
Migration to Object Oriented Platforms: A State Transformation Approach

Ying Zou, Kostas Kontogiannis
Dept. of Electrical & Computer Engineering

University of Waterloo
Waterloo, ON, N2L 3G1, Canada

{yzou, kostas}@swen.uwaterloo.ca

Abstract
Over the past years it has become evident that the benefits
of object orientation warrant the design and development
of reengineering methods that aim to migrate legacy
procedural systems to modern object oriented platforms.
However, most research efforts in this direction focus
mostly on the extraction of an object model from the
legacy procedural code without taking into account
quality requirements for the target migrant system. This
paper presents a reengineering workbench that allows for
quality requirements for the target system to be modeled
as soft-goals and software transformations to be applied
selectively towards achieving specific quality
requirements for the target system. In this context, the
migration process is denoted by a sequence of
transformations that alter the state of the system being
reengineered. A Markov model approach and the Viterbi
algorithm are used to identify the optimal sequence of
transformations that can be applied at any given state of
the migration process. For the evaluation of the proposed
workbench, a migration experiment of the gnu AVL tree
libraries is presented.

1. Introduction

Legacy systems refer to mission critical software
systems that are still in operation, but their quality and
expected operational life is constantly deteriorating due to
prolonged maintenance and technology updates. To
leverage the business value entailed in such systems, a
possible solution is to migrate selected parts of such
systems to modern platforms and designs. One such
possible solution is related to object oriented re-
engineering whereby a procedural legacy system or
component is migrated towards a modern object oriented
design. With properties, such as information hiding,
inheritance and polymorphism inherent in object oriented
designs, essential parts of such a reengineered system can
be reused or integrated with other applications using

network centric Web technologies, enterprise integration
solutions, or even third generation networks.

In this context, the software reengineering community
has already proposed a number of different methods to
migrate procedural code into object oriented platforms. In
a nutshell, the existing migration methods aim to identify
Abstract Data Types (ADT) and extract candidate classes
and methods from the procedural code. These methods
include concept analysis [12, 13], cluster analysis [10,
11], slicing [16], data flow and control flow analysis [17],
source code features [15], and informal information
analysis [14]. However, existing reengineering methods
towards object oriented platforms do not provide a
comprehensive framework for ensuring that the migrant
system will posses certain quality characteristics.

In this paper, we present a reengineering approach that
monitors and evaluates the software quality of the system
being reengineered at each stage of the migration process.
Specifically, the migration process is denoted by a
sequence of transformations that alter the state of the
system. The initial state corresponds to the original
system and the final state corresponds to the target
migrant system. Each system-state is qualified by a
feature vector that is associated with one or more target
qualities (i.e. performance, maintainability). A soft-goal
dependency graph is used to make this association of
features and software qualities explicit. In this way, the
reengineering workbench aims to provide a
comprehensive framework whereby possible
transformations can be selected, applied, and assessed
towards achieving the desired target qualities. Therefore,
the research problems to be addressed include three areas.
First, the specification of the relationships of source code
features with specific target qualities; second, the
identification of a comprehensive set of possible
transformations that can be applied to migrate a system to
an object oriented platform; and finally, the design of an
algorithmic process that can be applied to identify an
optimal sequence of transformations that can yield the
new target system given a specific legacy system. To
achieve the first research objective, we consider the use of
soft-goal graphs proposed within the context of Non-

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

Functional Requirements. Such graphs allow for
modeling the impact of specific design decisions towards
a specific target requirement [24, 26]. The leaves of such
graphs correspond to concrete system attributes that
impact all the other nodes to which they are connected. In
such graphs, nodes represent design decisions, and edges
denote positive or negative dependencies towards a
specific requirement. The second research objective is
addressed by devising a comprehensive, yet extensible list
of transformations that can be used to migrate a
procedural system to an object oriented one. We have
identified a number of such transformations and we have
presented them in related research papers [15, 25].
Finally, the third research objective is achieved by the
utilization of Markov models and the Viterbi algorithm
[9], whereby the optimal sequence of transformations
towards achieving the desired qualities is identified. The
selection of the transformations is based on quantitative
methods and a probabilistic model that aims to quantify
the magnitude by which deltas in specific source
attributes after applying a transformation may contribute
towards achieving a desired system property.

The rest of the paper is organized as follows. Section 2
introduces the software quality characteristics, soft-goal
quality dependency graphs and software metrics. Section
3 discusses the dependencies between software quality
and source code features. Section 4 describes the
proposed migration process model. Section 5 provides a
case study by applying the proposed approach to a
medium size system. Finally, section 6 concludes the
paper.

2. Quality Driven Reengineering

In this section, we further discuss the concept of
quality driven reengineering and techniques that can be
used to build the quality driven migration process as
originally presented in [24, 26]. These techniques include
the classification of software quality characteristics, soft-
goal dependency graphs, and software metrics. The
objective of quality-driven reengineering is to provide a
framework whereby the migration process is tailored
towards achieving specific requirements for the migrant
system.

2.1. Software Quality Characteristics

Software quality is defined by a set of features and
characteristics of a software product that relate to external
attributes, such as performance, and internal attributes
such as, the complexity of data structures. The external
attributes, mainly qualify the operational environment of a
system. The internal attributes relate to source code
features and can be measured by a collection of
appropriate metrics. External and internal system

attributes are cognitively relevant and interdependent. For
example, external attributes such as maintainability,
depend on internal attributes such as high cohesion and
low coupling.

The International Standard Organization for Software
Product Quality Software (ISO/IEC 9126: 1991(E)) has
identified six main external attributes [18] namely:
functionality, reliability, usability, maintainability,
portability and efficiency. More recently, another external
quality attribute that has received attention especially
because of the widespread use of the object oriented
technology, is reusability. Each of the attributes is further
subdivided in different sub-categories. For example,
maintainability is further subdivided into analyzability,
changeability, stability and testability [18]. The following
subsections discuss in more detail the soft-goal
dependency graphs as means to model the dependencies
between the software qualities and internal source code
attributes.

2.2. Soft-Goal Dependency Graphs

A soft-goal dependency graph is a graph composed of
nodes and edges. Nodes represent goals to be satisfied in
order to achieve a desired quality property. Edges
represent dependencies as to how these goals can be
satisfied. The term soft-goal refers to the property of the
graph that dependencies to its sub-goals may be also
satisfied partially for the parent goal to succeed, and that
nodes are used to capture informal concepts [23]. For
example, Figure 1 and 2 illustrate soft-goal graphs related
to reusability and maintainability. In the example graph of
Figure 1, reusability can be achieved by high modularity,
low complexity, and good documentation. Soft-goals may
depend on sub-goals according to AND/OR relations. An
AND dependency means that all sub-goals need be
satisfied for the parent goal to be satisfied. An OR
dependency means that in order for the parent goal to be
achieved any of the sub-goals must be achieved first [24].

2.3. Software Metrics

Software metrics provide measurements of certain
characteristics of a software system that are valuable to
the specification, design, and project management [19]. In
a nutshell, software metrics can be classified into three
major categories [19] namely, product metrics, process
metrics, and project metrics. Product metrics are used to
measure the internal and external characteristics of a
system. These include information flow metrics, function
point metrics, cyclomatic complexity metrics, and
information science metrics. Process and project metrics
are defined to measure the software development and
maintenance life cycle. Examples of process and project
metrics include productivity measurements, software

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

Reusability

High
Modularity Low

Complexity

Good
Documentation

Naming
Conventions

Global
Variables

High
Encapsulation

Public
attributes

Inline
Methods

Pivate (Protected)
attributes / # Total

Attributes

High Functionality Concentration

Function
Point

Accessors

Non-Accessors /
Tot Methods

Non-Accessors

High
Abstraction

Ref. To
Abstract
Classes

ratio of #
method
inherited

ratio of #
attributes
inherited

Inheritance

Program
Size

LOCClass
Complexity

Weighted
Methods
per Class

Class
Entropy

Complexity

Inheritance
Level

Direct
Parent
Class

Ref. To
Abstract
Classes

Methods

Method
Complexity

Cyclomatic
Complexity

Method
Parameter

File
Level

Class
Level

Method
Level

Comment
Sections

Size of
Comment
Characters

Comments /
Attributes + # Methods

Comment Lines Per Method
/ LOC Per Mothod

Comments

Commented Methods
/ # Total Methods

High
Cohesion

Degree of
Connecitivity
of Elements

LCC

Infomation
Flow Inside

Class

LCOM

TCC

Narrow
Interface

Public
Methods

Method
Arguments

Public Methods
/ Total Methods

Method
Return Types

Connections

Direct Attribute
Based Coupling

Direct Class
Coupling

Method
Invocations

Aggregation

Local Variable
Types

Method
Parameter

Types

Method Return
Types

Low
Coupling

Information Flow
Between Class

RFC
CBO

Polymorphic
Methods

DIC

Children

Overridden
Methods

Parents

Nesting
Level

Data
Structure
Nesting
Level

Inheritance
Depth

LCOM: Lack Of Cohesion
TCC: Tight Class Cohesion
LCC: Loose Class Cohesion
DIC: Depth of Inheritance Children
CBO: Coupling Between Object
RFC: Response For a Class
LOC: Lines Of Code

OR RelationAND Relation

Legend:

Figure 1: Reusability Soft-Goal Dependency Graph

size and effort prediction metrics, defect detection and
removal effort metrics, as well as cost estimation metrics.
In the context of our research, we are interested in
examining a number of product metrics that are related to
reusability and maintainability, and identifying a set of
source code features that impact these metrics. The basic
assumption is that the magnitude of change in these
features directly relates to qualities that the metrics are
measuring (i.e. reusability, maintainability). These
features appear as leaves in the soft-goal dependency
graphs and are discussed in more details in the following
sections.

3. Software Quality Models

The major objectives of our study are to identify
software features related to specific quality requirements,
to model their inter-dependencies, to assess their impacts
to the overall system quality, to associate specific
transformations with the modification of the selected
software features, and finally, to use such models and
transformations to guide the re-engineering process. For
this study, we focus on two quality requirements namely,
reusability and maintainability, and on transformations
that aim to migrate a procedural system to an object
oriented platform. In this context, we have built prototype
soft-goal graphs that relate to reusability and
maintainability.

3.1. Reusability Soft-Goal Dependency
Graph

Reusability aims for the design and development of
software entities such as modules and classes that can be
reused in different contexts without a significant effort in
their adaptation.

Having as an objective to obtain through reengineering
highly reusable object oriented code, we have identified a
number of metrics that relate to reusability. Consequently,
we have identified source code features that relate to these
metrics and pertain to high modularity, low complexity
and good documentation characteristics (Figure 1). These
are discussed in more detail below.

High Modularity
High Modularity has long been considered as a feature
that contributes towards reusability [8]. It has been argued
in the software re-engineering literature that a software
component is more reusable when it is highly modular,
and when it provides distinct functionality. On the other
hand, software components may need to be modified over
their operational lifetime in order to be reused in other
contexts.

We have identified the following factors that may
positively affect high modularity. This is not an
exhaustive list but it provides a basic framework to
illustrate our re-engineering approach.

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

• Encapsulation: aims to shield data and functionality
specific to a module from unauthorized access by
other client modules. This can be achieved by
eliminating the use of global variables, public
attributes, and global flows.

• Cohesion: relates to the amount of functionality
delivered by a software component. The more
detailed the functionality delivered, the higher the
cohesion level, and the lesser the modification effort
to adapt a component to a new context. Cohesion can
be measured by a set of metrics such as the
information flow metric, and the Lack Of Cohesion
in Method (LOCM) metric [4].

• Abstraction: relates to the use of abstract data types,
abstract classes, inheritance, and polymorphism. All
these design decisions aim to achieve generalization,
and consequently enhance reusability.

• Coupling: aims to minimize inter-module
dependencies, such as information flows between
modules, and redundant associations, aggregations,
method invocations, and abstract data type
references.

• Narrow Interface: relates to the complexity of
interface elements such as public methods, formal
parameters return types, as well as modified public
variables and data members. Keeping the interfaces
between modules simple, the result is to limit the
number of interactions and side effects a module can
have, and consequently to contribute to higher
understandability and modifiability.

Low Complexity
Some of the code features that may influence system
complexity are:
• Component size: relates to the lines of code (LOC) or

to the effective lines of code (ELOC). In this context,
small source code size relates to low complexity and
therefore leads to high reusability.

• Component nesting level: refers to the class
inheritance depth, and the nesting level of aggregate
data structure definitions. It has been argued in the
software engineering literature, that the deeper the
component nesting level is, the more difficult it is to
achieve reuse at higher levels of the hierarchy.

• Method complexity: is fundamental to reducing
overall program complexity and enhancing
reusability. There are two ways to quantify method
complexity; information flow and internal control
structure. Information flow relates to complexity as
measured by the number and types of formal
parameters, as well as the number of method
invocations. The more control and data flows a
method has, the harder it is to be modified and
consequently the harder it is to be reused. Similarly,
the internal control structure of a component relates

to the complexity of the control flow graph and it is
measured by the McCabe complexity and the Knot
count metric.

• Class level complexity: is specific to object oriented
systems, but it can be measured in the similar way as
it is measured at the module level in procedural
systems. In this context, low class level complexity
implies high adaptability and therefore high
reusability.

Documentation
Although specification documents, design documents, and
user manuals can facilitate reuse, for our work we mostly
focus on the source code based features. In this context,
we consider the consistent use of informal information,
and the ratio of commented lines of code to the total size
of the source code as factors that may contribute to
analyzability, modifiability, and reusability.

3.2. Maintainability Dependency Graph

Software maintenance is considered as one of the most
costly phases of the software life cycle. Over the past
years, significant efforts have been devoted to devise
techniques to minimize software maintenance costs [5].

According to the definition provided by in the
ISO/IEC 9126: 1991(E) standard, maintainability is
further divided into four qualities namely, analyzability,
changeability, stability and testability. The subsections
below discuss some of the source code features that relate
to maintainability. These features do not aim to provide a
complete list but to merely illustrate their use in the
proposed approach.

High Analyzability
High analyzability facilitates the isolation of defects or
causes of failures, and aims to identify parts of the system
that need be modified for maintenance purposes
(adaptive, corrective, perfective) [18]. Some of the
identified features that relate to high analyzability are
listed below.
• Simple code structure: high modularity and low

complexity can result from simple code structure.
High modularity makes the code structure clear and
lessens the effort to comprehend it. As it has been
mentioned above, source code complexity relates to a
number of source features such as source code size,
method level complexity, and class level complexity.
It is worth noting that polymorphism facilitates
modifiability and therefore maintainability [6].
Conversely, excessive class nesting levels lead to the
difficulty in understanding the source code and
therefore affecting negatively system maintainability
[7].

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

Maintainability

High
Analysability

High
Changeability

High Testability

Good
Documentation

Naming
Conventions

Class
Level

Method
Level

Comment
Sections

Size of
Comment
Characters

Comments /
Attributes + # Methods

Comment Lines Per Method
/ LOC Per Method

Comments

Commented Methods
/ # Total Methods

Simple Code
Structure

Line of
Code

Low
Complexity

Low
Coupling

High
Cohesion

Polymorphism

High
Modularity

Statement
Coverage

Branch
Coverage

Low Change
Impact

Polymorphic
Methods

Method
Complexity

Class
Complexity

Low
Coupling

Assocations

Aggregation

InheritanceMethod
Invocation

Global
Variable

References # Attribute
References

Method
Invocation

ADT
References

Parameter
ADT Types

Return ADT
Types

Children in
Sub-tree

Children

CBO

CBO No
Ancessor

CBO Is
Used By

CBO
Using

High Stability

High
Reuse

Percentage
of Reused

Code
Percentage
of Reused
Modules

Percentage of
Reused Modules
Without Revision

Global
Variables

High
Encapsulation

Public
attributes

Inline
Methods

Pivate (
Protected)

attributes / #
Total Attributes

Type
Change

Variable
Change

Addion
Deletion

Scope
Change

Method
Change

Implementation
Change

Return Type
Change

Signature
Change

Class
Change

Structure
Change

Low
Nesting
Level

Data
Structure
Nesting
Level

Inheritance
Depth File

Level

Nesting
Level

Data
Structure
Nesting
Level

Inheritance
Depth

CBO: Coupling Between Object
LOC: Lines Of Code
ADT: Abstract Data Type

OR Relation

AND Relation

Legend:

Figure 2: Maintainability Soft-Goal Dependency Graph

High Changeability
Changeability refers to the ease of modifying a system in
order to remove defects, enhance its functionality, or
adapt it to new platforms [18]. The following source code
attributes have been identified as features that may to
contribute towards increasing changeability.
• Low nesting level: lessens the inter class

dependencies and eases the constraints to modify
components.

• Low coupling: eases the maintenance efforts due to
limited dependencies that may occur in a system.

• Low change impact: refers to the property of ripple
effect that occurs when the state of a variable or an
object changes. The analysis of such effects can be
performed using data flow analysis, design
documents, and informal information analysis [8].
The lower the ripple effect, the higher the
maintainability. Figure 2 illustrates source code
features that may lead to low change impact.

High Stability
Stability refers to the conformance of the system with
respect to its specification in the case of unexpected
operating conditions [18]. For this work, we have
identified two factors to support stability.
• High encapsulation: aims to shield all the essential

internal characteristics of a component (i.e. data
elements, implementation details) from other external
modules. It has been argued in the software
engineering literature that a separation of the

contractual interface from the rest of the
implementation improves system stability and
therefore modifiability.

• High reuse: refers to libraries and inheritance that are
key factors to improve testability, and reduce the
number of faults over time. Consequently, reuse aims
for software that is more stable than systems
developed by the utilization of newly developed
components.

High Testability
Testability refers to the effort required for validating a
software system [18]. Among other properties, the code
that has no jump statements or no excessive use of
decision statements is inherently simpler than software
that has complex data and control flows and therefore
requires less effort to test [7].

3.3. Quality Measurement

For each source code quality modeled in a soft-goal
graph, a set of metrics and the corresponding source code
features used to compute these metrics are selected. These
features appear as leaves in the soft-goal dependency
graph. The magnitude of change due to a re-engineering
transformation provides an indicator on the magnitude of
change in the corresponding metric and therefore in the
corresponding quality modeled by the graph. The sections
below discuss in more detail such as quality driven
migration framework.

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

4. Quality Driven Software Transformations

As it has been discussed in the previous section the
soft-goal dependency graphs systematically model source
code features that are related to a software quality.
Moreover, soft-goal dependency graphs provide a
guideline on how to measure desired system qualities. We
consider that the migration process can be modeled as a
sequence of transformations that alters features identified
in the soft-goal graph. Consequently, we consider that
these transformations have an impact on the modeled
quality (i.e. reusability). The objective thus is to identify
the optimal combination of transformations that may yield
the specified quality requirements for the target migrant
system. For this work, we adopt an approach that is based
on Markov models and the Viterbi algorithm to identify
the transformations and the intermediate states that
optimize the selected features and therefore have the
highest potential of achieving the specific target qualities
and requirements.

4.1. Markov Models

Markov models are directed graphs where the
transitions are labeled by probability scores. Figure 3
illustrates such a model with four states and six
transitions. The gray nodes denote entry and exit points.
The initial state is s0 and the final state is s3. The arcs
represent the transitions from one state to another, and are
labeled by a probability value. Markov models allow for
the abstraction of a continuous and complex process into
a more computable form.

As illustrated in the Figure 3, the process can proceed
through different paths to reach the end state. These
include the paths:

S0 S1 S3,
S0 S2 S3,
S0 S1 S1 S3, or
S0 S2 S2 S3.

Each state can be further qualified by a score value.
The different scores of reaching the end state from the
initial state for our example are:

S0 S1 S3 = 0.6 × 0.6 = 0.36,
S0 S2 S3 = 0.4 × 0.4 = 0.16,
S0 S1 S1 S3 = 0.6 × 0.4 × 0.6 = 0.144, and
S0 S2 S2 S3 = 0.4 × 0.6 × 0.4 = 0.096.

In this example, the best path is the one that entails the
sequence S0 S2 S3.

S2

S1

S0 S3

0.6

0.4

0.6

0.4

0.4

0.6

Figure 3: A Markov Model Example

4.2. Migration Process Model

Conceptually, the software migration process can be
modeled as a sequence of transformations, t01, t02, …,
tij, ti,j+1, …, tkn, and a sequence of states, s0, s1,
…, si, si+1, …, sn, where tij is the transformation
applied to state si yielding state sj, with a likelihood
score pij. Each state, si, is qualified by a set of source
code features chosen from the soft-goal dependency
graphs and represents the outcome of the system at the
transformation step τ. The transformations tij aim to
transform in a stepwise fashion a legacy component
written in a procedural way to a new object oriented
platform. The hypothesis is that each transform, tij,
causes changes to state si and yields system state sj.
Based on the selected source code features and the
software qualities of the state, si and sj, as measured by
the corresponding metrics, we aim to quantify that the
transformation, tij can achieve the quality goals with
likelihood pij. Therefore, each of the transformations,
tij is associated with a likelihood score, pij. The
likelihood scores for all states can be represented by a
matrix, as shown in the equation (1).

=

nnnn

n

n

ppp

ppp

ppp

A

...

............

...

...

10

11110

00100

(1)

The following subsections discuss the quality
measurements and the calculation of the optimal path
using the Viterbi algorithm.

4.3. Transition Scores

Before we discuss the computation of the likelihood
scores associated with a transition, we define the
following transformation rules.

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

Rule 1: Every transformation tij causes at least one
change in a selected code feature that quantifies
state si and results in state sj.

Rule 2: The change is quantified by the identified source
code features modeled as leaves of the soft-goal
graphs as discussed in Section 3.

Rule 3: Two states, si and sj must be distinct with
respect to the identified source code features, as
shown Figures 1 and 2. The examples of the
selected source code features are illustrated in
Figure 4.

The objective is to identify the optimal sequence of
such transformations that bring the system from its initial
procedural state s0 to its final object oriented state sn,. in
a way that the source code features that affect the desired
qualities are optimized.

For the state si, the values of these features can be
represented as a vector, <a1, a2, …, ak, …, am>,
where ak quantifies a source code feature in a numeric
format. As stated in Rule 1, a transformation makes
changes to states. A transformation may cause the value
ak to increase, decrease, or keep it the same. As a
consequence, the change is quantified by a delta on the
corresponding feature values. The more positive the
impact is, the higher the likelihood that the transformation
can contribute towards the desired quantity objectives.
The following formula (2) is proposed to evaluate the
likelihood p(G)ij, that the transformation tij improves
the quality characteristics of the system with respect to
the quality goal G.

∑
∑ ∑−

=
Attribute

ImpactNegativeImpactPositve
p(G)ij

(2)

As identified in Figure 1, the high abstraction is
examined by the count of the following features.

a1: number of references to abstract classes,
a2: ratio of inherited methods,
a3: depth of inherited children,
a4: number of children,
a5: number of overridden methods,
a6: number of parents, and
a7: ratio of inherited attributes.

For example if si is denoted by the attribute vector vi =
<3, 0.4, 1, 3, 2, 1, 0.2> and after tij, sj is denoted by the
attribute vector vj = <4, 0.5, 1, 2, 3, 1, 0.2> the p(G)ij is
equal to 2/7 since 3 out of 7 features have been increased
positively for the specific quality but 1 out of 7 has been
decreased.

In some cases that the negative impacts are larger than
positive changes, we take the logarithm of the result.
Therefore, the formula (2) is modified as following.

∑

∑ ∑−

∑

∑ ∑−

+

=
Attribute

ImpactNegativeImpactPositve

Attribute

ImpactNegativeImpactPositve

(G)ij

1

p

e

e
(3)

It is also important to note that in many cases a goal is
achieved if its sub-goals are also achieved. To compute
the likelihood score of a goal as a composition of
likelihood scores of its sub-goals we propose the
following formula (4). In addition, some sub-goals are
more important than others and in this case goal weights
are determined by the users, and are added as a coefficient
ck.

∑
+

∑

=
=

=

R

k
ijkk

R

k
ijkk

pc

pc

ij

e

e
p

1
)(

1
)(

1

(4)

where R is the total number of the goals, ck is the
coefficient for each goal(k) and p(k)ij, is the likelihood for
the transformation tij to achieve goal(k).

The above formula (4) can be applied recursively at
different levels of the soft-goal dependency graphs. In
addition, using the above formula, we can calculate the
overall likelihood to achieve more than one quality
objective. It is worth noting that the likelihood p(G)ij,
only depends upon the immediately preceding states si,
and not upon other previous states.

4.4. Optimal Transformation Path

Based on the Markov Model approach, the likelihood
of different transformation paths can be calculated. To get
the path with the highest likelihood that reaches desired
goals, the Viterbi algorithm [9] is used. The algorithm is
based on dynamic programming and computes the
optimal path among all the possible ones. In the Viterbi

algorithm,)(τδ j is defined as the highest likelihood

score at step τ along a single path that ends in state sj.
The score can be recursively calculated with the formula
(5) given below:

))1((max)(
1

iji
Nj

j p⋅−=
≤≤

τδτδ (5)

The cumulative result of each step is stored in the

vector)(τϕ j . This vector)(τϕ j , defined below in (6)

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

and is simply a pointer to the best preceding state si.
More details on the applications of the Markov Models
and the Viterbi algorithm can be found in [9].

))1((maxarg)(
1

ijj
Nj

j p⋅−=
≤≤

τδτϕ (6)

5. Experiments

To investigate the correctness of such a quality driven
re-engineering framework, we apply it for the migration
of the gnu AVL tree library from its original procedural
implementation to an object oriented one. The gnu AVL
library is a medium size public domain system composed
of 4KLOC of C code.

The experiment applies the transformations proposed
in [25]. These include:
• The transformation of global variables to classes,
• The transformation of aggregate types appearing in

formal parameter lists to classes,
• The transformation of functions to methods,
• The attachment of methods that could be attached to

more than one classes according to an evidence
model presented in [25] and

• The transformation of the initial object model to a
new one that uses polymorphism and inheritance.

5.1. Quality Goals and Metric Collection

For this case study, the target requirements for the new
system were to achieve high encapsulation, high
abstraction, as well as high cohesion and low coupling.
These quality attributes can be considered as sub-goals,
and consequently achieve higher-level goals such as,
reusability and maintainability. For each of the sub-goals,
a set of metrics was considered, according to the soft-goal
dependency graphs shown in Figure 1 and 2. The attribute
vectors for these sub-goals are illustrated in Figure 4.

5.2. Transformations and State Evolutions

Briefly, the objectification process can be separated
into three sets of transformations. The first transformation
set aims to achieve high encapsulation where potential
classes are identified from the procedural code. The
potential classes and their corresponding data members
are generated from the data members of user defined
types and aggregate types which refer either to global
variables, or variables appearing in formal parameter lists,
or to local variables within the scope of a function.
Similarly, methods are attached to classes based on an
evidence model that considers parameter types, return
types and global variable uses [25]. The initial result of
the identified classes is illustrated in Figure 5.

Encapsulation <NPA, NGV, PAR>, where
NPA: Number of Public Attribute NGV: Number of Global Variable

PAR: Private Attributes Ratio

Abstraction <MIR, NPM, DIC, NC, NOM, NP, AIR>, where
MIR: Method Inherited Ratio NPM: Number of Polymorphic Method
DIC: Depth of Inherited Children NC: Number of Children
NOM: Number of Overriden Methods NP: Number of Parents

AIR: Attribute Inherited Ratio

Cohesion <IFIC>, where
IFIC: Information Flow Inside Class

Coupling <CBO, IFBC, DCC, NMI, NLVT, NMPT, NMRT>, where
CBO: Coupling between Objects IFBC: Information Flow Between Classes
DCC: Direct Class Coupling (count of the different number of classes that a
class is directly related by attribute declarations and parameters in methods.)
NMI: Number of Method Invocations in other classes
NLVT: Number of Local Variable Types from other classes
NMPT: Number of Method Parameter Types from other classes
NMRT: Number of Method Return Types from other classes.

Figure 4: Software Goals and Metric Sets

Figure 5: System State with Initial Classes

Specifically, Figure 5 illustrates the initial breakdown
of the system in three classes: SampleRec,
ubi_btNode and ubi_btRoot. The right most
column lists the potential methods that can be attached to
more than one class. The second set of transformations
aims to attach methods to classes. Specifically, when a
transformation can attach a method to different classes;
we say that the methods are in conflict. For example,
swapNode is one of the methods that are in conflict, and
can be assigned to either ubi_btNode or
ubi_btNode. Thus, two states can be generated from
the application of the specific transformation. In this case,
the choice of the states is based the probability that the
resulting state contributes more towards achieving the
desired quality characteristics for the migrant system (i.e.

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

Assigned
Class

ubi_btNode ubi_btRoot

CBO -3 -15
IFBC 0 -9
DCC 0 0
NMI 0 -3
NLVT 0 -3
NMPT 0 -9
NMRT 0 0

p(coupling)ij
(Formula 2)

-0.14285 -0.71429

p(coupling)ij
(Formula 3)

0.4643 0.3286

Table 1: Coupling measurement for resolving the
attachment of method swapNode to a class

Assigned
Class

ubi_btNode ubi_btRoot

IFIC +9 0
p(cohesion)ij

(Formula 2)
1 0

p(cohesion)ij
(Formula 3)

0.7311 0.5

Table 2: Cohesion measurement for resolving the
attachment of method swapNode to a class

Assigned
Class

ubi_btNode ubi_btRoot

pij
(Formula 4)

0.6451 0.6021

Table 3: Accumulative result for resolving the
attachment of method swapNode to a class

high cohesion for a class and low coupling between
classes). Table 1 illustrates the changes of the features
related to coupling, if the method swapNode is assigned
to either class. The values in the table cells from the row 2
to row 8 illustrate the deltas of the source code features
between two consecutive states. According to formulas 2
and 3, the cases of p(coupling)ij are calculated,
respectively. Similarly, table 2 illustrates the impact on
cohesion. Finally by utilizing formula (4) the
accumulative result of the impact on both goals is
calculated, and is shown in Table 3. Thus, the swapNode
is assigned to ubi_btNode, because it has higher
likelihood to achieve the desired software goals. The rest
of the conflicting methods can be resolved in the same
way. Figure 6 illustrates the state where all classes have
been identified and no methods are in conflict.

In the final third set of transformations, inheritance
and polymorphic methods are identified applying the

Figure 6: System State without Methods in Conflicts

Figure 7: Final System State

proposed framework in the same way as above. The final
state of the system is illustrated in Figure 7 as a UML
diagram. In this transformation set, the abstraction goal is
considered.

As a summary, after the application of each
transformation, the impact on the quality goals is
measured. At each step of the transformation process, the
states with the highest likelihood towards achieving the
quality objectives are selected to apply the next
transformation. Although this case study presents only
transformations related to achieving high abstraction, high
encapsulation, high cohesion, and low coupling,
hierarchical models can be considered as well. In such
hierarchical models, each system state can be further
modeled as a collection of sub-states and sub-
transformations.

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

6. Conclusion

Quality is a critical issue in the process of software
migration. The assumption for this work is that software
migration is achieved by applying a sequence of
transformations. Each transformation can move the
system from one state into another state. The complete
process starts with the original system to be reengineered,
denoted by an initial state, and ends in a new system,
denoted by a final state. Each transformation corresponds
to a state transition, and is quantified by the likelihood
that the resulting state is closer towards achieving the
desired final quality goals. Specifically, in this paper, we
propose a re-engineering framework for procedural to
object oriented platforms that models the dependencies
between source code features and specific software
qualities, and a quantitative method that indicates the
likelihood for each transformation achieving specific
quality goals. By the use of the Markov models and the
Viterbi algorithm, the process aims to identify the optimal
set of transformations that can be applied in order to yield
a target migrant system that possesses specific desired
quality characteristics.

Currently, the proposed framework is applied to
migrate systems written in C to functionally similar
systems that comply with an object oriented design and
implemented in C++. On-going work is focusing on
generating soft-goal graphs for portability and testability
and applying the framework for the migration of larger
than 4KOC systems.

References

[1] Aniello Cimitile, et.al, “Identifying Objects In Legacy
Systesm Using Design Metrics”, The Journal of Systems
and Software 44 (1999), Elsevier.

[2] L.H. Etzkorn, W.E. Hughes Jr., and C.G. Davis,
“Automated reusability quality analysis of OO legacy
software”, Information and Software Technology 43
(2001), Elsevier.

[3] Sen-Tarng Lai and Chien-Chiao Yang, “A Software
Metric Combination Model for Software Reuse”.

[4] Shyam R. chidamber and Chris F. Kemerer, “A Metrics
Suite for Object Oriented Design”, IEEE Transactions on
Software Engineering, Vol 20, No. 6, June 1994.

[5] M. Ajmal Chaumun, et. al, “Design Peroperies and Object
Oriented Software Changeability”.

[6] David P. Tegarden, and Steven D. Sheetz, “Effectiveness
of Traditional Software Metrics for Object Oriented
Systems”, IEEE 1992.

[7] Sen-Tarng Lai, Chien-Chiao Yang, “A Software Metric
Combinatin Model for Software Reuse”.

[8] Lionel C. Briand, Christian Bunse, and John W. Daly, “ A
Controlled Experiment for Evaluating Quality
Guidenlines on the Maintainability of Object Oriented
Designs”, IEEE Transactions on Software Engineering,
Vol 27, No. 6, June 2001.

[9] Paul van Alphen & Dick R. van Bergem, “Markov
Models and Their Application in Speech Recognition”.

[10] H. Muller, M. Orgun, S. Tilley, and J.Uhl, A reverse
Engineering Approach To Subsystem Structure
Identification, In Journal of Software Maintenance:
Research and Practive, 5(4): 181-204, 1993.

[11] S. Mancoridis, B.S. Mitchell, Y. Chen, and E. R. Gansner,
Bunch: a clustering tool for the recovery and maintenance
of software system structures, In Proc. Of International
Conference on Software Engineering, 1999.

[12] C. Lindig and G. Snelting, “Assessing Modular Structure
of Legacy Code Based on Mathematical Concept
Analysis”, In Proc. Of International Conference on
Software Engineering, 1997.

[13] H. A. Sahraoui, W. Melo, H. Lounis, F. Dumont,
“Applying Concept Formation Methods To Object
Identification In Procedural Code”, In Proc. Of 12th

Conference on Auotmated Software Engineering, 1997.
[14] Letha H. Etzkorn, Carl G. Davis, “Automatically

Identifying Reusable OO Legacy Code”, Computer, IEEE,
October, 1997.

[15] K. Kontogiannis, P. Patil, “Evidence Driven Object
Identification in Procedural Systems’’. STEP’99,
September 1999, pp. 12-21.

[16] Filippo Lanubile, and Giuseppe Visaggio, “Extracting
Reusable Functions by Flow Graph-Based Program
Slicing”, IEEE Transactions on Software Engineering,
Vol. 23, No. 4, April, 1997.

[17] De Lucia, G.A. Di Lucca, A.R. Fasolino, P. Guerra, S.
Petruzzelli, “Migrating Legacy Systems toward Object
Oriented Platforms”, 1997, IEEE.

[18] International Standard for Software Product Quality
Software (ISO/IEC 9126: 1991).

[19] Stephen H. Han, “Metrics and Models in Software Quality
Engineering”, Addison-Wesley, 1995.

[20] S.R. Chidamber, C.F. Kemerer, “A Metrics Suite for
Object oriented Design”, IEEE Transaction, Software
Engineering, 1994.

[21] W. Li, and S. Henry, “Object Oriented Metrics Which
Predict Maintainability”, Journal of Systems Software,
1993.

[22] M. Lorenz and J. Kidd, “Object-Oriented Software
Metrics”, PTR Prentice-Hall, Englewood Ciffs, New
Jersey, 1994.

[23] Lionel Briand, et. al, “Characterizing and Accessing a
Large-Scale Software Maintenance Organization”,
http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/C
S-TR-3354.pdf

[24] Ladan Tahvildari, Kostas Kontogiannis, John Mylopoulos,
“Requirements-Driven Software Reengineering", 8th
IEEE Working Conference on Reverse Engineering,
October 2001.

[25] Ying Zou, Kostas Kontogiannis, “A Framework for
Migrating Procedural Code to Object Oriented Platform”,
in the proceedings of 8th Asia-Pacific Software
Engineering Conference, 2001.

[26] Ladan Tahvildari, Kostas Kontogiannis, “On the role of
design patterns in quality-driven re-engineering”, In
Proceedings of the 6th IEEE European Conference on
Software Maintenance and Re-engineering, 2002.

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

