
Advanced clone-analysis to support object-oriented system
refact oring

Magdalena Balazinska’ Ettore Merlo’~ Michel Dagenais’ , Bruno Lagiie’ and Kostas Kontogiannis3
Department of Electrical a.nd Computer Engineering, &ole Polytechnique de 3lontrial:

P.O. Box 6079: Downtown Station, Montreal: Quebec, H3C 3A7, Canada
e-mail: magda@casi.pol2rintl.ca {ettore.merlo,michel.dagenais)@polymtl.ca

2Bell Canada, Quality Engineering and Research Group
1050 Beaver Hall, 2nd floor, Montreal; Quebec, H2Z lS4, Canada

Wa,terloo: Ontario N2L 3G1, Canada
Department of Electrical and Computer Engineering, University of Vl’aterloo

ABSTRACT
Manual source code copy and modification is often used
by programniers as an easy means for functionality
reuse. Nevertheless, such practice produces duplicatcd
pieces of code or clones whose consistent maintenance
might be difficult to achieve. It also creates implicit
links between classes sharing a functionality. Cloncs
are therefore good candidates for system redesign.

This paper prese~its a novel approach for coniputer-
aided clone-based object-oriented system refactoring.
The approach is based on an ad\lanced clone ana.lysis
which focuses on the extraction of clone differences and
their interpretation in terms of programming language
entities. It, also focuses on the study of contextual dc-
pendencies of cloned methods. The clone analysis has
been a.pplied to JDK 1.1.5, a large scale system of 150
KLOC.

Keywords
Clone analysis, refactoring, redesign, maintenance

1 In t roduct ion
Source code reuse in object,-oriented systerns is made
possible through different mechanisms such as inheri-
ta.nce, shared libraries, object composition, and so on.
Nevertheless programmers often need to reuse compo-
nents which haven’t been designed for this purpose.
This may happen when software systems go through
the expansion phase and new requirements have to be
periodically sat,isfied [SI.

IVhen such a situation arises, ideally, the modules in-
volved should be restructured and the component prop-
erly reused. Even bett,er: t,lie whole system could be re-
organized, classes could be refactored into general coni-
ponents and their interfaces rationalized. Such a process
is known as consolidation and allows a system to become
more flexible and easier to expand [8]. Often, the pro-

cess used instead is a manual ”copy-and-paste” . This
other approach produces what we call cloned pieces of
code, or clones which will undergo independent succes-
sive maintemncc [12].

The goal of our research is to investigate the use of
clone information as a basis for object-oriented system
refactoring. Clones are good candidates for redesign as
they rcpresent duplicated code whose consist,ent main-
tenance might be difficult to achieve. They also form
implicit links between components that share a func-
tionality. Detection of clones in large software systems
has been investiga.ted in the past by [2, 7; 9, 10; 131
while clone elimination or reduction has been investi-
gated by (3 , 4; 51.

In [3] we have investigated the problem of classifying
clones according to their types and according to the
opportunities of further reengineering actions. In [4]
an automatic approach which allows the factorization
of common pa.rts of clones, hence removing duplications
while preserving the unique behavior of each clone, ha.s
been proposed. Such an approach was limited to those
reengineering actions which ended up in a “strategy-
based’‘ design pattern.

The a.pproaches presented in [3 , 11 could be advanta-
geously enhanced by targeted user interactions. Such in-
teract,ions could alleviate the complexity of analysis nec-
essary in an a.utomatic approach and would give more
flexibility to the user. Furthermore additional “design
patterns“ (more than “strategy” only) and reengineer-
ing actions should be investigated.

In this paper, we therefore propose a new approach ori-
ent.ed towards computer-assisted clone refactoring. The
main goal is to significantly support refactoring deci-
sions by providing detailed and relevant information on
clones but lett,ing the programmer decide on the ac-
tual refactoring to be performed, i.e., on the choice of
candidates for refactoring, on the appropriate type of re-
design and on the actual redesign actions. Those actions
could then be performed \vith specialized t>ools such as
the Refactoring Browser [6]. Such a. computer-aided
refactoring must be based on a powerful clone analy-
sis. Also, a new redesign scheme based on “template“

98
1095-1350/00 $10.00 0 2000 IEEE

design-pattern is presented and discussed.

hlost clone analysis approaches [2; 7, 9: 121 provide the
user only with information on the amount, location and
size of clones in a system. Some approaches [5, 10: 131
also provide a certain information on the degree of sim-
ilarity of clones. Those information are nevertheless in-
sufficient, to support refactoring activities as they don’t
provide any insight on possible refactoring a.ctions. To
use clones as a basis for object-oriented system redesign,
programmers need to know the exact differences be-
tween cloned methods and those differences must be
meaningful in terms of corresponding programming lan-
guage entities. Indeed, differences determine refactoring
actions. Programmers also need to know the coupling
between cloned methods and their contexts of use as
such coupling will determine the overhead of transfer-
ring code fragments betwcen classes.

This paper proposes an innovative and more adva.nced
clone analysis which can be helpful in object-oriented
system refact,oring. This analysis det,ermines detailed
information on differences betwcen cloned methods and
their contextual dependencies. Sections 2 and 3 present
t,liose t,wo aspects of the advance clone analysis; Sec-
tion 2 prcsents the a.nalysis of differences between
clones, whereas Section 3 details the a.nalysis of context
dependent operations found in cloned methods. Sec-
tion 4 presents the results of the application of those
analyses to JDK 1.1.5. Finally, Section 5 discusses the
use of the information provided by the advance clone
anal?;sis for object-oriented system refactoring. Sec-
tion 6 presents related work on clones.

2 Difference analysis
During clone based refactoring, programmers need to
know t,he differences between clones, and those differ-
ences must be available to then1 i n a readily understarid-
able format. This knowledge will determine the exact
refactoring actions tha,t will have to be performed.

This section describes the difference analysis aspect of
the novel clone analysis. The algorithm that allows the
extraction of differences is first described, followed by
the approach that allows the interpretation of those dif-
ferences as programming language entities. The gener-
alization of the approach to more than two code frag-
ments is t,hen presented. Finally: the analysis of kinds
of differences and the computation of more synthesized
difference information are presented and their use for
refactoring is emphasized.

Matching code fragments
The extraction of clone differences is performed using
the algorithm briefly presented in this section. For a
detailed discussion of the algorithni please refer to [3].

The comparison algorithni used is based on Kontogian-
nis et al.’s Dynamic Pattern XIatching algorithm (111 in

1 function match(c: Grid; \-l,v2: Sequence) => (cost: Integer)
2
3
4

5

for (i t 1 to size(v1))
for (j t 1 t o size(v2))

tempcost t computeCost (v l [i] :v2b])
c [i - l][j].cost + 1,

c[i]lj].cost t inin c [i] [j - l].cost + 1: { c(i - 1] [j - I].cost + tempcost

(4 - 11[31;
c[il[j - 11,
c[i - l][j - I] depending on

6 c[i,j] .previous t

the minimal cost
T return c[size(vl)][size(v2)]

Figure 1: Core method of the mat,ching algorithm.

which a fundamental change has been performed: rather
than aligning syntactically structured entities like state-
ments as is often suggested in the literature [5, 111, the
new algorithm aligns syntactically unstructured entities
like tokens. The comparison is hence performed at the
lexical level with a reasonable complexity of O(n t m)
(where II and m are the sizes of the code fragments)
that could even he decreasad with a beam search opti-
mization. Moreover, the algorithm provides a very fine
grained matzch. The optimal match or distance between
two code fragments is defined as the miiiirnal amount of
tokens that have to be inserted or deleted to transform
one code fragment into the other.

The dynamic matching is hence performed on vectors
corresponding to sequences of tokens forming the code
fragments compared. A cost grid is used to compute
and hold the detailed results of the match.

The core of the algorithm which is defined in function
match is presented in Figure 1. Function match iter-
ates over all the elements of the grid and cornput*es the
dista,nce for consecutive sequences using previously com-
puted distances between shorter sequences as well as the
cost of matching the current tokens. This la.tter cost is
determined by computecost.

Function computeCost compares two tokens by testing
for equality of types and values. Two nodes match per-
fectly if they belong to the same type, except if they‘re
literals or identifiers. Then they must also ha.ve the
same value. The function ret,urns 0 if the tokens are
equal and can be matched. Otherwise, it returns 2 (the
equivalent of the cost of removing one token and then
adding the other instead).

The result is then represented as a set of sequences of
tokens that correspond, or that have to be inserted or
delcted (corisecutive insertions and deletions correspond

99

to substitutions):

Afatch = < (siv~,s~v?,actionl); (s2v~:s?v2,action2):
..., (S k V l , SL.7.JP, actionA.) >

(1)

Where, V i E [l . .k]:

e s,vl E v l and s lv l - S ~ V I - ... - S ~ V] = v l
where - is the concatena.tion operator.

e s i v ~ E v2 and s l v 2 - s ~ v p - ... - s ~ v z = v2

a,ctioti~ E { m'atch, addition, deletion, substitution}

Projec t ing differences
Once the optimal match has been obtained, the cor-
respondence between the Sequences of tokens and the
entities of the programming language has to be made.
It will provide programmers with information at the ap-
propriate level of abstraction to serve as a basis for refac-
toring. To achieve the correspondence, thc source code
must first be represented in a higher level of abstrac-
tion. We have chosen the program's annotated abstract
syntax tree (AST) as a program representation scheme
as it can: among others, be easily analyzed to extract
programming language entities corresponding to differ-
ences found during the comparison.

Once the source code has been represented in this higher
level of abstraction, the tokens forming the differences
are linked to the corresponding AST elements. Each
token corresponds to exactly one node in the AST and is
therefore linked to that node. %'hen consecutive tokens
belong to a single difference, the first ancestor of the
nodes corresponding to those tokens is found.

This approach of first aligning tokens and then project-
ing them onto the AST rather than directly comparing
ASTs, as is often suggested in the literature 15, 111 al-
lows to get a very detailed match with a low computa-
tion complexity.

From the AST, the corresponding progra.mming lan-
guage entities are determined. The set of differences
is finally obtained a.s:

Da f f erences = P(Treesl t Trees?) (2)

Where P (s) denotes the power set of s whereas Trees]
and Trees? are the sets of all subtrees of the ASTs of
the code fragments.

Compar ing more t h a n two code f ragments
The approach described above gives the set, of differ-
ences when exactly two code fragments are compared.
Often, clusters of clones contain more than two cloned
methods. To determine the exact set of differences be-
tween more than two code fragments, the following a.p-
proach is taken.

Let Clones = {C1,C?, ... ;C,} be the set of clones
in the cluster.

C1 is arbitrarily chosen as the reference code frag-
ment.

The optimal matches Alatcli(C1~ Ci) are computed
for all the values of i in [2..n).

For each Match(C1, Ci), the sequences s j v l of t,he
reference vector for which actionj # match, i.e.:
sequences corresponding to differences (insertions,
delct,ions or substitutions) are propagated to all the
other matches defined by: (Afa tch(C1~ Cnz) 1 Vm E
(2 . .71] with m # i } .

The propagation of differences may produce adja-
cent, sequences corresponding to differences. Such
sequences are merged.

After the propagation of the differences, sequences
s j v l of the reference vector become identical in all
Match(C1 Ci). The union of all differences is then
straightforward.

The differences found in each vector of t,okens are
then projected onto the corresponding ASTs.

The set, of differences is finally obtained as:

Di f f = P(Trees1 * Trees? t ... t Trees,,) (3)

Where Treesi denotes the set of all subtrees of the AST
of Ci. In the following sections, for each difference d :
D i f f , d[i] will refer to the i th. subtree involved in that
difference.

Discr imina t ing k inds of differences
Once code fragments ha.ve been matched and their dif-
ferences have been projected onto the AST, a very de-
ta.iled and useful knowledge of clones ha.s been gained.
Textual differences between code fragments have been
interpreted programming language entities meaning-
ful to the programmer.

Providing the programmer with the set of differences
and their exact meaning is an already very useful infor-
mation, especially in latter phases of refactoring when
specific reengineering actions are being performed. The
difference analvsis moves the interpretation one step
further, though. It provides difference information in
a more synthesized manner, helpful in less advanced
phases of refactoring. The differences are grouped,
based on their role in refactoring.

From previous research on a.utomatic refactoring (3; 41:
we ha.ve determined that all differences don't affect,
rcfactoring in the same manner. More precisely: the
distinguished between the following kinds of differences
is useful:

100

http://SL.7.JP

1 function groupDiffs()
2
2 V d E Diff
3 Type = choseSet(d)
4 Type = Type U {d}
5

R\I = N = M = T E = TypeDiffs = Other = 0

Other = Diff \ (RV U N U hl U TE U TypeDiffs)

Figure 2: Difference information synthesis algorithm.

Superficial differences such as names of parameters
or names of local variables don't affect the behavior
of methods nor their outputs. They're therefore
discarded at this phase of the analysis.

Differences affecting the signature of methods: re-
turn value, modifiers (static; public; and so on),
names or list of thrown exceptions have to be
carefully treated during redesign even though they
don't directly affect common code fragments.

Differences affecting the types of parameters or lo-
cal variables or types are explicitly manipulated in
typecasts or instanceof expressions make the trans-
formation of clones into a general component more
complex, especially in languages such as Java, that
don't allow parameterizable types.

All the other differences.

The discrimination between kinds of differences gives
a. more synthesized perspective as it groups differences
along their role in refactoring. Programmers are then
a.ble to make informed decisions based on distributions
of kinds of differences. Those decisions might include
the choice of candida.tes for particular refactoring ap-
proaches or the evalua.tion of the effort involved in the
refactoring of particular clones.

The discrimination is performed with the algorithm pre-
sented in figure 2 where RV,N:Af and T E are de-
fined as the sets of differences affecting the signature
of methods (return value. name, modifiers, thrown ex-
ceptions). Those sets will contain at most one element,
each. TypeDi f f s is the set of differences affecting types
and Other = Di f f \ (Rl,'Un'UA,(TUTEUTypeDi f fs) is
the set of all the other differences. A4ethod choseset re-
turns the set, of differences (RV, N , Ad, T E , TypeDi f fs
or Other) corresponding to the type of a difference re-
ceived in parameter.

Additional information for refactoring
After analyzing the differences, several a.dditiona1 infor-
mation are computed for each cluster. of clones. Those
information provide a broa.der perspective that ca.n be
used to assess and compare cloning throughout the sys-
tem. Let cloneSize : Clones t ,U be the size of ea.ch

cloned method. .41so cloneSizei = cloneSize(Ci). The
additional information can then be expressed as:

0 The amount of differences between code fragments
given by:

nbDi f ferences = card(Di f f) (4)

0 Quantitative aspects of differences: the size of each
code fragment involved in a. difference, t,he min-
imum, maximum and average code fragments in-
volved in a difference. Those sizes are expressed
both in lines of code and for a finer measure, in
to kens:

size : 4 2 1 -+ i\/ V i E [I..n] (5)

(6)

(7)

ininsize = min(Vd : Di f f V i E [l..n] s ize(d[i]))

niaxsize = maz(Vd : D i f f V i E [l..n] s ize(d[i]))

0 The total amount of lines of code or tokens involved
in differences for each cloned method:

V i E [l..n] totalDi f fi = (size(d[i])) (10)
V d : D i f f

0 The average proportion of differences compared to
the size of the code fragments:

(11)
totalDi f f,
cl onesize,

V i E [l..n,] p D i f f , =

0 The quantity of diffcrences that affect types:

iabTypeDi f f s = card(TypeDi f fs) (13)

0 The quantity of ordinary differences:

nbOtherDif fs = card(0ther) (14)

0 The proportion of differences affecting types:

n,bTypeDi f f s

nbTypeDi f f s + nbOtherDi f f s
pTypeDi f f s =

Those information will serve in the evaluation of the
cloning plienomenon throughout the system and t,he
comparison of clusters of clones from a refactoring per-
spectiye. Indeed! they will show the probable effort

10 1

needed in refactoring. The use of that information will
be discussed in more detail in section 5 .

The difference analysis, t,ha.t has been presented in this
section, provides det,ailed information on differences be-
tween cloned methods. The meaning of each syntac-
tic difference is expressed in terms of a programming
language entity, easily interpretable by a programmer.
Such detailed information may facilitate refactoring de-
cisions at the detailed level of the cluster. To gain a
broa.der perspect,ive, difference information is synthe-
sized in two manners. First, differences are grouped
according to their impact on possible redesigns. Seven
t,ypes of differenccs are distinguished in the analysis but,
other categories could also be developed. Second, quan-
titative information on the distributions of differences in
clones are computed. Such information allow the anal-
ysis of the cloning phenomenon throughout the system
and may serve in the selection of candidates for refac-
toring as well as refactoring approaches to apply.

3 Context analysis
Some refactoring approaches involve the transfer of code
fragments between classes thus affecting contextual de-
pendencies. We define the latter as all uses of identifiers
(methods or varia.bles) that are neither static nor locally
defined in a code fragment and depend therefore on the
class containing the method.

In this section, the analysis of contextua.1 dependencies
of clones is presented. More precisely, in this second
part of the advanced clone analysis: two aspects of con-
text dependent operations are analyzed. First, the list
of context dependent operations is computed separately
for each clone. This result gives the list and exact num-
ber of contextual dependencies in all clones belonging
to a cluster.

The contextual dependencies present in the common
parts of clones (defined as those not belonging to differ-
ences) are then extracted. This measure is interesting
as it 1na.y influence the choice of refactoring a.pproach by
determining the differences in the costs of transferring
common code, particular code (the code of the differ-
ences) or all the code, between classes. The measure is
a conservative estimate of the common context depen-
dencies. Some common source code might indeed be
mcrged with a proximate difference during refactoring
and hence diminish the amount of common dependen-
cies.

In this analysis, the list of context, dependent operations
is computed for each cloned method as follows:

ContextDep = {V i E [l..n] V i d E {Calls U Used} 1
ad $! Locals(C,) A (3cl : Classes I cl = DefiningClass(C,)
A id E {.4ttributes(cZ) U DefinedAlethods(cl)) a

C, + i d }

Where :

a Cla.sses, Methods and I-ariables are respectively
defined as the sets of all classes, methods and vari-
ables defined in the system.

a De f ininyCla.ss : Methods -+ Classes associates
to each method its defining class.

a Locals : Methods --i P(l'ariab1es) a.ssociates to
each method its locally defined variables.

a DefinedMethods : Classes -+ P(A4ethods) is
defined as the set of methods defined in a class.

a .Attributes : Classes 4 p(\iariables) is defined
as the set of attributes of a class.

a Calls : Alethods -+ P(Afethods) is defined as the
set of methods called from within the body of a
method.

a Used : Methods -+ P(L,.ariables) is defined as the
set of variables used within the body of a method.

a ContextDep : Methods --+ P(Ca1ls U Used) as-
sociates to each method a set of identifiers corre-
sponding to context dependent operations.

a ConiContextDep : Clon,es -+ 'P(Calls U Used)
associates to each cluster of clones a set of iden-
tifiers corresponding to context dependent opera-
tions common to all clones in the cluster.

The list of context dependent operations common to all
clones in a cluster is computed with:

ComContextDep = {V i E [l..n] Vid E ContextDep(Ci) I
($d : D i f f I 32 E \l..n] I id E d [i]) a Clones --+ i d }

(17)

This second aspect of the analysis provides a very
novel perspective on clones. It, determines the coupling
strength between shared functionalities and their con-
tests of use. If the coupling is low (few context depen-
dent operations exist) the transformation of the func-
tionality into a reusable component may be possible
without significant overhead. If the coupling is high, but

102

resides in the differences between clones, then encapsu-
lating those differences and decoupling them from the
shared code might be the appropriate approach. Finally
if high contest dependence resides in the common parts
of clones: maybe the fimctionality should be rewritten
to decouple the contest from the shared behavior. In all
situations, the advanced analysis provides most useful
input for carrying such redesign decisions.

4 Experiment
The a.dvanced clone analyses presented in the previous
sections has been implemented in Java, using JDK 1.1.i.
To get, t,he ASTs of the source files, a Java parser gener-
ated with Javacc version 0.8 (first pre-release) has been
used.

The clones of JDK 1.1.5 (151: a development kit from
Sun Microsystems with 145 000 lines of code have been
analyzed. The esperiment was conducted on a Pentium
I1 35OMHz with 128MB R.AA4 running Liriux.

The process used for the experiment is depicted in Fig-
ure 3. We have first applied Patenaude et a.l.’s ap-
proach [14] to find clusters of similar methods using
metrics. 244 clusters have been found and used as input
to t,he process.

-411 the information presented in the previous sections
has been computed:

I

3. I

The list of differences between all code fragments.

The fine-grained difference information: measures
of differences considered at the token level. (Equa-
tions 4 through 12)

The det,ailed difference information cornprising the
quantit,ative aspects of differences when considered
as lines of code as well as the detailed information
on the different, types of differences. (Equations 4
t,hrough 15)

Finally, contextual dependencies particular to each
(Equations 16 clone and common to all clones.

and li)

I

Figure 4 shows the distribution of average sizes of cloned
methods in the clusters used as input. The amount of
clusters decxeases with the size of clones (Figure 4) as
smaller methods resemble others more ea.sily. Methods
having 6 lines of code and less haye been removed from
clone analysis as for such small met,liods, clone detection
techniques produce an important amount of false pos-
itives. Even though sonie clusters contain particularly
long rnet>hods, most methods haw less than 40 lines.

A first interesting result is preseimd in Figure 5 where
the quantity of clusters of clones is shown for different
percentages of method bodies covered by differences.

Type of difference
Return value
Met,hod na.me

Dynamic,matching J

Number of clusters
20
56

sequences of

Modifiers
Thrown exceptions

..

46
125

difference difference information

Figure 3: Experimental process.

Table 1: Clusters of clones with differences in the sig-
nature of cloned methods

The graph shows an increase in the quantity of clusters
with t,hc percent of the method covered by differences
until 70 percent after which a considerable drop occurs.
This drop corresponds to thresholds used during clus-
tering. If we had used smaller thresholds, fewer clusters
would have been produced but they would have been
more similar. On the other hand, higher cutoff points
aoiild have allowed for more clusters with more differ-
ences.

Although the clone analysis technique allows the detec-
tion of similar code fragments within a given threshold,
the amount of clusters containing almost ident,ical clo~ies
is high. As many as 22, almost 10% of all clusters, con-
tain methods covercd with differerices at less than lo%>
of their size.

The analysis of differences types (Figure 6 and Table 1)
shows that many cloned methods (half of the clusters)

103

I I I I I

i -19 20-29 30-39 40-49 50+
-4verage size of cloned methods (LOC)

Figure 4: Distribution of average sizes (lines of code) of
methods in clusters of clones.

250
x 5 200

E 100

v.
+ -

150
c

-
E = 50 z

0

I I I I I I

0-9 10-19 20-29 30-3940-49 50-5960-69 70+
Proportion of differences

Figure 5: Proportion of clones covered by differences
(tokens).

differ in the list of thrown exceptions. Many clones
also differ in their name and their modifiers but less
in their return values. Most clusters don't contain any
differences involving types. Those who do, usually con-
tain several of them, mostly around 20 to 30%

Figure i shows the distribution of the quantity of con-
text dependent operations. hlost clusters cont,ain few
such operations. If a conservative estimate of the oper-
ations belonging to common parts of clones is taken, two
extremes are obtained (c.f. Figure 8). In most cliist,crs:
less than 10 percent of context dependent operations
belong to shared source code. In an other important
part of the clust,ers, more than half of context depen-
dent operations are in the common pa.rts of clones.

5 Discussion
The experiment on the analysis of clones in JDK 1.1.5
shows the applicability of our approach to large software
systems. 244 clusters of clones corresponding to a little
less than 800 methods have been analyzed in less than
half an hour.

0 1-9 10-19 20-29 30-39 40-49 50+
Proportion of differences involving types

Figure 6: Proportion of differences involving types.

I I I I I 1

I

0-5 6-9 10-14 15-19 20-24 25+
Amount of context dependant opera.tions

Figure 7: Distribution of the quantity of context depen-
dent operations.

Clone analysis in JDK
From the results of the clone analysis applied to JDK;
several refactoring decisions can be taken. The propor-
tion of differences involving types (Figure 6) shows tha.t
in JDK, clone based refactoring could be divided into
two phases: one focusing on clusters containing only or-
dinary differences and the other aimed specifically a t
clones differing in the types of the data they manipu-
late. Over 50 clusters of clones contain between 10 a.nd
40 percent of differences explicitly affecting types. This
also shows that the division of differences along their
types provides a precise refactoring oriented conipari-
son basis for cloned methods. Such comparisons ma.?-
be helpful in the choice of refactoring candidates and
the refactoring actions applicable to them.

From the point of view of the coupling between shared
code fragments and their contexts of use: Figure 7 shows
that in JDK, most clones contain only few of such de-
pendencies. Clusters may then be divided into two
groups for the application of specific refactoring actions.
One group with clones containing less than 5 context de-
pendent opera.tions and the other with those containing

104

I I I I I 1

0-9 10-19 20-29 30-39 40-49 50+
Proportion of common context dependencies

Figure 8: Percent of context dependent operations be-
longing to the common parts of clones.

more. Refactoring actions involving the transfer of all
the code (common and particular) between classes could
then be applied to the first group without significant,
overhead. Refactoring actions keeping as much code as
possible in each original class would be preferable for
the other group of clones.

Context dependence could guide JDK refactoring de-
cisions even more precisely. Figure 8 shows that the
majority of contest dependent operations reside in the
differences between clones. Therefore, in this system,
cloning seems to reuse some functionality and add con-
text, dependence to it. The refactoring could then ex-
tract the common, loosely couple code fragments, and
merge them into a new component while leaving the dif-
ferences in the original classes. For other systems, other
approaches might be more appropriate.

From the results of advanced clone analysis applied to
JDK, it can be seen that this analysis is valuable to
support refact,oring decisions. It can indeed help in
the choice of candidates for redesign and their group-
ing along the refactoring actions that best apply. The
detailed lists of contextual dependencies and differences
can then be used to guide the actions themselves. The
nest section discusses the general use of the analysis for
refactoring.

Use of clone analysis for refactoring
The first decision while refactoring a system using clone
information is the choice of appropriate candidates. 111-
deed, some clones might belong to sensitive parts of a
system and shouldn't be touched, while others might be-
long to components with a high failure rate, thus more
important to redesign. Other characteristics such as ef-
fort in refactoring or required refactoring approach may
also determine the choice of candidates. The advanced
clone analysis presented in this paper is able to guide
such decisions by providing detailed information on the
degree of similarity of clones. As Figure 5 shows, some

clones contain a lot of differences while others are very
similar. The degree of similarity is an important infor-
mation as it, corresponds to differences and inay hence
be proportional to the refactoring effort.

The knowledge of types of differences (c.f. Figure 6 and
Table 1) might also influence the choice of candidates.
Ca.ndidates containing only ordinary differences might.
be preferred as their transformation should present less
difficulties. If a particular refactoring approach is read-
ily available (automa.ted tool, previous experiences, etc.)
clones that fit the approach at hand can also be isolated.

Once the candidates have been chosen? an appropriate
refactoring process has to be selected. The clone a.nal-
ysis proposed here is also helpful during this phase of
redesign. The types of differences as well as the amount
of cont,est dependent operations and mostly the per-
cent of those operations belonging to common parts of
code will partly determine the most appropriate refac-
toring. If many contest dependent operations belong t,o
differences between clones, it might be best to use an
approach that will keep those differences in the original
classes, hence allowing to keep the contest coupled xith
the method. If most clones contain differences explicitly
affecting types, then an approach allo\ving the creation
of a parent to those types might be most suitable.

The clone analysis proposed can also be used to deter-
mine the effort necessary to refactor a cluster of clones.
Indeed, an exhaustive list of all differences with their
types can be produced. A similar list of contextual de-
pendencies can also be obt,ained. Not only do those
lists present the effort necessary for refactoring, t,he).
also correspond to actions that will actually have to be
performed.

Computer-aided refactoring process
From the discussion above: it can be seen that the ad-
vanced clone analysis provides information useful a t dif-
ferent stages of a refactoring process. It could t,herefore
be a good basis for computer-aided object-orient,ed sys-
tem refactoring. The analysis could be incorporated in
such a process as follows:

The analysis could first provide general informatioii
for the choice of candidates for refactoring.

.4fter the selection of candidates, it could determine
and list applicable redesign approaches: using the
characteristics of the selected clusters of clones.

Once t,he precise refactoring and the set. of candi-
dates would be known, the list of actions to per-
form could be determined by the tool and provided
to the user.

The programmer could then perform the refactor-
ing using his own judgment to take into considera-
tion any relevant particularity.

105

Automat i c refactoring
We have implemented an automa.tic refact,oring pro-
cess in CloRT (Clone Reengineering Tool). The pro-
cess transforms clones along one of two design patterns,
Strategy [4] and Template method. The process factors
common parts of clones, parameterizes their differences
and decouples their contest while producing a config-
ura.ble and reusable component.

Figures 9 and 10 present the UML diagrams of both
approaches. In those diagrams OriginalClassl and Ori-
ginalClass2 represent two classes originally containing
cloned methods. CloneHandler is a new class contain-
ing the general code resulting from the factorization of
clone commonalities and the factorization of their dif-
ferences. Classes ConcreteDz~Strateyyl and Concrete-
DiflStrategy2 of Figure 9 contain the encapsulated dif-
ferences for each original clone. In a similar manner,
classes ParamCloneHasndlerl and ParamCloneHandler.2
of Figure 10 contain the differences of each clone. Inter-
faces Idstrategy and its descendants contain the signa-
tures of all contest dependent operations, implemented
in the original classes.

The tool, dei.eloped with .JDK 1.1.7: has been applied
to JDK 1.1.5 for the partial redesign of 26 clusters of
clones showing that automatic clone based refactoring
is possible.

From the experiment we have concluded that an auto-
matic approach could advantageously be enhanced by
targeted user interactions. Indeed, the user could bet-
ter exploit clone pa.rticularities for their refactoring and
could help alleviate the complex analysis required by
an automatic encapsulation of differences. 4 computer-
assisted refactoring approach as described previously al-
lows the uscr to gain that flexibility while still benefiting
from the support of a detailed clone analysis.

6 Rela ted work
Previous research has studied the detection of clones in
software systems. Several techniques have been investi-
gated. Some are based on a full test view of the source
code. Johnson [9] has developed a method for the iden-

.
ClonedMethod()

A
: ConcrelrDiRStratrgyl I - - OriginalClassl OriginalClassZ
' DiIflnrerface() ClonedMethodlO ClonedMethalZO

IdlnterfaceO tdlnier face0
CnncrrtDitlstralrgyL
DifflnterfaceO

f

Figure 9: Clone refa.ctoring based on the Strategy design
pat tern.

I

I -
<< Y Y l > >

Figure 10: Clone refactoring based on the Template
method design pattern

tificatiori of exact duplications of substrings in source
code using fingerprints whereas Baker's tool, "Dup" [2].
reports both identical sections of code a.nd sections that,
differ only in the systematic substitution of one set of
variable names and constants for the other. Ducasse
et al. [7] use an exact string matching approach along
with visualization for a semi-a.utomatic detection of ex-
act copies of code.

Other approaches, such as those pursued by Mayrand
et al. (131 and Kontogiannis et al. [ll], focus on whole
sequences of instructions (BEGIN-END blocks or func-
tions) and allow the detection of similar blocks using
metrics. Those met,rics relate t,o aspects of sequences of
instructions such as their layout, the expressions inside
them, their control flow, the variables used, the vari-
ables defined, etc.

In [Ill, Kontogiannis et al. also detect clones using two
other pattern matching techniques, namely dynamic
programming matching, which finds the best alignment
between two code fragments, and statistical matching
between abstract code descriptions patterns snd source
code.

Yet another clone detection technique relies on the com-
parison of subtrees from the AST of a system. Baxter
et, al. [5] have investigated this technique.

Several applications of clone detection have also been in-
vestigated, Johnson [9] visualizes redundant substrings
to ease the task of comprehending large lega.cy systems.
Mayrand et al. [13] as well a.s Lague et al. [12] document
the cloning phenomenon for the purpose of evaluating
the quality of software systems. Lague et al. [12] have
also evaluated the benefits in terms of maintenance of
the detection of cloned methods.

Merging the common parts of cloned pieces of code ha.s
also been investigated. In [SI, Baxter et al. use macros
to eliminate redundancies and thus reduce the quantity

106

of source code in a system. Although macros are ap-
plicable to all detected clones, since the semantics of
differences is ignored, their use presents several draw-
backs. It is restricted to languages that support macros.
but more importantly: nheli lexical changes are intro-
duced to the macro: a manual verification is necessary
to ensure that the intended semantic change correctly
propagates to all the contests of use of the macro.

Even though those clone arialysis studies provide us?-
fill information on the cloning phenomenon in software
systems, none is oriented towards proyiding information
detailed enough for clone based refac.ctoring.

7 Conclusions and future work
This paper has presented an advanced clone analysis
useful to system refactoririg. Clones are good candidates
for refactoring as they corrcspond to duplicat,ed code
and implicit links between components.

The novel analysis focuses on two aspects of clones: the
meaning of their differences from a programmers per-
spec,tive and their context dependence. Differences in-
terpret,ation in terms of precise programming language
entities is useful for refactoring as it can guide the choice
of candidate clusters and guide reengineering act,ions
perforrried during redesign. For this aspect of the anal-
ysis: a novel clone comparison algorithm has been intro-
duced along with a novel difference interpretation arid
classification. The second a.spect of the analysis, cont,ext
dependence, provides useful input on the cost of trans-
ferring common or particular code fragments between
their original dasses and ot,lier classcs. It, can therefore
guide the choice of refactoring approaches to apply t,o
specific clusters of clones.

The novel clone analysis provides a solid basis for the de-
velopment of computer-aided refact,oring environments.
Completely automatic approaches are also possible but
they are costly and provide little flexibility to the user.
Maiiual refactoring on the other hand, can be cumber-
soirie as hundreds of clusters are present in a. systmi.
assisted refactoring combines the strengths of both ap-
proaches by computing all the inforination necessa.ry for
refactoring and allowing t.he user t o concentrate on t,hr
refactoring decisions.

The nest step of the research is to develop more interac-
t,ive approaches and investigate their effectiveness in in-
dustrial refactoring projects. The refinement in mctrics
for clone analysis could also be irivestigated for refac-
toririg perfor~nance.

8 Acknowledgements
This reseaicli project has been funded by the Xatural
Sciences and Engineering Rescarch Council of Canada
(NSERC) and Bell Canada.

REFERENCES

A. 1,'. Aho; R. Sethi, and .J. D. Ullman. Compilers:
principles, techniques, and tools. Addison-wesley, 1988.
B. S. Baker. On finding duplication and near-
duplication in large software systems. In Proceedzngs
of th,c 2n,d Workzng Conference on Reverse Engineer-
any. IEEE Computer Society Press, July 1995.
R.I. Balazinska, E. Merlo, hl. Dagenais, B. Lague, and
K. Kontogiannis. Measuring clone based reengineering
opport,unities. In Internatzonal Sympos ium o n Software
metrics. METRICS'99. IEEE Computer Society Press.
November 1999.
h l . Balazinska: E. hlerlo, hl. Dagenais, B. Lague, and
K. Kontogiannis. Partial redesign of java software sys-
tems based on clone analysis. In Proceedings of the
Gth Workzng Conference on Reverse Engineermy, pages
326-336. IEEE Computer Society Press, October 1999.
I . D. Baster, A . Yahin: L. kloura, h l . Sant'Anna, and
L. Bier. Clone detection using abstract syntaxt trees.
In Proceedings of the Internatzonal Conference on Soft-
ware Maintenance 1998, pages 368-377. IEEE Com-
puter Societ?? Press, 1998.
.I. Brant and D. Roberts. Refactoring browser.
st-w~~~~,..cs.uiuc.edu/-brant/RefactoringBro~~,se~.

www.cs.uiuc.edu/ brant/RefactoringBrowser/.
S. Ducasse: hl. Rieger, and S. Deineyer. A language
independent approach for detecting duplicated code.
In Proceedings of the International conference o n Soft-
ware Maintenance 1999, pages 109-118, 1999.
E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign patterns: Elements of reusable object-orzented soft-
ware. Addison-wesley. 1997.
J. H. Johnson. Identifying reduiidancy in source code
using fingerprints. CASCON'93 , pages 171-183. Octo-
ber 1993.
K. Kontogiannis. Evaluation experiments on the detec-
tion of programming patterns using software nietrics.
Proceedzngs of the 4 t h Working Conference o n Reverse
Engzneering, pages 44-54, 1997.
K. Kontogiannis, R. Demori, E. Merlo, M. Galler, and
h4. Bernstein. Pattern matching for clone and concept
detection. Journal of Automated Software Engineering,
3:ii-108; March 1996.
B. Lague, D. Proulx, E. hlerlo, J . hlayrand: and
3. Hudepohl. .\ssessing the benefits of incorporating
function clone detection in a development process. In
Proceedzngs of the International Conference on So&-
wa.re Mazntenance 1997, pages 314-321. IEEE Com-
puter Societ.? Press, 1997.
J. hlayrand. C. Leblanc, and E. Merlo. Experiment
on the automatic detection of function clones in a soft-
ware system using metrics. In Proceedings of the In-
ternational Conference on Software Maintenance f 996;
pages 211-253. IEEE Computer Society Press, 1996.
J.-F. Patenaude, E. hlerlo, RI . Dagenais, and B. Lague.
Estending software quality assessment techniques to
lava systems. In Proceedings of the 7th. Internataond
Workshop o n PTOgTU7n Comprehensaon. I W P c ' 9 9 .
IEEE Computer Society Press, 1999.
Sun hiicrosystenis Inc. Jdk 1.1.5.: Java development
kit,.

http://st-

107

http://www.cs.uiuc.edu
http://st

