was
managed by a single controller, namely, WebController.
In addition, the tool assigned each page a unique id that
was used by the controller to find the corresponding target
page. Figure 12 shows a sample control flow file for the
testing Web site.

In the last step of process, the tool reviewed the
linkage information included in the JSP page and replaced
the target page with the corresponding controller along

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering (CSMR’04)
1534-5351/04 $ 20.00 © 2004 IEEE

with a parameter to indicate the page id. An example of
these changes is illustrated in Figure 13.

Edit Locat ion

Edit Location

<%@ include file="header.jsp" %>

<jsp:include page="/servlet /WebController" flush="true">
 <jsp:param name="pageid" value="102" />
</jsp:include>

<form method="post" act ion="login.jsp">

</form>

<form method="post" act ion="/servlet/WebController">
 <input type="hidden" name="pageid" value="004">

</form>

Figure 13: Link Rewriting

In conclusion, the reengineering tool can successfully
refactore the Web site to a controller-centric one.
Specifically, from the end user’s point of view, the
resulting Web pages created by the new system are
exactly the same as the original ones in the original
environment. In addition, this case study illustrates that
the proposed framework can adapt to real life Web sites.
The whole refactoring process is algorithmic and
automated, except the JSP pages preprocessing and the
generation of JSP pages clusters, where the human
assistance is required to identify dynamic links and
possible JSP page groups. However, the proposed tool can
be further extended to support dynamic link analysis and
page clustering in the refactoring process. Finally, the
new Web site has been simplified from the original one.
The structure comparison between the new Web site and
the old one is not presented here because of the space
limitation.

9. Conclusions and Future Work

The accelerated development of Web sites and the fast
growth of associated Web technologies have resulted in a
variety of maintenance concerns. One of the major
maintenance problems is the adaptation of existing Web
sites into a well-engineered architecture. In this paper, we
have addressed this problem by applying reengineering
techniques to restructure Web sites towards a controller-
centric architecture. Specifically, we extracted the link
information from Web pages and classified into

difference categories, and consequently represented as
XML models. In addition, we proposed a system
architecture to provide a reference model for the
implementation of the refactoring task. Moreover, the
technique discussed in this paper has been evaluated with
a reengineering tool that was implemented and tested on a
JSP-based Web site.

Future extensions on the work presented in this paper
may focus on the following two directions. The first
direction is on investigating the usage of a software
clustering technique with the purpose of identifying
cohesive groups of Web pages. A particular clustering
algorithm needs to be developed in order to provide the
support for the control integration of the migrant
applications. The second direction is on developing a
technique for automatic implementation of analyzing
dynamic Web components that can only be formed at run
time, such as HTML form filling, and database querying.

Acknowledgments

We would like to thank Ying Zou of Queen’s
University, Terry Lau and Tack Tong of IBM Canada
Laboratory, Jianguo Lu of the University of Windsor, Joe
Wigglesworth of IBM CAS, John Mylopoulos of the
University of Toronto, as well as all the anonymous
reviewers for their valuable suggestions, comments, and
insights.

This work was funded by IBM Canada Ltd. through
IBM Centre for Advanced Studies and by the Natural
Sciences and Engineering Research Council of Canada.

Trademarks

Java and all Java-based trademarks are trademarks of
Sun Microsystems, Inc., in the United States, other
countries, or both. Other company, product or service
names may be trademarks or service marks of others.

References

[1] CAST, CAST JSP Analyzer, http://www.castsoft
ware.com

[2] Cornelia Boldyreff and Richard Kewish, “Reverse
Engineering to Achieve Maintainable WWW sites”,
IEEE 2001.

[3] Dotty, AT&T, http://www.research.att.com/sw/tools
/graphviz/

[4] Filippo Ricca and Paolo Tonella, “Using Clustering
to Support the Migration from Static to Dynamic
Web Pages”, in Proceedings of the 11th IEEE
International Workshop on Program
Comprehension (IWPC’03), May 2003, pp. 207-
216.

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering (CSMR’04)
1534-5351/04 $ 20.00 © 2004 IEEE

[5] Filippo Ricca, Paolo Tonella, and Ira D. Baxter,
“Web Application Transformations Based on
Rewrite Rules”, Journal Information and Software
Technology, Vol. 44(13), 2002, pp. 811-825.

[6] G.A.Di Lucca, A.R.Fasolino, F.Pace,
P.Tramontana, and U.De Carlini, “WARE: a tool
for the reverse engineering of web applications”, in
Proceedings of the Sixth European Conference on
Software Maintenance and Reengineering
(CSMR’02), 2002.

[7] G.A.Di Lucca, M.Di Penta, G.Antoniol, and
G.Casazza, “An approach for reverse engineering of
web-based applications”, IEEE 2001, pp. 231–240.

[8] HTML 4.01 Specification, W3C Recommendation.
 http://www.w3.org/TR/html4/.
[9] I.Varlamis and M.Vazirgiannis, “Web document

searching using en-hanced hyperlink semantics
based on xml”, IEEE 2001, pp. 34–43.

[10] Jim Conallen, “Modeling web applications
architecture with uml”. White paper, Rotional
Software, June 1999.

[11] Jon Kleinberg and Steve Lawrence, “The Structure
of the Web”, Journal Science, Vol. 294, November
2001, pp. 1849-1850.

[12] Keith H. Randall, Raymie Stata, Rajiv G.
Wickremesinhe, and Janet L. Wiener, “The Link
Database: Fast Access to Graphs of the Web”, in
Proceedings of the Data Compression Conference,
2002.

[13] Krishna Bharat, Andrei Broder, Monika henzinger,
puneet Kumar, and Suresh Venkatasubramanian,
“The Connectivity Server: Fast Access to Linkage
Information on the Web”, Computer networks and
ISDN Systems, Vol. 30, 1998, pp. 469-477.

[14] Michael L. Creech, “Author-oriented Link
Management”, Computer networks and ISDN
Systems, Vol. 28, 1996, pp. 1015-1025

[15] Olga De Troyer and Tom Decruyenaere,
“Conceptual modelling of web sites for end-users”,
World Wide Web, Vol. 3, 2000, pp. 27–42.

[16] Olivier Liechti, Mark J. Sifer, and Tadao Ichikawa,
“Structured graph format: Xml metadata for
describing web site structure”, Computer Networks
and ISDN Systems, Vol. 30, 1998, pp. 11–21.

[17] PhotoDB, http://www.magiccookie.com.
[18] S.Chung and Y.S.Lee, “Reverse software

engineering with uml for web site maintenance”, in
Proceedings of the 1st International Conference on
Web Information Systems Engineering, June 2001.

[19] Semantic Designs, Inc., DMS Software
Reengineering Toolkit, http://www.semdesigns.com
/Products/DMS/DMSToolkit.html

[20] Stefano Ceri, Piero Fraternali, and Aldo Bongio,
“Web modeling lan-guage (webml): a modeling
language for designing web sites”, 2000.

[21] Ying Zou, Kostas Kontogiannis, “A Framework for
Migrating Procedural Code to Object-Oriented
Platforms”, in Proceedings of the 8th IEEE Asia-
Pacific Software Engineering Conference (APSEC),
Macau, China, December 2001, pp. 408-418.

[22] Yu Ping, Jianguo Lu, Terence C. Lau, Kostas
Kontogiannis, Tack Tong, and Bo Yi, “Migration of
Legacy Web Applications to Enterprise Java
Environments – Net.Data to JSP Transformation”,
in Proceedings of CASCON 2003, October 2003,
pp. 121-135.

[23] Yu Ping, Kostas Kontogiannis, and Terence C. Lau,
“Transforming Legacy Web Applications to the
MVC Architecture”, in Proceedings of the Software
Technology and Engineering Practice (STEP 2003)
International Conference, September 2003.

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering (CSMR’04)
1534-5351/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

