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ABSTRACT 
Manual source code copy and modification is often used 
by programniers as an easy means for functionality 
reuse. Nevertheless, such practice produces duplicatcd 
pieces of code or clones whose consistent maintenance 
might be difficult to achieve. It also creates implicit 
links between classes sharing a functionality. Cloncs 
are therefore good candidates for system redesign. 

This paper prese~its a novel approach for coniputer- 
aided clone-based object-oriented system refactoring. 
The approach is based on an ad\lanced clone ana.lysis 
which focuses on the extraction of clone differences and 
their interpretation in terms of programming language 
entities. It, also focuses on the study of contextual dc- 
pendencies of cloned methods. The clone analysis has 
been a.pplied to JDK 1.1.5, a large scale system of 150 
KLOC. 
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1 In t roduct ion  
Source code reuse in object,-oriented systerns is made 
possible through different mechanisms such as inheri- 
ta.nce, shared libraries, object composition, and so on. 
Nevertheless programmers often need to reuse compo- 
nents which haven’t been designed for this purpose. 
This may happen when software systems go through 
the expansion phase and new requirements have to be 
periodically sat,isfied [SI. 

IVhen such a situation arises, ideally, the modules in- 
volved should be restructured and the component prop- 
erly reused. Even bett,er: t,lie whole system could be re- 
organized, classes could be refactored into general coni- 
ponents and their interfaces rationalized. Such a process 
is known as consolidation and allows a system to become 
more flexible and easier to expand [8]. Often, the pro- 

cess used instead is a manual ”copy-and-paste” . This 
other approach produces what we call cloned pieces of 
code, or clones which will undergo independent succes- 
sive maintemncc [12]. 

The goal of our research is to investigate the use of 
clone information as a basis for object-oriented system 
refactoring. Clones are good candidates for redesign as 
they rcpresent duplicated code whose consist,ent main- 
tenance might be difficult to  achieve. They also form 
implicit links between components that share a func- 
tionality. Detection of clones in large software systems 
has been investiga.ted in the past by [2, 7; 9, 10; 131 
while clone elimination or reduction has been investi- 
gated by ( 3 ,  4; 51. 

In [3] we have investigated the problem of classifying 
clones according to their types and according to the 
opportunities of further reengineering actions. In [4] 
an automatic approach which allows the factorization 
of common pa.rts of clones, hence removing duplications 
while preserving the unique behavior of each clone, ha.s 
been proposed. Such an approach was limited to  those 
reengineering actions which ended up in a “strategy- 
based’‘ design pattern. 

The a.pproaches presented in [ 3 ,  11 could be advanta- 
geously enhanced by targeted user interactions. Such in- 
teract,ions could alleviate the complexity of analysis nec- 
essary in an a.utomatic approach and would give more 
flexibility to the user. Furthermore additional “design 
patterns“ (more than “strategy” only) and reengineer- 
ing actions should be investigated. 

In this paper, we therefore propose a new approach ori- 
ent.ed towards computer-assisted clone refactoring. The 
main goal is to significantly support refactoring deci- 
sions by providing detailed and relevant information on 
clones but lett,ing the programmer decide on the ac- 
tual refactoring to be performed, i.e., on the choice of 
candidates for refactoring, on the appropriate type of re- 
design and on the actual redesign actions. Those actions 
could then be performed \vith specialized t>ools such as 
the Refactoring Browser [6]. Such a. computer-aided 
refactoring must be based on a powerful clone analy- 
sis. Also, a new redesign scheme based on “template“ 
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design-pattern is presented and discussed. 

hlost clone analysis approaches [2; 7, 9: 121 provide the 
user only with information on the amount, location and 
size of clones in a system. Some approaches [5, 10: 131 
also provide a certain information on the degree of sim- 
ilarity of clones. Those information are nevertheless in- 
sufficient, to support refactoring activities as they don’t 
provide any insight on possible refactoring a.ctions. To 
use clones as a basis for object-oriented system redesign, 
programmers need to know the exact differences be- 
tween cloned methods and those differences must be 
meaningful in terms of corresponding programming lan- 
guage entities. Indeed, differences determine refactoring 
actions. Programmers also need to know the coupling 
between cloned methods and their contexts of use as 
such coupling will determine the overhead of transfer- 
ring code fragments betwcen classes. 

This paper proposes an innovative and more adva.nced 
clone analysis which can be helpful in object-oriented 
system refact,oring. This analysis det,ermines detailed 
information on differences betwcen cloned methods and 
their contextual dependencies. Sections 2 and 3 present 
t,liose t,wo aspects of the advance clone analysis; Sec- 
tion 2 prcsents the a.nalysis of differences between 
clones, whereas Section 3 details the a.nalysis of context 
dependent operations found in cloned methods. Sec- 
tion 4 presents the results of the application of those 
analyses to  JDK 1.1.5. Finally, Section 5 discusses the 
use of the information provided by the advance clone 
anal?;sis for object-oriented system refactoring. Sec- 
tion 6 presents related work on clones. 

2 Difference analysis 
During clone based refactoring, programmers need to  
know t,he differences between clones, and those differ- 
ences must be available to then1 i n  a readily understarid- 
able format. This knowledge will determine the exact 
refactoring actions tha,t will have to be performed. 

This section describes the difference analysis aspect of 
the novel clone analysis. The algorithm that allows the 
extraction of differences is first described, followed by 
the approach that allows the interpretation of those dif- 
ferences as programming language entities. The gener- 
alization of the approach to more than two code frag- 
ments is t,hen presented. Finally: the analysis of kinds 
of differences and the computation of more synthesized 
difference information are presented and their use for 
refactoring is emphasized. 

Matching code fragments 
The extraction of clone differences is performed using 
the algorithm briefly presented in this section. For a 
detailed discussion of the algorithni please refer to [3]. 

The comparison algorithni used is based on Kontogian- 
nis et al.’s Dynamic Pattern XIatching algorithm (111 in 

1 function match(c: Grid; \-l,v2: Sequence) => (cost: Integer) 
2 
3 
4 

5 

for ( i t 1 to size(v1) ) 
for ( j t 1 t o  size(v2)) 

tempcost t computeCost (v l  [i] :v2b]) 
c [ i  - l][j].cost + 1, 

c[i]lj].cost t inin c [ i ] [ j  - l].cost + 1: { c(i  - 1 ] [ j  - I].cost + tempcost 

(4 - 11[31; 
c[il[j - 11, 
c[i - l][j - I] depending on 

6 c[i,j] .previous t 

the minimal cost 
T return c[size(vl)][size(v2)] 

Figure 1: Core method of the mat,ching algorithm. 

which a fundamental change has been performed: rather 
than aligning syntactically structured entities like state- 
ments as is often suggested in the literature [5, 111, the 
new algorithm aligns syntactically unstructured entities 
like tokens. The comparison is hence performed at the 
lexical level with a reasonable complexity of O(n t m) 
(where II  and m are the sizes of the code fragments) 
that could even he decreasad with a beam search opti- 
mization. Moreover, the algorithm provides a very fine 
grained matzch. The optimal match or distance between 
two code fragments is defined as the miiiirnal amount of 
tokens that have to be inserted or deleted to transform 
one code fragment into the other. 

The dynamic matching is hence performed on vectors 
corresponding to sequences of tokens forming the code 
fragments compared. A cost grid is used to compute 
and hold the detailed results of the match. 

The core of the algorithm which is defined in function 
match is presented in Figure 1. Function match iter- 
ates over all the elements of the grid and cornput*es the 
dista,nce for consecutive sequences using previously com- 
puted distances between shorter sequences as well as the 
cost of matching the current tokens. This la.tter cost is 
determined by computecost. 

Function computeCost compares two tokens by testing 
for equality of types and values. Two nodes match per- 
fectly if they belong to  the same type, except if they‘re 
literals or identifiers. Then they must also ha.ve the 
same value. The function ret,urns 0 if the tokens are 
equal and can be matched. Otherwise, it returns 2 (the 
equivalent of the cost of removing one token and then 
adding the other instead). 

The result is then represented as a set of sequences of 
tokens that correspond, or that have to be inserted or 
delcted (corisecutive insertions and deletions correspond 
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to substitutions): 

Afatch = < (siv~,s~v?,actionl); (s2v~:s?v2,action2): 
..., ( S k V l ,  SL.7.JP, actionA.) > 

(1) 

Where, V i  E [l . .k]:  

e s,vl E v l  and s lv l  - S ~ V I  - ... - S ~ V ]  = v l  
where - is the concatena.tion operator. 

e s i v ~  E v2 and s l v 2  - s ~ v p  - ... - s ~ v z  = v2 

a,ctioti~ E { m'atch, addition, deletion, substitution} 

Projec t ing  differences 
Once the optimal match has been obtained, the cor- 
respondence between the Sequences of tokens and the 
entities of the programming language has to be made. 
It will provide programmers with information at the ap- 
propriate level of abstraction to serve as a basis for refac- 
toring. To achieve the correspondence, thc source code 
must first be represented in a higher level of abstrac- 
tion. We have chosen the program's annotated abstract 
syntax tree (AST) as a program representation scheme 
as it can: among others, be easily analyzed to extract 
programming language entities corresponding to  differ- 
ences found during the comparison. 

Once the source code has been represented in this higher 
level of abstraction, the tokens forming the differences 
are linked to the corresponding AST elements. Each 
token corresponds to exactly one node in the AST and is 
therefore linked to that node. %'hen consecutive tokens 
belong to a single difference, the first ancestor of the 
nodes corresponding to those tokens is found. 

This approach of first aligning tokens and then project- 
ing them onto the AST rather than directly comparing 
ASTs, as is often suggested in the literature 15, 111 al- 
lows to get a very detailed match with a low computa- 
tion complexity. 

From the AST, the corresponding progra.mming lan- 
guage entities are determined. The set of differences 
is finally obtained a.s: 

Da f f erences = P(Treesl  t Trees?) (2) 

Where P ( s )  denotes the power set of s whereas Trees] 
and Trees? are the sets of all subtrees of the ASTs of 
the code fragments. 

Compar ing  more t h a n  two code f ragments  
The approach described above gives the set, of differ- 
ences when exactly two code fragments are compared. 
Often, clusters of clones contain more than two cloned 
methods. To determine the exact set of differences be- 
tween more than two code fragments, the following a.p- 
proach is taken. 

Let Clones = {C1,C?, ... ;C,} be the set of clones 
in the cluster. 

C1 is arbitrarily chosen as the reference code frag- 
ment. 

The optimal matches Alatcli(C1~ Ci) are computed 
for all the values of i in [2..n). 

For each Match(C1, Ci),  the sequences s j v l  of t,he 
reference vector for which actionj # match, i.e.: 
sequences corresponding to differences (insertions, 
delct,ions or substitutions) are propagated to all the 
other matches defined by: (Afa tch(C1~ Cnz) 1 Vm E 
(2 . .71]  with m # i } .  

The propagation of differences may produce adja- 
cent, sequences corresponding to differences. Such 
sequences are merged. 

After the propagation of the differences, sequences 
s j v l  of the reference vector become identical in all 
Match(C1 Ci). The union of all differences is then 
straightforward. 

The differences found in each vector of t,okens are 
then projected onto the corresponding ASTs. 

The set, of differences is finally obtained as: 

Di f f = P(Trees1 * Trees? t ... t Trees,,) (3) 

Where Treesi denotes the set of all subtrees of the AST 
of Ci. In the following sections, for each difference d : 
D i f f ,  d[ i ]  will refer to the i th. subtree involved in that 
difference. 

Discr imina t ing  k inds  of differences 
Once code fragments ha.ve been matched and their dif- 
ferences have been projected onto the AST, a very de- 
ta.iled and useful knowledge of clones ha.s been gained. 
Textual differences between code fragments have been 
interpreted programming language entities meaning- 
ful to the programmer. 

Providing the programmer with the set of differences 
and their exact meaning is an already very useful infor- 
mation, especially in latter phases of refactoring when 
specific reengineering actions are being performed. The 
difference analvsis moves the interpretation one step 
further, though. It provides difference information in 
a more synthesized manner, helpful in less advanced 
phases of refactoring. The differences are grouped, 
based on their role in refactoring. 

From previous research on a.utomatic refactoring (3; 41: 
we ha.ve determined that all differences don't affect, 
rcfactoring in the same manner. More precisely: the 
distinguished between the following kinds of differences 
is useful: 
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1 function groupDiffs() 
2 
2 V d E Diff 
3 Type = choseSet(d) 
4 Type = Type U {d} 
5 

R\I = N = M = T E  = TypeDiffs = Other = 0 

Other = Diff \ ( RV U N U hl  U TE U TypeDiffs ) 

Figure 2: Difference information synthesis algorithm. 

Superficial differences such as names of parameters 
or names of local variables don't affect the behavior 
of methods nor their outputs. They're therefore 
discarded at this phase of the analysis. 

Differences affecting the signature of methods: re- 
turn value, modifiers (static; public; and so on), 
names or list of thrown exceptions have to  be 
carefully treated during redesign even though they 
don't directly affect common code fragments. 

Differences affecting the types of parameters or lo- 
cal variables or types are explicitly manipulated in 
typecasts or instanceof expressions make the trans- 
formation of clones into a general component more 
complex, especially in languages such as Java, that 
don't allow parameterizable types. 

All the other differences. 

The discrimination between kinds of differences gives 
a. more synthesized perspective as it groups differences 
along their role in refactoring. Programmers are then 
a.ble to make informed decisions based on distributions 
of kinds of differences. Those decisions might include 
the choice of candida.tes for particular refactoring ap- 
proaches or the evalua.tion of the effort involved in the 
refactoring of particular clones. 

The discrimination is performed with the algorithm pre- 
sented in figure 2 where RV,N:Af and T E  are de- 
fined as the sets of differences affecting the signature 
of methods (return value. name, modifiers, thrown ex- 
ceptions). Those sets will contain at  most one element, 
each. TypeDi f f s  is the set of differences affecting types 
and Other = Di f f \  (Rl,'Un'UA,(TUTEUTypeDi f fs)  is 
the set of all the other differences. A4ethod choseset re- 
turns the set, of differences (RV, N ,  Ad, T E ,  TypeDi f fs 
or Other) corresponding to the type of a difference re- 
ceived in parameter. 

Additional information for refactoring 
After analyzing the differences, several a.dditiona1 infor- 
mation are computed for each cluster. of clones. Those 
information provide a broa.der perspective that ca.n be 
used to assess and compare cloning throughout the sys- 
tem. Let cloneSize : Clones t ,U be the size of ea.ch 

cloned method. .41so cloneSizei = cloneSize(Ci). The 
additional information can then be expressed as: 

0 The amount of differences between code fragments 
given by: 

nbDi f ferences = card(Di f f )  (4) 

0 Quantitative aspects of differences: the size of each 
code fragment involved in a. difference, t,he min- 
imum, maximum and average code fragments in- 
volved in a difference. Those sizes are expressed 
both in lines of code and for a finer measure, in 
to kens: 

size : 4 2 1  -+ i\/ V i  E [I..n] ( 5 )  

( 6 )  

( 7 )  

ininsize = min(Vd : Di f f V i  E [l..n] s ize(d[i]))  

niaxsize = maz(Vd : D i f f  V i  E [l..n] s ize(d[i]))  

0 The total amount of lines of code or tokens involved 
in differences for each cloned method: 

V i  E [l..n] totalDi f fi = ( size(d[i]))  (10) 
V d : D i f f  

0 The average proportion of differences compared to 
the size of the code fragments: 

(11) 
totalDi f f, 
cl onesize, 

V i  E [l..n,] p D i f f ,  = 

0 The quantity of diffcrences that affect types: 

iabTypeDi f f s  = card(TypeDi f fs) (13) 

0 The quantity of ordinary differences: 

nbOtherDif fs = card(0ther) (14) 

0 The proportion of differences affecting types: 

n,bTypeDi f f s 

nbTypeDi f f s  + nbOtherDi f f s 
pTypeDi f f s  = 

Those information will serve in the evaluation of the 
cloning plienomenon throughout the system and t,he 
comparison of clusters of clones from a refactoring per- 
spectiye. Indeed! they will show the probable effort 
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needed in refactoring. The use of that information will 
be discussed in more detail in section 5 .  

The difference analysis, t,ha.t has been presented in this 
section, provides det,ailed information on differences be- 
tween cloned methods. The meaning of each syntac- 
tic difference is expressed in terms of a programming 
language entity, easily interpretable by a programmer. 
Such detailed information may facilitate refactoring de- 
cisions at the detailed level of the cluster. To gain a 
broa.der perspect,ive, difference information is synthe- 
sized in two manners. First, differences are grouped 
according to their impact on possible redesigns. Seven 
t,ypes of differenccs are distinguished in the analysis but, 
other categories could also be developed. Second, quan- 
titative information on the distributions of differences in 
clones are computed. Such information allow the anal- 
ysis of the cloning phenomenon throughout the system 
and may serve in the selection of candidates for refac- 
toring as well as refactoring approaches to apply. 

3 Context analysis 
Some refactoring approaches involve the transfer of code 
fragments between classes thus affecting contextual de- 
pendencies. We define the latter as all uses of identifiers 
(methods or varia.bles) that are neither static nor locally 
defined in a code fragment and depend therefore on the 
class containing the method. 

In this section, the analysis of contextua.1 dependencies 
of clones is presented. More precisely, in this second 
part of the advanced clone analysis: two aspects of con- 
text dependent operations are analyzed. First, the list 
of context dependent operations is computed separately 
for each clone. This result gives the list and exact num- 
ber of contextual dependencies in all clones belonging 
to a cluster. 

The contextual dependencies present in the common 
parts of clones (defined as those not belonging to differ- 
ences) are then extracted. This measure is interesting 
as it 1na.y influence the choice of refactoring a.pproach by 
determining the differences in the costs of transferring 
common code, particular code (the code of the differ- 
ences) or all the code, between classes. The measure is 
a conservative estimate of the common context depen- 
dencies. Some common source code might indeed be 
mcrged with a proximate difference during refactoring 
and hence diminish the amount of common dependen- 
cies. 

In this analysis, the list of context, dependent operations 
is computed for each cloned method as follows: 

ContextDep = {V i  E [l..n] V i d  E {Calls U Used} 1 
ad $! Locals(C,) A (3cl : Classes I cl = DefiningClass(C,) 
A id E {.4ttributes(cZ) U DefinedAlethods(cl)) a 

C, + i d }  

Where : 

a Cla.sses, Methods and I-ariables are respectively 
defined as the sets of all classes, methods and vari- 
ables defined in the system. 

a De f ininyCla.ss : Methods -+ Classes associates 
to each method its defining class. 

a Locals : Methods --i P(l'ariab1es) a.ssociates to 
each method its locally defined variables. 

a DefinedMethods : Classes -+ P(A4ethods) is 
defined as the set of methods defined in a class. 

a .Attributes : Classes 4 p(\iariables) is defined 
as the set of attributes of a class. 

a Calls : Alethods -+ P(Afethods) is defined as the 
set of methods called from within the body of a 
method. 

a Used : Methods -+ P(L,.ariables) is defined as the 
set of variables used within the body of a method. 

a ContextDep : Methods --+ P(Ca1ls U Used) as- 
sociates to each method a set of identifiers corre- 
sponding to  context dependent operations. 

a ConiContextDep : Clon,es -+ 'P(Calls U Used) 
associates to each cluster of clones a set of iden- 
tifiers corresponding to  context dependent opera- 
tions common to all clones in the cluster. 

The list of context dependent operations common to all 
clones in  a cluster is computed with: 

ComContextDep = {V i  E [l..n] Vid  E ContextDep(Ci) I 
($d : D i f f  I 32 E \l..n] I id E d [ i ] )  a Clones --+ i d }  

(17) 

This second aspect of the analysis provides a very 
novel perspective on clones. It, determines the coupling 
strength between shared functionalities and their con- 
tests of use. If the coupling is low (few context depen- 
dent operations exist) the transformation of the func- 
tionality into a reusable component may be possible 
without significant overhead. If the coupling is high, but 
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resides in the differences between clones, then encapsu- 
lating those differences and decoupling them from the 
shared code might be the appropriate approach. Finally 
if high contest dependence resides in the common parts 
of clones: maybe the fimctionality should be rewritten 
to decouple the contest from the shared behavior. In all 
situations, the advanced analysis provides most useful 
input for carrying such redesign decisions. 

4 Experiment 
The a.dvanced clone analyses presented in the previous 
sections has been implemented in Java, using JDK 1.1.i. 
To get, t,he ASTs of the source files, a Java parser gener- 
ated with Javacc version 0.8 (first pre-release) has been 
used. 

The clones of JDK 1.1.5 (151: a development kit from 
Sun Microsystems with 145 000 lines of code have been 
analyzed. The esperiment was conducted on a Pentium 
I1 35OMHz with 128MB R.AA4 running Liriux. 

The process used for the experiment is depicted in Fig- 
ure 3. We have first applied Patenaude et a.l.’s ap- 
proach [14] to find clusters of similar methods using 
metrics. 244 clusters have been found and used as input 
to t,he process. 

-411 the information presented in the previous sections 
has been computed: 

I 

3. I 

The list of differences between all code fragments. 

The fine-grained difference information: measures 
of differences considered at  the token level. (Equa- 
tions 4 through 12) 

The det,ailed difference information cornprising the 
quantit,ative aspects of differences when considered 
as lines of code as well as the detailed information 
on the different, types of differences. (Equations 4 
t,hrough 15) 

Finally, contextual dependencies particular to  each 
(Equations 16 clone and common to all clones. 

and li) 

I 

Figure 4 shows the distribution of average sizes of cloned 
methods in the clusters used as input. The amount of 
clusters decxeases with the size of clones (Figure 4) as 
smaller methods resemble others more ea.sily. Methods 
having 6 lines of code and less haye been removed from 
clone analysis as for such small met,liods, clone detection 
techniques produce an important amount of false pos- 
itives. Even though sonie clusters contain particularly 
long rnet>hods, most methods haw less than 40 lines. 

A first interesting result is preseimd in Figure 5 where 
the quantity of clusters of clones is shown for different 
percentages of method bodies covered by differences. 

Type of difference 
Return value 
Met,hod na.me 

Dynamic,matching J 

Number of clusters 
20 
56 

sequences of 

Modifiers 
Thrown exceptions 

.. 

46 
125 

difference difference information 

Figure 3: Experimental process. 

Table 1: Clusters of clones with differences in the sig- 
nature of cloned methods 

The graph shows an increase in the quantity of clusters 
with t,hc percent of the method covered by differences 
until 70 percent after which a considerable drop occurs. 
This drop corresponds to thresholds used during clus- 
tering. If we had used smaller thresholds, fewer clusters 
would have been produced but they would have been 
more similar. On the other hand, higher cutoff points 
aoiild have allowed for more clusters with more differ- 
ences. 

Although the clone analysis technique allows the detec- 
tion of similar code fragments within a given threshold, 
the amount of clusters containing almost ident,ical clo~ies 
is high. As many as 22, almost 10% of all clusters, con- 
tain methods covercd with differerices at less than lo%> 
of their size. 

The analysis of differences types (Figure 6 and Table 1) 
shows that many cloned methods (half of the clusters) 
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I I I I I 

i -19 20-29 30-39 40-49 50+ 
-4verage size of cloned methods (LOC) 

Figure 4: Distribution of average sizes (lines of code) of 
methods in clusters of clones. 

250 
x 5 200 

E 100 

v. 
+ - 

150 
c 

- 
E = 50 z 

0 

I I I I I I 

0-9 10-19 20-29 30-3940-49 50-5960-69 70+ 
Proportion of differences 

Figure 5: Proportion of clones covered by differences 
(tokens). 

differ in the list of thrown exceptions. Many clones 
also differ in their name and their modifiers but less 
in their return values. Most clusters don't contain any 
differences involving types. Those who do, usually con- 
tain several of them, mostly around 20 to 30% 

Figure i shows the distribution of the quantity of con- 
text dependent operations. hlost clusters cont,ain few 
such operations. If a conservative estimate of the oper- 
ations belonging to common parts of clones is taken, two 
extremes are obtained (c.f. Figure 8). In most cliist,crs: 
less than 10 percent of context dependent operations 
belong to shared source code. In an other important 
part of the clust,ers, more than half of context depen- 
dent operations are in the common pa.rts of clones. 

5 Discussion 
The experiment on the analysis of clones in JDK 1.1.5 
shows the applicability of our approach to large software 
systems. 244 clusters of clones corresponding to a little 
less than 800 methods have been analyzed in less than 
half an hour. 

0 1-9 10-19 20-29 30-39 40-49 50+ 
Proportion of differences involving types 

Figure 6: Proportion of differences involving types. 

I I I I I 1  

I 

0-5 6-9 10-14 15-19 20-24 25+ 
Amount of context dependant opera.tions 

Figure 7: Distribution of the quantity of context depen- 
dent operations. 

Clone analysis in JDK 
From the results of the clone analysis applied to JDK; 
several refactoring decisions can be taken. The propor- 
tion of differences involving types (Figure 6) shows tha.t 
in JDK, clone based refactoring could be divided into 
two phases: one focusing on clusters containing only or- 
dinary differences and the other aimed specifically a t  
clones differing in the types of the data they manipu- 
late. Over 50 clusters of clones contain between 10 a.nd 
40 percent of differences explicitly affecting types. This 
also shows that the division of differences along their 
types provides a precise refactoring oriented conipari- 
son basis for cloned methods. Such comparisons ma.?- 
be helpful in the choice of refactoring candidates and 
the refactoring actions applicable to them. 

From the point of view of the coupling between shared 
code fragments and their contexts of use: Figure 7 shows 
that in JDK, most clones contain only few of such de- 
pendencies. Clusters may then be divided into two 
groups for the application of specific refactoring actions. 
One group with clones containing less than 5 context de- 
pendent opera.tions and the other with those containing 
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0-9 10-19 20-29 30-39 40-49 50+ 
Proportion of common context dependencies 

Figure 8: Percent of context dependent operations be- 
longing to the common parts of clones. 

more. Refactoring actions involving the transfer of all 
the code (common and particular) between classes could 
then be applied to the first group without significant, 
overhead. Refactoring actions keeping as much code as 
possible in each original class would be preferable for 
the other group of clones. 

Context dependence could guide JDK refactoring de- 
cisions even more precisely. Figure 8 shows that the 
majority of contest dependent operations reside in the 
differences between clones. Therefore, in this system, 
cloning seems to reuse some functionality and add con- 
text, dependence to it. The refactoring could then ex- 
tract the common, loosely couple code fragments, and 
merge them into a new component while leaving the dif- 
ferences in  the original classes. For other systems, other 
approaches might be more appropriate. 

From the results of advanced clone analysis applied to 
JDK, it can be seen that this analysis is valuable to 
support refact,oring decisions. It can indeed help in 
the choice of candidates for redesign and their group- 
ing along the refactoring actions that best apply. The 
detailed lists of contextual dependencies and differences 
can then be used to guide the actions themselves. The 
nest section discusses the general use of the analysis for 
refactoring. 

Use of clone analysis for refactoring 
The first decision while refactoring a system using clone 
information is the choice of appropriate candidates. 111- 
deed, some clones might belong to  sensitive parts of a 
system and shouldn't be touched, while others might be- 
long to components with a high failure rate, thus more 
important to redesign. Other characteristics such as ef- 
fort in refactoring or required refactoring approach may 
also determine the choice of candidates. The advanced 
clone analysis presented in this paper is able to guide 
such decisions by providing detailed information on the 
degree of similarity of clones. As Figure 5 shows, some 

clones contain a lot of differences while others are very 
similar. The degree of similarity is an important infor- 
mation as it, corresponds to  differences and inay hence 
be proportional to  the refactoring effort. 

The knowledge of types of differences (c.f. Figure 6 and 
Table 1) might also influence the choice of candidates. 
Ca.ndidates containing only ordinary differences might. 
be preferred as their transformation should present less 
difficulties. If a particular refactoring approach is read- 
ily available (automa.ted tool, previous experiences, etc.) 
clones that fit the approach at  hand can also be isolated. 

Once the candidates have been chosen? an appropriate 
refactoring process has to be selected. The clone a.nal- 
ysis proposed here is also helpful during this phase of 
redesign. The types of differences as well as the amount 
of cont,est dependent operations and mostly the per- 
cent of those operations belonging to common parts of 
code will partly determine the most appropriate refac- 
toring. If many contest dependent operations belong t,o 
differences between clones, it might be best to use an 
approach that will keep those differences in the original 
classes, hence allowing to keep the contest coupled xith 
the method. If most clones contain differences explicitly 
affecting types, then an approach allo\ving the creation 
of a parent to those types might be most suitable. 

The clone analysis proposed can also be used to deter- 
mine the effort necessary to refactor a cluster of clones. 
Indeed, an exhaustive list of all differences with their 
types can be produced. A similar list of contextual de- 
pendencies can also be obt,ained. Not only do those 
lists present the effort necessary for refactoring, t,he). 
also correspond to actions that will actually have to be 
performed. 

Computer-aided refactoring process 
From the discussion above: it can be seen that the ad- 
vanced clone analysis provides information useful a t  dif- 
ferent stages of a refactoring process. It could t,herefore 
be a good basis for computer-aided object-orient,ed sys- 
tem refactoring. The analysis could be incorporated in 
such a process as follows: 

The analysis could first provide general informatioii 
for the choice of candidates for refactoring. 

.4fter the selection of candidates, it could determine 
and list applicable redesign approaches: using the 
characteristics of the selected clusters of clones. 

Once t,he precise refactoring and the set. of candi- 
dates would be known, the list of actions to per- 
form could be determined by the tool and provided 
to the user. 

The programmer could then perform the refactor- 
ing using his own judgment to take into considera- 
tion any relevant particularity. 
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Automat i c  refactoring 
We have implemented an automa.tic refact,oring pro- 
cess in  CloRT (Clone Reengineering Tool). The pro- 
cess transforms clones along one of two design patterns, 
Strategy [4] and Template method. The process factors 
common parts of clones, parameterizes their differences 
and decouples their contest while producing a config- 
ura.ble and reusable component. 

Figures 9 and 10 present the UML diagrams of both 
approaches. In those diagrams OriginalClassl and Ori- 
ginalClass2 represent two classes originally containing 
cloned methods. CloneHandler is a new class contain- 
ing the general code resulting from the factorization of 
clone commonalities and the factorization of their dif- 
ferences. Classes ConcreteDz~Strateyyl and Concrete- 
DiflStrategy2 of Figure 9 contain the encapsulated dif- 
ferences for each original clone. In a similar manner, 
classes ParamCloneHasndlerl and ParamCloneHandler.2 
of Figure 10 contain the differences of each clone. Inter- 
faces Idstrategy and its descendants contain the signa- 
tures of all contest dependent operations, implemented 
in the original classes. 

The tool, dei.eloped with .JDK 1.1.7:  has been applied 
to JDK 1.1.5 for the partial redesign of 26 clusters of 
clones showing that automatic clone based refactoring 
is possible. 

From the experiment we have concluded that an auto- 
matic approach could advantageously be enhanced by 
targeted user interactions. Indeed, the user could bet- 
ter exploit clone pa.rticularities for their refactoring and 
could help alleviate the complex analysis required by 
an automatic encapsulation of differences. 4 computer- 
assisted refactoring approach as described previously al- 
lows the uscr to gain that flexibility while still benefiting 
from the support of a detailed clone analysis. 

6 Rela ted  work 
Previous research has studied the detection of clones in 
software systems. Several techniques have been investi- 
gated. Some are based on a full test  view of the source 
code. Johnson [9] has developed a method for the iden- 
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Figure 9: Clone refa.ctoring based on the Strategy design 
pat tern. 
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Figure 10: Clone refactoring based on the Template 
method design pattern 

tificatiori of exact duplications of substrings in source 
code using fingerprints whereas Baker's tool, "Dup" [2]. 
reports both identical sections of code a.nd sections that, 
differ only in the systematic substitution of one set of 
variable names and constants for the other. Ducasse 
et al. [7] use an exact string matching approach along 
with visualization for a semi-a.utomatic detection of ex- 
act copies of code. 

Other approaches, such as those pursued by Mayrand 
et al. (131 and Kontogiannis et al. [ll], focus on whole 
sequences of instructions (BEGIN-END blocks or func- 
tions) and allow the detection of similar blocks using 
metrics. Those met,rics relate t,o aspects of sequences of 
instructions such as their layout, the expressions inside 
them, their control flow, the variables used, the vari- 
ables defined, etc. 

In [Ill, Kontogiannis et al. also detect clones using two 
other pattern matching techniques, namely dynamic 
programming matching, which finds the best alignment 
between two code fragments, and statistical matching 
between abstract code descriptions patterns snd source 
code. 

Yet another clone detection technique relies on the com- 
parison of subtrees from the AST of a system. Baxter 
et, al. [5] have investigated this technique. 

Several applications of clone detection have also been in- 
vestigated, Johnson [9] visualizes redundant substrings 
to ease the task of comprehending large lega.cy systems. 
Mayrand et al. [13] as well a.s Lague et al. [12] document 
the cloning phenomenon for the purpose of evaluating 
the quality of software systems. Lague et al. [12] have 
also evaluated the benefits in terms of maintenance of 
the detection of cloned methods. 

Merging the common parts of cloned pieces of code ha.s 
also been investigated. In [SI, Baxter et al. use macros 
to eliminate redundancies and thus reduce the quantity 
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of source code in a system. Although macros are ap- 
plicable to  all detected clones, since the semantics of 
differences is ignored, their use presents several draw- 
backs. It is restricted to  languages that support macros. 
but more importantly: nheli lexical changes are intro- 
duced to the macro: a manual verification is necessary 
to ensure that the intended semantic change correctly 
propagates to all the contests of use of the macro. 

Even though those clone arialysis studies provide us?- 
fill information on the cloning phenomenon in software 
systems, none is oriented towards proyiding information 
detailed enough for clone based refac.ctoring. 

7 Conclusions and future work 
This paper has presented an advanced clone analysis 
useful to system refactoririg. Clones are good candidates 
for refactoring as they corrcspond to  duplicat,ed code 
and implicit links between components. 

The novel analysis focuses on two aspects of clones: the 
meaning of their differences from a programmers per- 
spec,tive and their context dependence. Differences in- 
terpret,ation in terms of precise programming language 
entities is useful for refactoring as it can guide the choice 
of candidate clusters and guide reengineering act,ions 
perforrried during redesign. For this aspect of the anal- 
ysis: a novel clone comparison algorithm has been intro- 
duced along with a novel difference interpretation arid 
classification. The second a.spect of the analysis, cont,ext 
dependence, provides useful input on the cost of trans- 
ferring common or particular code fragments between 
their original dasses and ot,lier classcs. It, can therefore 
guide the choice of refactoring approaches to apply t,o 
specific clusters of clones. 

The novel clone analysis provides a solid basis for the de- 
velopment of computer-aided refact,oring environments. 
Completely automatic approaches are also possible but 
they are costly and provide little flexibility to  the user. 
Maiiual refactoring on the other hand, can be cumber- 
soirie as hundreds of clusters are present in a. systmi. 
assisted refactoring combines the strengths of both ap- 
proaches by computing all the inforination necessa.ry for 
refactoring and allowing t.he user t o  concentrate on t,hr 
refactoring decisions. 

The nest step of the research is to  develop more interac- 
t,ive approaches and investigate their effectiveness in in- 
dustrial refactoring projects. The refinement in mctrics 
for clone analysis could also be irivestigated for refac- 
toririg perfor~nance. 
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