
Migration of Procedural Systems to Network-Centric

Platforms �

Prashant Patil1 Ying Zou1 Kostas Kontogiannis1 John Mylopoulos2

University of Waterloo1 University of Toronto2

Dept. of Electrical & Computer Engineering Dept. of Computer Science

Abstract

Technologies developed over the past few

years such as CORBA, Java and the Web, have

made it easier to build and deploy distributed

object applications. These technologies have

also made a visible impact on legacy software

system evolution.

This paper focuses on the methods for

re-engineering procedural systems into new

Network-Centric platforms. The �rst step of

this re-engineering method is to migrate a

legacy system into an object oriented architec-

ture. The extraction of the object oriented ar-

chitecture is based on global data type analysis

and an evidence model that allows for alterna-

tive target designs to be evaluated and ranked.

Once a target design has been extracted, C++

code is generated for the re-engineered system.

The second step is to wrap the components of

the new object oriented system with interfaces,

so that they can be made available through a

network centric workbench such as CORBA.

Automatically generated IDL interfaces, and

CORBA compliant wrapper classes allow for

the migration of the new code to a distributed

Network-Centric environment. A prototype

tool has been built and in this paper we dis-

cuss how the tool and these re-engineering tech-

niques can be applied to migrate three medium

size C systems.

�This work was funded by IBM Canada Ltd.
through the Toronto Laboratory, Center for Advanced
Studies; also by the Natural Sciences and Engineering

Research Council of Canada. Contact persons at IBM
CAS for this work are Bill O'Farrel (billo@ca.ibm.com)
and Stephen Perelgut (perelgut@ca.ibm.com).

1 Introduction

Over the past few years, the explosive
growth and acceptance of technologies such as
the Internet, CORBA, Java and the Web have
attracted attention away from client-server ar-
chitectures and have shifted it towards dis-
tributed object ones.

In this paper, we propose re-engineering
techniques and tools that utilize distributed
object technology to re-engineer procedural
legacy software systems to new Network-
Centric Platforms.

This paper presents techniques for incre-
mentally migrating a procedural system into a
distributed, object-oriented architecture. The
�rst step of the migration process extracts an
object model from legacy source code. This
step can be quite tedious, but it has been par-
tially automated by a tool that helps the user
in developing an object-oriented design for the
new system. Object extraction from legacy
code and method attachment is guided by the
tool and is based on an evidence model. The
object model that is produced actually goes
through several iterations and evolves accord-
ing to user's knowledge. Once object oriented
components have been identi�ed and corre-
sponding C++ code has been generated, these
objects can be made available through wrapper
classes and CORBA compliant IDL speci�ca-
tions. The wrapper classes and IDL speci�ca-
tions can be generated automatically from the
generated C++ code using our tool.

This paper is organized as follows. Section
2 discusses the related work, section 3 presents
the methodology adopted for object identi�ca-
tion. In section 4, we have described method

identi�cation techniques and conict resolution
strategy. Section 5, gives details about how the
class-method conicts are resolved. In section
6 source code generation process is described
and the re�nement of evolved object model is
described in section 7. Section 8 discusses the
wrapping of objects and making them available
through CORBA interface. In section 9, exper-
imentation involved in this work is mentioned
and section 10 lists concluding remarks.

2 Related Work

The migration of procedural legacy systems
to object oriented systems has been addressed
by a number of research groups in the soft-
ware engineering community. Overall, these
research e�orts fall under two main categories.
The �rst category includes techniques which fo-
cus on the identi�cation of objects and abstract
data types (ADT).

In [11] an interactive system that �nds can-
didate ADTs and object instances in proce-
dural systems is presented. The basis of the
analysis is the program's Abstract Syntax Tree
(AST). A �eld reference graph provides infor-
mation on the dependencies and uses of di�er-
ent structure (or record) �elds by various func-
tions or procedures of the subject system. [19]
describes a system that allows for the identi-
�cation of objects in procedural systems using
domain knowledge and user interaction. An
object model is extracted from the source code
and is compared to an independently devel-
oped object model of the underlying system.
[17] proposes clustering techniques to identify
ADTs from existing procedures. The technique
is based on attaching data types to existing
procedures. A collection including a data type
with its associated operations is then identi-
�ed as an ADT. In [8] an object identi�cation
method based on the global data types and on
the use of formal parameters is proposed. Fi-
nally, [15] presents a system for the identi�-
cation of objects in COBOL programs. The
approach uses slicing techniques to identify all
elementary operations which change the state
of a data type.

The second research direction focuses on re-

Identification

Refinement

Evaluation

Object Model

AST

Annotation
Method
Class &

Domain

Knowledge

Analysis

Evidence

Collection &

Object Model

parsing

Source
Code

Figure 1: Overview of the object model recov-
ery process.

engineering and restructuring an existing ap-
plication in an object oriented way. This in-
cludes source code transformations, clustering,
wrapping and integration with other systems.
[13] discusses a re-engineering tool that allows
for the transformation of redundant, duplicated
and similar data and processes to classes and
methods. Likewise, [3] proposes a tool that
supports the decomposition of large legacy sys-
tem. The technique can be used to re-engineer
a system into a client-server platform. In [16] a
system for re-engineering COBOL legacy appli-
cations to distributed object oriented environ-
ments are presented. The system deals with the
problem of encapsulating legacy system com-
ponents in object wrappers. Other interesting
work in the area of object oriented software mi-
gration can be found in [22] and in [12].

Our approach di�ers from existing ap-
proaches in that we adopt an incremental and
iterative object discovery process. The �rst
step of our proposed process parses procedural
legacy source code and creates an annotated
AST, which is stored in an object-oriented
database. Given the annotated ASTs, the
global data types and formal parameters are
then analyzed, and a set of candidate object
models is built. Each object model includes a
collection of (proposed) classes and associated
methods. However, a method may be attached
to more than one class. This leads to conict-

2

ing models which are resolved by a followup
re�nement step. This step evaluates the can-
didate object models and consequently selects
the most promising one. The selection and re-
�nement is based on the data ow and inter-
face complexity analysis. An overview of the
process is shown in Fig.1.

The process is largely automated, and allows
for domain knowledge to be considered during
the object identi�cation process.

3 Migration to Object

Oriented Architecture

First, the source code is parsed and anno-
tated ASTs are created. Annotations on the
ASTs include link information, usage informa-
tion (fetches, stores), and metrics. Second, the
global data types and formal parameters are
analyzed and collected together as a prelimi-
nary candidate class pool. The �nal selection
of classes and methods is done with the help
of evidence model. An evidence model is a set
of heuristics based on the object oriented pro-
gramming principles. This evidence model is
driven by various features obtained from the
source code (represented as AST annotations).
The evidence model helps to establish an opti-
mal object model with respect to well de�ned
software engineering design principles, such as
cohesion, coupling, depth of inheritance, and
average method complexity. The source code
features used by the evidence model include
function return types, state changes, number
of uses of a candidate class instances, num-
ber of function calls and so on. A number
of heuristics exploiting inheritance, polymor-
phism, and overloading for the target system
have been identi�ed and incorporated into the
re-engineering tool. At any point of this pro-
cess, the user can assess and evaluate the target
object model proposed by the developed tool
and edit the evolving model using a UML com-
pliant editor 1.

1We use Together/C++ White-board edition as our
UML tool. Together is trademark of Object Interna-
tional Software Ltd.

3.1 Object Identi�cation

The �rst step towards the migration of a pro-
cedural system to an object-oriented system is
the selection of candidate object classes. This
task can be automated to a large extend using
a number of di�erent software analysis tech-
niques. However, no matter how sophisticated
the analysis techniques are, user assistance and
guidance is crucial in obtaining a viable and ef-
�cient object model. Signi�cant domain infor-
mation can be utilized by the user to guide the
discovery process and direct it towards a better
and more suitable object model. We have used
the software analysis tool Re�ne2. to develop
our prototype tools.

We use data type analysis as a principle
strategy to identify objects in the procedural
systems. We use two types of analysis. The
�rst involves the analysis of global variables
and their corresponding data types, while the
second analyzes complex data types in formal
parameter lists. The following subsections dis-
cuss these techniques in more detail.

3.2 Data Type Analysis

Analysis of global variables and their corre-
sponding data types is based on the identi�ca-
tion of variables that are globally visible within
a module. A module is de�ned a set of consecu-
tive program statements that deliver particular
functionality and can be referred to by an ag-
gregate name [9]. For our purposes, a module
takes the form of a collection of functions. Any
variable that is shared or is visible (i.e. it can
be fetched and stored) by all the components
of a module is considered as a global variable
with respect to this module. Examples include
static variables visible within a C source code
�le or extern variables shared between two or
more C source code �les. In order to perform
this type of analysis, a set of modules have to
be identi�ed �rst. Clustering techniques and
architectural recovery techniques presented in
[6], [20], [10], [4] and [23] are used as a �rst
step in order to obtain an initial decomposition
of a large system in terms of module compo-
nents. Clustering analysis yields modules that

2Re�ne is a Trademark of Reasoning Systems Inc.

3

are composed of functions which use or update
a set of common global resources or reference
common data types. Once a module has been
identi�ed then all aggregate data types associ-
ated with the module become primary object
class candidates.

In addition to global data types, data type
analysis is also focusing on aggregate type def-
initions that are present in formal parameter
lists of the original system's functions. The
pool of all data types that are identi�ed by the
global variable analysis and data type analysis
constitutes the initial set of candidate classes.
Once an initial set of classes has been identi-
�ed method attachment follows. The process
is incremental and iterative. In each iteration,
the object model is re�ned and simpli�ed. Pos-
sible re�nements include class merging, forma-
tion of object hierarchies, and identi�cation of
possible polymorphic or overloaded functions.
A number of heuristics have been added to the
transformation tool to capture \good" design
practices software engineers often use.

As an example of such a heuristic, consider
the following declarations that may be obtained
by di�erent source �les:

struct OBJECT {

char name[MAXLEN];

char idType[MAXLEN];

char superClass[MAXLEN];

char justification[MAXLEN];

struct LIST *startList;

struct ALIST ATTLIST[MAXATTRIBUTES];

int numOfAtts;

struct OBJECT *next;

};

typedef struct OBJECT OBJECT_TYPE;

In this case, the system identi�es OBJECT

and OBJECT TYPE as one candidate class with
the name OBJECT. The user may rename the
candidate class through a menu driven user
interface. The name change is recorded in a
global table so that source code transforma-
tions for generating the new object oriented
code will take these name mappings into ac-
count.

4 Method Identi�cation

This part of the objecti�cation process fo-
cuses on the discovery of functions or proce-
dures from the original system which can be
transformed to methods for the new object ori-
ented system. Selecting methods and associat-
ing these methods to classes can be achieved
by examining the formal parameters and usage
patterns of aggregate data types in the func-
tions of the original program. Basic types (i.e.
char, int, float are ignored and only aggre-
gate types (i.e struct, arrays) are considered.
A special case applies to arrays of basic types
which can become templates. A detailed de-
scription of this type of program transforma-
tion can be found in [7]. For the rest, if the
complex and aggregate types are found in the
parameter lists, the following simple rules are
applied:

� For functions with no parameters, the re-
turn type and the type of global variables
(in the scope of the particular function)
that are modi�ed/used become the initial
candidate classes for which the particular
function will become a method.

� For single parameter functions, the param-
eter type along with the return type and
the global types modi�ed become the can-
didate classes.

� For multiple parameter functions, all the
parameter types along with the return
type and the globally modi�ed/used types
are considered.

For a large number of functions, there is
only one aggregate data type involved (in pa-
rameters, globally de�ned or as a return type)
and these functions are immediately resolved
as methods associated with the class derived
from this aggregate data type. However, there
are cases when a method is identi�ed as a can-
didate method to more than one class. In
this case, we say that the method is in a con-

ict. The following sections discuss the di�er-
ent types of evidence gathered to resolve meth-
ods that are in conict and to provide a ranking
mechanism for the di�erent design choices that
may occur.

4

4.1 Return Type Analysis

This type of analysis provides evidence
based on the return type of a function. The mo-
tivation for using this criterion is that a return
type usually indicates state change for a given
data type. Since we are interested in complying
with the concept of information hiding for the
new system, we focus on data types that are in
the formal parameters and are modi�ed in the
function body. These data types become the
primary candidate classes to which the method
that corresponds to a given function will be
assigned to. However, poorly written code or
code with side e�ects may not necessarily im-
ply that a return type corresponds to a formal
parameter that has been modi�ed. For these
cases, the state modi�cation analysis which is
described in the following section is considered.

4.2 State Modi�cation Analysis

State modi�cation analysis is based on the
principle of information hiding and functional
cohesion. The premise is that we would like
to have methods that modify the state of their
own class and minimize the side e�ects (state
changes) of other classes. For example, con-
sider the following statements in a function
with its corresponding type declarations:

void InsertNode(RootPtr Root,

NodePtr aNode)

{

......

Root->node = aNode;

......

}

This will provide an evidence of state change
for the formal parameter type RootPtr and use
of the type Node. State dependency tables can
also be constructed and provide an overall pic-
ture of the data type dependencies for a legacy
application [3]. For our system, state mod-
i�cation analysis also involves possible state
changes due to function calls in the original
procedural source code. Transitive closures of
data type state modi�cation via function calls
and parameter passing by reference is also con-
sidered. For example, if function avlInsert

calls btInstert and btInsert modi�es a data
type which is associated with avlInsert, then

this data type is also added in the modi�ed
data types list for avlInsert.

State change information is recorded us-
ing entity-relationship tuples speci�ed in RSF.
[10] These tuples have the form <entity>

modifies <entity> and can be loaded in a
relational database for further analysis if re-
quired.

4.3 Usage analysis

This type of analysis focuses on the selec-
tion of data types used in the body of a func-
tion and can be exported via parameter pass-
ing by reference, return expressions, or global
variables. For this analysis, all aggregate data
types that are involved in expressions, castings,
or in indirect component selections which are
exported from a function (via parameter pass-
ing or global variables) are considered. This
type of analysis is useful for providing coupling
analysis (data dependencies) and provides an
overall data ow view of the di�erent object
oriented designs that are possible.

4.4 Metrics Analysis

Metrics analysis provides an useful mecha-
nism for assessing the impact of alternative de-
sign decisions on the overall quality of the tar-
get system. This assessment helps in resolving
conicts when a method could be attached to
more than one class. For this work, we focus
on two well known data ow design metrics,
the Information Flow and the Function Point

metrics.

Function Point

The function point metric is a design level
metric [18] and is associated with the degree of
functionality that is delivered by a given soft-
ware component. An informal description of
the metric is given below:

8>>>>>><
>>>>>>:

p1 � jGLOBALS(a constr)j+
p2 � (jGLOBALS UPDATED(a constr)j+
jPARMS BY REF UPDATED

(a constr)j)+
p3 � jREAD STATS(a constr)j+
p4 � FILES OPENED(a constr)

5

where p1; :::; p4 are integer coe�cients. For
our ranking purposes, this metric is an esti-
mate of the functionality that can be delivered
by a method when alternative designs are con-
sidered. In this context, we evaluate the metric
for the method (that is the body of the original
function) as if a choice has been made. That
is, we pretend the method has been already at-
tached to a class and the metric is computed on
the premise that the function has been modi�ed
(i.e. the formal parameter list and its interface
with the rest of the system has been changed).
The metric is re-evaluated per alternative and
the results are ranked. Overall, we are inter-
ested in minimizing the functionality delivered
by a method because this leads to a modular
design for the target system. That is, we are
interested in designing methods that perform
a speci�c task and are applied on as few data
types as possible (ideally just one, in order to
comply with functional cohesion) [9].

Information Flow

Information Flow is another useful data ow
related metric and provides a measure of the
interaction (fan-in, fan-out) of a software com-
ponent with the rest of the system. Fan-in is
de�ned as the number of data and control ows
terminating at a module and fan-out is de�ned
as the number of data and control ows ema-
nating from a module. A more detailed descrip-
tion of this metric can be found in [18]. Simi-
lar to the Function Point, we are interested in
computing the metric for each method and for
each possible design choice (i.e. attachment of
a given method to a class). The di�erent alter-
natives are ranked and the one that minimizes
Information Flow is considered as a primary
candidate. The reason for minimizing the met-
ric is that we would like to comply with the
principles of information hiding and encapsu-
lation. These principles suggest keeping data
ows within the boundaries of a given unit (i.e.
a class and the associated with it methods) and
minimizing the unit's data interaction with the
rest of the system.

4.5 Function Call Analysis

Function call analysis focuses on the exam-
ination of data types in the actual parameter

Figure 2: Initial identi�cation step provides
candidate classes and methods. Before conict
resolution, a method could be a candidate to
more than one class.

lists of function calls that occur within a body
of the function that is to be considered as a
candidate method of a class. For example, if
methodM that corresponds to function F is in
conict and can be attached to di�erent classes
C1; C2; C3 generated from data types T1; T2; T3
respectively, function call analysis will examine
the actual parameter lists of all function calls
within the body of F . The data types that most
often participate both in the formal parameter
list of F and in actual parameter lists of calls
within the body of F are considered primary
candidate classes to attach method M . This
type of analysis allows for collecting under a
single class all methods that operate and alter
the state of this class.

5 Method Attachment

Resolution

The problem of discovering object oriented
structures in procedural code may become a
very complex task as the quality of the orig-

6

Figure 3: Evidence table for ubi btNode class.

inal system may be very poor. In Fig.2,
part of the candidate object model for the
AVL library is depicted. The model con-
tains a number of conicts. For example,
method ubi avlInsert is suggested as candi-
date method for ubi btNode and ubi btRoot

classes. The conict-resolution method is
evidence-driven, and is based on the premise
that a knowledgeable user can discover a bet-
ter object-oriented design once he or she has
a global view of the di�erent design alterna-
tives. Each design alternative can be ranked
based on the impact it has on the fundamen-
tal source code features. We have selected eight
source code features which are depicted in Fig.3
(columns 3-10).

The �rst column indicates the name of
the potential method to be attached in
ubi btNode. The second column of the table
indicates whether the method can be directly
attached to a class or not. Here, a NIL value
indicates that the method is a candidate for
another class as well. The third column indi-
cates whether the function returns the type for

Figure 4: A resolution strategy based on global
evidence provides a way of attaching methods
to classes and eliminating conicts.

which the table is constructed and the fourth
column indicates whether a parameter refer-
ence of this type is both modi�ed and returned.
The �fth and sixth columns indicate whether
the Kafura and Albrecht metrics (Informa-
tion Flow and Function Point metrics respec-
tively) are minimized for a given method when
this method is assigned to ubi btNode class.
The seventh column indicates the number of
uses of ubi btNode data type in the function
body. The eighth column indicates the num-
ber of function calls within the function body
that involve the ubi btNode data type in their
actual parameter list. The ninth column indi-
cates whether there is a state change of the ob-
ject for which this method will be attached to
(i.e. the object associated with this keyword
in C). Finally, the tenth column indicates the
number of updates of type ubi btNode which
correspond to data that are local to the body
of the function.

We construct one table per data type that

7

has candidate methods in conict. For ex-
ample, Fig.3 provides evidence for ubi btNode

class. Each evidence can also be given a weight
factor and the weighted sum to be used for
ranking the di�erent design alternatives. Our
experimentation has revealed that state im-

pact evidence along with the return type evi-
dence are the signi�cant factors for performing
method attachment resolution. If these are not
adequate to resolve method attachment, then
metrics and data type usage could be the sig-
ni�cant factors for ranking alternative designs.
Fig.4 illustrates the results after applying the
evidence driven conict resolution techniques.
In this case, the method ubi avlInsert has
been assigned correctly to class ubi btRoot. In
this example, the proposed model also allows
for the polymorphic behavior of the insertion
method in the case of library extensions (i.e.
new insertion strategies applied to other types
of binary trees such as binary heaps).

6 Source Code Generation

The main objective of this part of the pro-
cess is to automatically generate code that can
be compiled with minimal user modi�cations.
Based on the class list and method resolution
results, the header �le (C++) is created �rst.
Next, the header �le is fed to the UML tool and
relationships between classes are determined.
The results from the method resolution pro-
cess are examined and necessary changes are
made. During the last step, the changes and re-
lationships are incorporated in the source code
to make the �nal design to be conformed with
user's domain knowledge. The following two
sections discuss this process in more details.

6.1 Generating Class Header

Files

After class-method resolution, for each class
from the class list, the corresponding class dec-
laration C++ code is generated. The attributes
of a class become private member variables for
that class.

The functions in the original system are
transformed into public methods of the class
they are assigned to. If the class type appears

in the function formal parameter list, and if
that function is attached as a method to that
class, the corresponding parameter is removed
from the formal parameters. The functions
with class type as a parameter are kept as non-
static. The static keyword from C functions
is removed. Conversely, the functions which
return a type corresponding to their assigned
class become static members. In order to access
and manipulate member variables, additional
methods (accessors and mutators) are created.
As an example, consider the following function
prototype,

ubi_btNodePtr ubi_RemoveTree

(ubi_btRoot *RootPtr, ubi_btNode *Node)

that is transformed into a method as shown
below.

ubi_btNode*

ubi_btNode::

ubi_btRemoveTree(ubi_btRoot *RootPtr)

6.2 Generating Class

Implementation Files

In this step, class methods are implemented
using the code from mapped C functions. For
each class in the class list, the functions are
traced from their AST and transformation rou-
tines are called to generate the corresponding
method body in C++ syntax. As an exam-
ple, consider the following procedure code frag-
ment.

ubi_btNodePtr ubi_avlRemove (

ubi_btRootPtr RootPtr,

ubi_btNodePtr DeadNode)

{

if (ubi_btRemove(RootPtr,DeadNode))

RootPtr->root =

Debalance(RootPtr->root

DeadNode->Link[01]

DeadNode->gender);

return (DeadNode);

}

If ubi avlRemove is attached to ubi beNode

by the evidence model, then following piece of
C++ code is generated.

8

Figure 5: Re�nement of class objects and their relationships with each other

ubi_btNodePtr

ubi_btNode::ubi_avlRemove (

ubi_btRootPtr RootPtr)

{

if (ubi_btRemove(RootPtr))

RootPtr->putroot(

(RootPtr->getRoot())->

Debalance(getLink(0x01),getgender()));

return this;

}

In the method body, for accessing member
variables of other class, accessors and mutators
are used. These code generation utilities are in-
corporated in the basic tool of object identi�ca-
tion. The code generation process traverses the
ASTs for each class and generates syntactically
correct C++ code for .h and .cpp �les. This
code includes automatically generated accessor
and mutator methods for each class. In some
cases, human intervention is required for ob-
taining a fully compilable code. However, this
intervention involves minor changes and does
not add signi�cantly to the migration e�orts.

7 Object

Model Re�nement

The resulting method-conict resolution is
presented to the user. Some methods can not
be assigned automatically to just one class.
Such methods have to be split into smaller
methods and then can be assigned to appropri-
ate classes. This process has to be done manu-
ally and user has to evaluate the code and make
decisions about possible changes that he or she
wants to implement. In order to assist the user
in evaluation of generated code, the header �les
generated are exported to the object modeling
tool(Together). Various relations between dif-
ferent classes are assigned to the class diagram.
The main reason of using Together is that it
supports UML and the changes in the object
model are tracked back in the source code. In
this step, the goal is to get an object model
out of the generated class list and add new de-
sign elements from the domain-expert user if
required.

In this work, we have identi�ed a number
of source code features that can help a devel-
oper make a design decision and obtain a better

9

object oriented design from the original proce-
dural code. Fig.5 shows a class diagram and
of relations between classes. The user can edit
these classes and their relations as these are
presented to the user for further re�nement.

In the following sections, we discuss a num-
ber of design decision rules that have been
incorporated into the system to address is-
sues related to inheritance, polymorphism, and
method overloading.

Inheritance

Inheritance between object classes can be
achieved by examining data structures in the
original code. If two or more structures di�er
only with respect to few �elds, these are candi-
date subclasses of a more general class. The
more general class will contain the common
�elds and will inherit these �elds with public
inheritance to the subclasses. Certain functions
copy one data structure to another data struc-
ture, which di�ers in many �elds. The relation
of these two data structures can be identi�ed as
inheritance. The structure with less �elds be-
comes the base class and the other can be recog-
nized as its derived class. Other evidence that
supports inheritance is code cloning analysis,
where two functions are identical with the only
di�erence that they operate on di�erent data
types. Then these data types may become sub-
classes of a more general class (type) and the
method can be attached and inherited from the
more general class. Yet another heuristic that
indicate possible inheritance is the presence of
casting.

Overloading, Polymorphism

Overloaded methods can be also identi�ed
using code cloning analysis. If two or more
functions are identi�ed as clones with minor
di�erences in their structure and the data types
they use, then these functions can be over-
loaded on the data types they di�er. The con-
straint is that these functions should return
the same data type. Some groups of functions
with similar names with the same pre�x or suf-
�x provide another clue to the name overload-
ing. For example, execl(), execv(), execlp(),
execvp() are functions to execute processes in
various ways and all can be overloaded with the
same function name. The functions with union

type parameter become candidate overloaded
methods. The reason is that these functions
usually have di�erent behavior according to the
type of the union parameter they are applied
upon. To simulate this behavior at the tar-
get system, these functions can be transformed
into several overloaded methods with di�erent
parameter types that are obtained from the
original union struct de�nition. Each over-
loaded method operates on the speci�c case of
the original union structure. Similarly, poly-

morphic functions can be identi�ed by exam-
ining function parameters that are pointers to
functions. In this case, each possible function
reference can become a class and their corre-
sponding source code becomes a polymorphic
method. As in example given below, consider
the case of a tree traversal function that also
takes a pointer to a function as a parameter
that performs an operation on the node that is
visited. Assuming that there is one tree traver-
sal strategy, the tree traversal function may be-
come a method attached to the tree class, and
each action to be performed upon visiting a tree
node may become a polymorphic method to a
general Action class.

For example, we may have an ActionOnNode
class with subclasses PrintNodeAction,
SwapNodeAction and one polymorphic method
called DoAction(). The following example il-
lustrates this case which is a standard design
pattern that is incorporated in the tool.

ubi_trBool ubi_btTraverse(

ubi_btRootPtr RootPtr,

ubi_btActionRtn EachNode,

void *UserData)

The object recovery tool yields:

ubi_trBool ubi_btRoot:: ubi_btTraverse(

ActionOnNode * act,

void *UserData)

where ActionOnNode is:

class ActionOnNode {

public:

virtual void doAction(

ubi_btNode* p,

void *UserData)= 0;

};

10

A class that implements the printing of the
data items in a tree node can be de�ned as:

class PrintNodeAction:

public ActionOnNode

{

public:

virtual void doAction(

ubi_btNode* p, void *UserData)

{

p->PrintNode(UserData);

};

};

8 Migration to Network-

Centric Environment

Di�erent object models arise from di�erent
requirements. C++ is a language for object-
oriented systems and provides means for a com-
ponent based infrastructure. On the other
hand, emerging standards such as CORBA
and IDL provide language-independent inter-
face speci�cation and component integration
[21]. Once a legacy system has been re-
engineered and an object model has been ex-
tracted, the system's original scope and us-
ability can be greatly extended by allowing
the re-engineered system to be in a form that
supports distributed object orientation. In
such a way, new functionality can be added
to the re-engineered system in terms of plug-
in components. In addition, existing parts
of the re-engineered systems can be available
from within other legacy applications, if need
be. Wrapping the legacy components provides
a low cost, low risk solution to achieve this
target[5]. Each legacy component is encapsu-
lated into the corresponding wrapper object.
In the distributed computing environment, the
wrappers realize the interfaces to translate the
message passing between the calling and the
called objects, redirect the innovation to the ac-
tual legacy class method. The wrapped compo-
nents can be collected as the object repository,
distributed on di�erent servers.

In our approach, we take advantage of the
CORBA and OMG IDL to accomplish the ob-

ject wrapping task in terms of the following
steps.

First, in order to provide the client program
with a visible interface to other applications,
each identi�ed legacy class is de�ned as an IDL
interface speci�cation. Public methods are reg-
istered as the operations in the interface. Pub-
lic data members are changed into the accessors
and mutator operations in the interface. This
IDL speci�cation can be automatically gener-
ated by our tool and the object model.

Second, the CORBA IDL compiler trans-
lates the given IDL speci�cation into a lan-
guage speci�c (e.g. C++), client-side stub
classes and server-side skeleton classes. Client
stub classes and server skeleton classes are gen-
erated automatically from corresponding IDL
interface speci�cation. The client stub classes
are proxies that allow a request invocation to
be made via a normal local function but it rep-
resents the remote target object to the local
applications. Server-side skeleton classes allow
a request invocation received by the server to
be dispatched to the appropriate servant. The
operations registered in the interface become
pure virtual functions in the skeleton class.

Third, wrapper classes are generated and
implemented as CORBA objects, directly in-
heriting from the skeleton classes. This is a
process that is also automatic, and is supported
by our tool. The wrapper classes encapsulate
the legacy object by reference, and incarnate
the virtual functions by redirecting them to the
encapsulated legacy class methods. The new
functionality of the legacy object can be added
in the wrapper class as long as the method
name is registered in the interface.

For example, the TreeNodeData class,
shown in Program1, is one of the classes iden-
ti�ed by the analysis of the GNU tree libraries.
This class is made visible to its remote clients
by de�ning the interface corba TreeNodeData

in IDL, as shown in Program2. In Program3,
corba TreeNodeData interface is mapped to
the skeleton class with the same identi-
�er.The wrapper TreeNodeData class inherits
from corba TreeNodeData and references the
TreeNodeData class as the private data mem-
ber. Examples on how encapsulation and wrap-
ping can be achieved are shown below.

11

Program1: TreeNodeData class de�ni-
tion

class TreeNodeData {

private:

ubi_btNode * Node;

char Data[NAMESIZE];

int dataCount;

public:

TreeNodeData();

void putData(char * val);

char * getData();

char getData(int i);

void putNode(ubi_btNode *val);

ubi_btNode * getNode();

void putDataCount(int aVal);

};

Program2: corba TreeNodeData inter-
face de�nition

interface corba_TreeNodeData{

void putData(in string val);

string getDataString();

char getData(in long i);

// Other operations are eliminated

};

Program3: wrapper TreeNodeData class
de�nition

class wrapper_TreeNodeData :

public corba_TreeNodeData {

private:

CORBA::Boolean _rel_flag;

TreeNodeData& _ref;

char *_obj_name;

public:

wrapper_TreeNodeData(

TreeNodeData& _t,

const char *obj_name=(char*)NULL,

CORBA::Boolean _r_f=0);

wrapper_TreeNodeData(

TreeNodeData& _t,

const char *_serv_name,

const CORBA::ReferenceData& _id,

CORBA::Boolean _r_f=0);

~wrapper_TreeNodeData();

CORBA::Boolean rel_flag();

void rel_flag(CORBA::Boolean _r_f);

void putDataCount(CORBA::Long aVal);

// other function definitions

......

// message transformation

TreeNodeData* transIDLToObj (

corba_TreeNodeData obj);

}

Since IDL does not support overloading and
polymorphism, each method and data �eld
within the interface should have an unique
identi�er. Otherwise it would be ambiguous
when mapping to di�erent languages. For ex-
ample, C++ supports overloading, but C does
not. To avoid changing the identi�ed objects
and to utilize the functionality o�ered by the
overloaded and polymorphic methods, it is nec-
essary to rename these methods by adding the
pre�x or su�x to the original name when they
are registered in the interface. This \naming"
technique will allow for unique naming conven-
tions throughout the system, without violat-
ing code style standards. The wrapper classes
are responsible for directing the renamed over-
loaded and polymorphic methods to the cor-
responding client code. When a client in-
vokes a method through CORBA, it passes the
CORBA data type parameters. The wrapper
classes need the translation of the CORBA spe-
ci�c data types from the client calls to the
data types used by legacy classes. Program4 il-
lustrates the transformation from the CORBA
speci�c type such as corba TreeNodeData ptr

to the TreeNodeData used in the legacy func-
tion. In the same way, the wrapper classes con-
vert the returned values from the legacy object
to the CORBA speci�c data type. A wrapper
class for the TreeNodeData class is illustrated
in the example code below.

Program4: Message translation example

TreeNodeData* wrapper_TreeNodeData::

transIDLToObj(

corba_TreeNodeData obj)

{

if (CORBA::is_nil(obj))

return NULL;

12

// Copy the data in the CORBA

//object to the legacy object

_ref.putData(obj->getDataString());

_ref.putDataCount(obj->getDataCount());

ubi_btNode *NodeImp = new ubi_btNode();

wrapper_ubi_btNode

NodeWrap(*NodeImp, _obj_name);

_ref.putNode(NodeWrap.transIDLToObj

(obj->getNode()));

return &_ref;

};

9 Experiments

Experimentation for the proposed tool was
carried out with three di�erent C-based soft-
ware systems. These included the expert sys-
tem shell CLIPS, the GNU binary tree libraries
(AVL, Binary Search Trees), and modules from
a speech recognition system. The user interface
and a set of APIs providing means for the user
to customize and re�ne the object model has
also been built in Re�ne / Intervista. A tool
called Together/C++ is used for editing the
object model.

The �rst experiment focused on computing
the contribution of the individual source code
features and providing an experimental view
of the importance of each of di�erent source
code features during the object discovery pro-
cess. The results were obtained by checking
manually migrated source code, from three dif-
ferent systems against the code that has been
generated by the system. The total size of
the three system parts we experimented with
was 12.5KLOC, consisting of 235 functions and
53 major data types. Manual migration was
performed independently as part of another
project.

The evaluation results are illustrated in
Table.1. Based on the class list and method
resolution, class declarations are created into
a �le which is passed on to the object vi-
sualization tool. The class list is then aug-
mented with features such as an inheritance,
generalization, dependency, along with rela-
tions between objects. The generated source
code can be �ne-tuned by the user and tested
for a number of software quality features. In
the context of maintainability, the comparison

Feature Correct False

Negative

State Change 36% 3%
Data Type Uses 26% 3%
Information Flow 17% N/A
Return Types 4% 4%
Modi�ed
Return Types 1% 4%
Function Point 1% N/A

Table 1: Impact of source code features on the
method conict resolution process.

between quality-based metrics of the old and
new system gives us an indication of the de-
gree to which our chosen objecti�cation heuris-
tics are bene�cial from a maintenance perspec-
tive. For our work, the quality of the new sys-
tem is evaluated in terms of the metrics such
as method complexity, weighted methods per
class, depth of inheritance, coupling between
objects and line of code per method.[1][14] Pre-
liminary results suggest that the new system is
indeed more maintainable than its forefather.
The second experiment focused on the develop-
ment of an object model for the three selected
systems. One of the systems analyzed was a
public library written in C for Sparse Arrays,
AVL, Splay Trees, and Binary Search Trees [2].
The library also includes code for implementing
simple and doubly linked lists and has a total
size of 7.4KLOC. The original system was orga-
nized around C structs and a quite elaborate
set of macros for implementing tree traversals
and simulate polymorphism for insert, delete
and tree balancing routines.

The proposed system has been applied to the
library, identifying on the �rst step 19 classes
and 69 possible methods with a method conict
ratio of 49%. The second step was to apply the
conict resolution and class re�nement strat-
egy. Once source code for the target system
has been generated then a UML editor allows
the user to modify the object model, and let the
tool re-generate the IDL and wrapper classes.

Obviously, remote invocation cannot have
the equivalent performance as the local innova-
tion. But the trade-o� is the ability of moving
parts of the new system to a faster server, or by

13

making available the functionality of the orig-
inal systems to other applications (open sys-
tem).

Our experimental results suggest that the
tool is scalable as it take approximately 650 sec-
onds to generate a complete candidate object
model for a 35KLOC system (CLIPS), running
on an Ultra 1 Sparc station. Moreover, the
migration can be done incrementally, without
the need of obtaining a complete object model
for the whole legacy system at once. On going
experimentation involves the assessment of the
re-usability and maintainability indices of the
re-engineered system as these are compared to
the original procedural system. Also, we work
on the application of this technique to larger
scale procedural systems.

10 Conclusions

We have presented techniques for re-
engineering procedural legacy software systems
into object-oriented, Network-Centric Environ-
ment. The migration of procedural code to ob-
ject oriented architecture makes it more exible
to adopt for new requirements.

Once the legacy component has been en-
capsulated with a layer of CORBA wrapper
class, it becomes very easy to enhance it with
additional functionality, and to inter-operate
with other completely independent applica-
tions. For example, client code can be Java ap-
plet and it can access the Java CORBA object
server or C++ CORBA object server without
knowing the details.

The techniques discussed in this paper have
been evaluated with prototype tools that have
been implemented and tested on medium size
C systems.

Acknowledgments

The authors would like to thank Bill
O'Farrell and Stephen Perelgut of IBM Cen-
ter for Advanced Studies for their technical and
management support without which this e�ort
would not be possible.

About the authors

Prashant Patil is a graduate student at Uni-
versity of Waterloo and his research interests

are reverse engineering and software migration.
Ying Zou is a Ph.D candidate at the Elec-
trical and Computer Engineering Department,
University of Waterloo. Her research inter-
ests include distributed object technology, soft-
ware re-engineering. Kostas Kontogiannis is
an Assistant Professor at Electrical and Com-
puter Engineering Department, University of
Waterloo. His research interests include soft-
ware re-engineering, software migration, soft-
ware reuse and knowledge based software en-
gineering. John Mylopoulos is a Professor at
the University of Toronto, department of Com-
puter Science. His interests include software
requirements, conceptual modeling, software
repositories and software re-engineering.

References

[1] Chidamber S. Kemerer C. A metrics suite
for object oriented design. In In Proceed-

ings of IEEE TSE'94, vol.20, pages 476{
493, June 1994.

[2] Hertel C.
http://www.interads.co.uk/ crh/ubiqx.

[3] Canfora G. et. al. Decomposing legacy
programs:a �rst step towards migrating to
client-server platforms. In In Proceedings

of IEEE IWPC'98, pages 136{144, June
1998.

[4] Chase M. et.al. Analysis and presentation
of recovered software architectures. In In

Proceedings of WCRE'96, pages 153{162,
November 1996.

[5] Cimitile A. et.al. Incremental migration
strategies: Data ow analysis for wrap-
ping. In In Proceedings of WCRE'98,
pages 59{68, October 1998.

[6] Finnigan P. et.al. The software bookshelf.
IBM Systems Journal, vol.36, 1997.

[7] Kontogiannis K. et.al. Code migration
through transformations: An experience
report. In In Proceedings of IBM CAS-

CON'98 Conference, pages 1{13, Toronto
ON, December 1998.

14

[8] Ogando R. et.al. An object �nder for pro-
gram structure understanding in software
maintenance. Journal of Software Mainte-

nance:Research and Practice, Vol.6, pages
261{283, 1994.

[9] Shari et.al. Software Engineering, Theory
and Practice. Prentice Hall, 1998.

[10] Tilley S. et.al. Programmable reverse engi-
neering. In International Journal of Soft-

ware Engineering and Knowledge Engi-

neering, pages 501{520, December 1994.

[11] Yeh A. et.al. Recovering abstract data
types and object instances from conven-
tional procedural language. IEEE Soft-

ware, pages 227{236, 1995.

[12] Jacobson I. Lindstrom F. Re-engineering
of old systems to an object-oriented archi-
tecture. In In Proceedings of OOPSLA'91,
pages 340{350, 1991.

[13] Newcomb P. Kotik G. Reengineering pro-
cedural into object-oriented systems. In In
Proceedings of WCRE'95, pages 237{249,
1995.

[14] Li W. Sallie H. Object-oriented met-
rics that predict maintainability. Journal
of Systems and Software, pages 111{122,
1993.

[15] Sneed H. Encapsulating legacy software
for use in client/server systems. In In Pro-

ceedings of IEEE WCRE'96, pages 104{
119, November 1996.

[16] Sneed H. Object-oriented cobol recycling.
In In Proceedings of IEEE WCRE'96,
pages 169{178, November 1996.

[17] Haughton H. Lano K. Objects revisited.
In In Proceedings of IEEE Conf. on Soft-

ware Engineering, pages 152{161, October
1991.

[18] Adamov R. Literature review on software
metrics. Institut fur Informatik der Uni-

versitat Zurich, 1987.

[19] Gall H. Klosch R. Finding objects in pro-
cedural programs:an alternative approach.
In In Proceedings of WCRE'95, pages 208{
216, 1995.

[20] Tzerpos V. Holt R. Software botryol-
ogy: Automatic clustering of software sys-
tems. In In Proceedings of the Interna-

tional Workshop on Large-Scale Software

Composition, Vienna, August 1998.

[21] Henning M. Vinoski S. Advanced CORBA

Programming with C++. Addision-
Wesley, 1999.

[22] Livadas P. Johnson T. A new approach
to �nding objects in programs. Journal of
Software Maintenance:Research and Prac-

tice, vol.6, pages 249{260, 1994.

[23] Selby R. Basili V. Analyzing error-prone
system structure. IEEE Transactions on

Software Engineering, Vol.17, No.2, pages
141{152, February 1991.

15

