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Abstract—Analyzing the run time behavior of large software
systems is a difficult and challenging task. Log analysis has been
proposed as a possible solution. However, such an analysis poses
unique challenges, mostly due to the volume and diversity of
the logged data that is collected, thus making this analysis often
intractable for practical purposes. In this paper, we present a log
analysis technique that aims to compute a smaller, compared to
the original, collection of events that relate to a given analysis
objective. The technique is based on computing a similarity
score between the logged events and a collection of significant
events that we refer to as beacons. The major novelties of the
proposed technique are that it is domain independent and that
it does not require the use of a pre-existing training data set.
The technique has been evaluated against the DARPA Intrusion
Detection Evaluation 1999 and the KDD 1999 data sets with
promising results.

Keywords-Software engineering, dynamic analysis, software
maintenance, system understanding, log analysis, log reduction

I. INTRODUCTION

Large software systems consist of many interconnected

components emitting a wealth of information in the form

of event logs. However, even for medium sized systems,

these logs contain a high volume of data that makes the

analysis intractable when attempting complex tasks, such as

root cause analysis, understanding the operation of the system

or investigating suspicious behavior. For many applications, it

would be useful to reduce, if possible, the size of the logged

data to a smaller subset which can then be examined and

processed in a more tractable manner.

In this paper, we present an approach that aims to reduce

the volume of the logged data that is emitted by the logging

infrastructure of a software application. The motivation behind

log reduction is that we would like to be able to focus the

attention of an operator or an automated process to small

parts of the logged data that bear a high likelihood of relating

to suspicious or significant system events (i.e. the beacons).

Beacon events can be selected by an automated process that

looks for outlier or unusual events, by a hypothesis generation

process (e.g. Goal or Anti-goal models), or by operators that

audit the system logs. In this respect, the log reduction can

be considered a first line of attack when one has to examine

large volumes of logged data due to a failure or a symptom.

The first notable point of the proposed approach is that it

is domain independent, in the sense that it does not utilize

domain knowledge nor does it treat different types of events or

attributes in a preferential manner while computing a similarity

score. This makes it readily suitable for collections of logged

data that do not conform to the same schema or format. The

second notable advantage of the approach is that it does not

require a pre-existing training data set, a requirement that

limits the use of most current approaches that are based on

machine-learning methods.

The proposed log reduction process is composed of four

main steps. In the first step, a collection of significant or

suspicious log entries is selected, either by the user or by an

automated event selection process, as the system operates. This

selection may be based on a dictionary of known suspicious

attribute-value pairs (e.g. the IP address of a known malicious

client that attempts to connect to a server) or on more com-

plex methods. For example, Goal and Anti-goal models have

already been used to denote patterns of events to assist on root

cause analysis diagnosis, intrusion detection and log filtering

[1], [2]. In the second step, logged events and user-selected

beacon events are fed to a log modeling pre-processing phase.

The logged data is transformed, represented and stored as

JSON objects. In the third step of the process, an event

correlation algorithm computes similarity values between the

beacon events and the logged events. The fourth step of the

process focuses on selecting those logged events that present

a high similarity to the beacon events.

This paper is organized as follows: Section II presents re-

lated work. Section III presents the log filtering process, while

Section IV presents implementation considerations. Section

V presents experimental results obtained from the DARPA

Intrusion Detection Evaluation 1999 [3] data set and the KDD

1999 [4] log data set. Finally, Section VI concludes the paper

and discusses future work.

II. RELATED WORK

Dynamic program analysis has been extensively used to

understand the behavior of software systems. Bruegge et al.

[5] proposed a framework to support dynamic analysis by

source code instrumentation of systems written in C/C++. K.

Koskimies et al. [6] proposed the tool SCED, for modeling

dynamic properties of object oriented systems. Both of the
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above tools assume that access to the source code is available,

which might not always be the case. Profiling and debugging

is another technique used in dynamic program analysis. This

technique utilizes interfaces provided by modern development

environments [7] to facilitate runtime data collection. Man-

coridis et al. [8] propose an approach, combining dynamic

and static analysis, to map use-cases to specific sections of the

source code. However this approach could result in limitations

such as performance degradation, and it only works with

programs executing within the same process space.

Complex Event Processing (CEP) is an event processing

concept that deals with techniques for processing multiple

events from many diverse sources with the goal of identifying

the meaningful events within large data sets of collected

events. In [9] and [10] the challenges and the themes of CEP

as these are applied in large software systems are presented.

More information on this emerging field can be found on the

web site of the Complex Event Processing Community [11].

In the area of data set filtering, in [12] two data filtering and

noise reduction techniques are discussed. The first is based

on multiple-partitioning filtering while the second is based on

iterative partitioning filtering. In [13] a technique to identify

important event features to be used for dynamic analysis and,

in particular, intrusion detection is presented. The reduced

feature sets allow for more tractable analysis to be performed.

The difference from our work is that the work in [13] is

fine tuned for intrusion detection and aims to reduce features

as opposed to events. In [14] the Enhanced Support Vector

Decision Function technique is used for selecting important

features in log entries to support intrusion detection analysis.

In [15] a technique that allows for the discovery of processes

by analyzing event logs is proposed. Finally, in [16] a log

analysis technique has been used to evaluate the evolution

of business models by comparing known business model

templates to actual models.

III. EVENT FILTERING

Current software systems produce massive amounts of log

events. While there are several techniques that can extract

useful information from the raw logs, these are usually compu-

tationally expensive. In this section, we present a log filtering

technique that allows for log reduction, by considering a

collection of beacon events that are significant or raise interest

to the system operator or a monitoring process.

A. Log modeling and preprocessing

Modern monitoring systems generate and store event logs

in a variety of formats. Therefore, it becomes necessary to

ensure their availability in a form that is suitable for further

analysis. More specifically, let E = {e1, e2, . . . , en} be the

set of input events, where ei the ith event and n the number

of events, and let A = {a1, a2, . . . ana
} be the set of na

discrete attributes in the event set E. Also let each event ei
be defined as a set of attribute-value pairs: ei = {〈aj , evj,i〉 |
evj,i the value of aj for the event ei, or null if unset, 1 ≤ j ≤
na}, 1 ≤ i ≤ n, and let Vj be the set of discrete values for

the attribute aj in the input set E: Vj = {v | ∀v∃i : evj,i =
v, ∀i evj,i∈Vj}.

The preprocessing phase is composed of three steps: In

the first step, each event ei, 1 ≤ i ≤ n in the data set

with m attributes a1, . . . am, having corresponding values

v1,i, . . . vm,i is represented by a single XML element xi and

its descendants. In the second step, the XML entry is converted

to a JSON-based format, where each event is represented by

a single JSON object that directly reflects the hierarchy of

its components. Finally, in the third step of the preprocessing

phase, each JSON object is inserted into MongoDB [17], a

schema-agnostic document-oriented database. Such databases

are more suited than relational databases when the data model

in use is not fully known, allowing for arbitrary JSON objects

to be stored and retrieved in a single operation. They also allow

the event schema to be updated implicitly when additional

attributes appear in a received event.

B. Event similarity evaluation

The core of the system is the algorithm that determines

the degree of similarity between each input event ei and a

set of beacon events B. In simple terms, the beacon events

are used as a model that is considered to be representative of

those log entries that are of interest or raise suspicion to a

user or to an auditing process. Each event from the running

systems’ log data input set is separately compared to each

beacon event bk and a similarity measure is computed. The

average of these similarity measures provides a metric that

can be used to determine the correlation of the input event

with the beacon event set as a whole.

The similarity measure esmi,k between a beacon event

bk and an input event ei is computed using a layered ap-

proach. Each attribute aj is examined independently and the

corresponding values are compared using a combination of

string-based similarity functions to produce a value correlation

estimator vsmj,i,k. In order to increase the selectivity of the

system, a coefficient cj,i,k is computed using the frequencies

of each attribute value in the beacon events and in the general

event population. The purpose of this contribution coefficient

is to emphasize the values that are prevalent in the beacon

events, while reducing the impact of any values that are

common enough in the input set to be of relatively limited

use as a distinguishing feature. The product of the estimator

vsmj,i,k and the coefficient cj,i,k is entered into a weighted

average calculation to generate the esmi,k metric. The overall

event similarity evaluation process is composed of five steps

that are discussed in detail below.

1) Beacon event selection: The user of the system manually

selects a set of beacon events B that are representative of

the scenario of interest and will be used as the comparison

basis in the reduction process. More specifically, let B =
{b1, b2, . . . bnb

} = {bk : bk ∈ E, 1 ≤ k ≤ nb}, where nb

the number of selected beacon events. The objective is that

the reduced event set that will be produced by the filtering

process will contain those events that have a relatively high

degree of similarity with the beacon event set B.
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2) Beacon event attribute weight determination: In order

to increase the accuracy of the event similarity measure

evaluation, it is desirable to assign increased weights to those

attributes and their corresponding values that are dominant

within the selected beacon events and may, therefore, be a

distinguishing feature for our analysis. The outline of the

algorithm is presented below.

Input: B = {b1, b2, . . . bnb
}

Output: attribute and attribute value weight sets NAb, NVb

Process:
i. Let bk = {〈aj , evj,k〉 | aj the attribute, evj,k the value,

1≤j≤na}, 1≤k≤nb, where nb the number of beacon

events.

ii. Let NAb be the key-value pair set where each attribute

aj is paired with the number of its appearances naj,b
in B: NAb = {〈aj , naj,b〉 | 1≤j≤na, naj,b =∑

j(0 if evj,k == null, 1 otherwise)}.
iii. Let V Bj be the set of discrete values vj,b,q of the

attribute aj in the beacon event set B: V Bj = {vj,b,q :
∀vj,b,q∃k : evj,k = vj,b,q, ∀k evj,k∈Vj , 1≤k≤nb}

iv. Let NVb,j be the set of tuples where each attribute

value vj,b,q of the attribute aj is associated with its

number of appearances in the beacon event set B:

NVb,j = {〈vj,b,q, nvj,b,q〉 : 1≤q≤|V Bj |, nvj,b,q =∑
q(1 if evj,k = vj,b,q, 0 otherwise)}

v. Create a map hierarchy that associates each discrete

attribute value with the number of beacon events in

which it is present: NVb = {〈aj , NVb,j〉 : 1≤j≤na}
vi. Return NAb and NVb.

3) Attribute weight determination for non-beacon events:
While the attribute weights computed in the previous step are

representative of the beacon events, a high weight value does

not necessarily indicate a distinguishing feature. The weight

of each attribute value should be adjusted in relation to its

frequency in the input data. There are two extreme cases where

this necessity is more apparent:

• Attributes that have the same value throughout the input

data set cannot be used to distinguish desired events.

• Attributes that always have unique values are usually

identifiers with limited use outside the scope of the event

that contains each instance.

The input event set attribute weights are essentially used

as a counter-balance to the weights produced in the previous

step. The outline of the algorithm is presented below:

Input: E′ = E \B
Output: attribute and attribute value weight sets NAe, NVe

Process:
i. Let NAe be the key-value pair set where each at-

tribute aj is paired with the number of its appear-

ances in E′: NAe = {〈aj , naj,e〉 : 1≤j≤na, naj,e =∑
j(0 if evj,i = null , 1 otherwise)}

ii. Let V Ej be the set of discrete values vj,q of the attribute

aj in the input event set E′: V Ej = {vj,e,q : ∀vj,e,q∃k :
evj,i = vj,e,q, ∀k evj,i∈Vj , 1≤i≤ne}

iii. Let NVe,j be the set of tuples where each attribute

value vj,e,q of the attribute aj is associated with its

number of appearances in the beacon event set B:

NVe,j = {〈vj,e,q, nvj,e,q〉 : 1≤q≤|V Ej |, nvj,e,q =∑
(1 if evj,i = vj,e,q, 0 otherwise)}

iv. Create a map hierarchy that associates each discrete

attribute value with the number of input events in which

it is present: NVe = {〈aj , NVe,j〉 : 1≤j≤na}
v. Return NAe, NVe.

4) Beacon set/Input similarity determination: For each in-

put event ei in E, determine a similarity measure smi between

the beacon event set and itself. The similarity measure is

computed as a straight average of the individual similarity

measures of the event ei with each of the beacon events:

Input: E, B
Output: similarity measure set SM for all input events

Process:
i. Let SM = {〈ei, smi〉∀ei∈E}.

ii. Let smi = (
∑

k esmi,k∀k : bk∈B)/nb, where esmi,k

is the similarity measure between events ei and bk.

iii. Return SM .

5) Beacon set/Input event similarity determination: The

similarity measure esmi,k is computed as a weighted average

of the attribute value similarity measure vsmj,i,k for all

attributes.

Input: ei = {〈aj , evj,i〉|1≤j≤na}
bk = {〈aj , evj,k〉|1≤j≤na}

Output: event similarity measure esmi,k

Process:
i. Let wj,i,k be the weight of vsmj,i,k.

ii. Let cj,i,k be the contribution coefficient of vsmj,i,k.

iii. esmi,k =
∑

j(wj,i,k · cj,i,k · vsmj,i,k) /
∑

(wj,i,k),
1≤j≤na.

iv. Return {esmi,k|1≤i≤n, 1≤k≤nb}, where n the number

of events and nb the number of beacon events.

The computation of the weight wj,i,k, the contribution

coefficient cj,i,k and the similarity value vsmj,i,k are presented

in detail below.

a) Weight coefficients: The weight wj,i,k and the contri-

bution coefficient cj,i,k is computed taking into account the

NAb, NAe, NVb and NVe sets with the intent to:

• Increase the impact of attributes and corresponding values

that occur frequently in the beacon events.

• Reduce the impact of attributes and values that appear

with extreme frequency in the general event population,

such as domain-specific constants.

• Reduce the impact of unique or almost unique attribute

values in the general event population, such as event

counters, identifiers and hash values that have limited

importance outside the scope of their particular event.

Input: NAb, NAe, NVb, NVe

Output: weight wj,i,k, contribution coefficient cj,i,k
Process:

i. Let bwj,i be the beacon attribute value coefficient:

bwj,i = (nvj,b,i/nb)
2.
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ii. Let awj be the event attribute coefficient: awj = (ne −
nb − naj,e)/ne.

iii. Let vwj,i be the event attribute value coefficient: vwj,i =
(naj,e − nvj,e,i)/naj,e.

iv. Let cwj,i be the composite attribute value coefficient:

cwj,i = (awj)
2 + (1− (awj)

2)·(vwj,i)
2.

v. cj,i,k = bwj,i·bwj,k·cwj,i·cwj,k

vi. wj,i,k = (naj,b)
2·(naj,e)2

vii. Return {wj,i,k, cj,i,k | 1≤j≤na, 1≤i≤n, 1≤k≤nb},
where na the number of beacon events.

b) Value similarity: The last component in the similarity

determination is the calculation of the string-based similarity

measure vsmj,i,k for all attributes. This value is generated

as a hierarchy of weighted averages, where each component

is the result of a comparison function. A missing attribute

value (null) in either event results in the similarity function

having an output of zero. This hierarchy is produced by

several interconnected instances of a composite similarity

function loosely based on the Voting Experts [18] method.

Each composite similarity function contains references to one

or more such functions, each of which is called with the

objects under comparison as arguments. The top level of the

hierarchy is thus defined by the following algorithm:
Input: SF = {〈sfj,l(v1, v2), sfwj,l(v1, v2)}, evj,i, evj,k
Output: similarity measure vsmj,i,k between event i and

event k for attribute j
Process:

i. Let sfj,l(v1, v2) be the lth string-based similarity func-

tion of the attribute aj .

ii. Let sfwj,l(v1, v2) be the weight determination func-

tion for the lth string-based similarity function of the

attribute aj .

iii. Let SF be the set of tuples that associates each similarity

function with its corresponding weight function.

iv. vsmj,i,k =
∑

l(sfj,l(evj,i, evj,k) · sfwj,l(evj,i, evj,k))/∑
l(sfwj,l(evj,i, evj,k)), 1≤l≤|SF |

v. Return {vsmj,i,k | 1≤j≤na, 1≤i≤n, 1≤k≤nb}
The string based similarity functions sfj,l(v1, v2) can be

either simple or composite and return a floating point number

which indicates the degree of similarity between the two

arguments, rather than a simple boolean value.
Composite similarity functions incorporate several simple

ones and return a similarity value that can be defined as the

average of all collected values from the simple ones. The

simple functions that perform the actual value comparisons

reside at the bottom of the hierarchy. Most such functions are

string based, although it is possible to introduce type-specific

functions that are triggered when type information is available.

The available comparison functions include case-sensitive

and case-insensitive string equality, Damerau-Levenshtein [19]

string distance metrics, network address proximity and nu-

meric proximity for textual representations of numbers.
The system is extensible, allowing for more complex simi-

larity functions to be included, such as metrics based on lexi-

cographical and linguistic similarities, domain-agnostic fuzzy

association rule systems, or even domain-specific features.
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Fig. 1. Standard score values along a part of the input

C. Filtering

The similarity score smi between each input event and

the beacon event set cannot be used on its own for the

determination of the reduced data set, since such similarity

score values will vary depending on the input event set and

the selected beacons. Therefore a comparative analysis of all

scores is necessary for this final selection step.

In the proposed system, the similarity measure values smi

are fed into a statistics engine, which computes the straight

average μ and standard deviation σ for these values. Further-

more, for each event ei the system computes the standard

score zi (otherwise known as z-score) of the similarity measure

smi: zi = (smi − μ)/s. The standard score is a dimension-

less quantity that measures the deviation of a variable value

from its mean, using the standard deviation as a unit. The

standard score is then used to determine which events have

a statistically high similarity score compared to the beacon

set. Standard scores over 1 are a typical selection, although

the threshold can be lowered or increased to widen or tighten

the selection respectively [20]. Naturally, there is a trade-off

between the recall and the precision of the system: lowering

the standard score threshold will improve the recall of the

filtering stage by increasing the size of the output. This,

however, results in worse precision, as well as in a reduction

in the performance of any subsequent processing stages. Fig.1

illustrates the use of the standard score for event selection;

while most events have a negative standard score, events with

high correlation values that should be included in the reduced

data set rise over the similarity score baseline, forming easily

detectable clusters. This is evident in Fig.1 for the range

between the 750th and the 800th event.

IV. USAGE CONSIDERATIONS

A. Off-line usage

The filtering algorithm as described is directly suitable for

off-line event log analysis. This mode of operation is simpler,

more efficient and potentially more accurate, as it generally

implies a known finite number of events that are available
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beforehand in randomly accessible storage. Therefore, it is

possible to generate the attribute value weight sets NAe and

NVe for the whole data set a priori. These sets will have to be

adjusted before each use, by removing the contribution of the

selected beacon event set, but this operation is significantly

less intensive than re-creating the NAe and NVe sets.

This can improve the quality of the filtering stage results

by taking into account the whole event population, while also

increasing the overall system performance for multiple queries

by computing these weight sets only once for each input event

set and reusing them for different beacon event selections.

B. Real-time usage

A more interesting usage scenario is when using the fil-

tering algorithm for processing real-time log data feeds. This

scenario, however, brings forth a number of issues to resolve.

First, the input event set is actually a potentially infinite

stream and it is not known beforehand – each event can only

be processed once it is received. Therefore the weight sets

NAe and NVe cannot be computed in a way that takes the

whole input set into consideration.

Second, the algorithm cannot directly produce results for

the initial segment of the input stream, since it relies on

comparative statistical analysis of the similarity measures for

a number of events, which cannot generate reliable results

when the size of the sample is relatively small. In addition,

the attribute value weight sets are not meaningful when they

reflect only a limited sample of the input.

Third, while the assumption that the set A of discrete

attributes is bounded may reasonably hold, the same is not true

of the attribute value weight set NVe. The theoretical design

requires a counter for each discrete value of an attribute. In

the general case, we can assume that each incoming event will

contain an average nvn of as-of-yet unseen – and potentially

unique – values for some of its attributes. Therefore after i
events, the NVe set will contain i·nvn items. Since the event

counter i is not bounded, the NVe set will grow infinitely

over time with a roughly linear space requirement, which

makes the use of the original unmodified algorithm technically

impossible.

Limiting the size of the NVe set (i.e. to consider a finite

upper bound on the number of events used for the calculation

of weight sets), represents a major change in the operation of

the system. With the size of the NVe set being limited by the

available storage space, the system must balance the need to

retain older entries with high occurrence counts with the need

to hold onto recent entries that feature an unknown frequency,

but may represent a future trend. Within the scope of the

proposed system, the use of a caching, or object replacement,

algorithm is an effective method for restricting the size of

attribute value weight sets, although the semantics of caching

are slightly different. In the process of investigating their use,

we implemented and experimented with the following caching

algorithms:

Least Recently Used (LRU): When the storage limit is en-

countered, this algorithm removes the entry that was used least

TABLE I
CACHING ALGORITHM PERFORMANCE METRICS

ARC LRU/LFU No Replacement
Memory Time Memory Time Memory Time

(MB) (s) (MB) (s) (MB) (s)

SMTP 916 340 648 356 1,552 359

HTTP 817 426 784 455 1,553 492

TELNET 714 341 583 362 1,421 376

recently. It is simple to implement and performs very well

speed-wise, but it exclusively favors recency over frequency.

As a result, LRU will behave pathologically in situations where

a large enough batch of discrete values appear in sequence,

thus replacing all existing entries in the cache with values that

may be unlikely to reappear.

Least Frequently Used (LFU): At the opposite extreme of

LRU, LFU always replaces the entry with the lowest access

count. It favors frequency to the point that a perfect LFU

implementation will barely be able to accept new entries

once the cache is full. The use of this algorithm minimises

the adaptability of the system, while also having a higher

performance overhead.

LRU/LFU: Using a combination of both LRU and LFU

allows their weak points to be covered to a degree. The values

are entered in a cLRU -sized LRU cache and are moved to a

cLFU -sized LFU cache once the LRU stage discards them. A

sequential value scan on the input only affects the LRU stage,

while new entries are able to enter the LFU stage with already-

increased access counts. However, this alternative presents a

number of issues that became visible during our experiments.

First, the implementation is more complex and accessing two

separate caches affects the performance of the system. Second,

the cLRU and cLFU sizes need to be determined beforehand,

which cannot happen optimally for arbitrary input event sets.

Finally, the LFU stage has no concept of aging. Values

with an inordinately high occurrence count will be retained

indefinitely, despite not being encountered recently, leading

to saturation with old values in long-running systems. Despite

these issues, the LRU/LFU combination proved effective when

processing moderately-sized input sets.

Adaptive Replacement Cache (ARC): ARC [21] achieved

slightly better runtime performance than LRU, while being

self-tuning over time and resistant to pathological behaviors.

This became the algorithm of choice for the majority of the

experiments we have conducted.

Table I presents a performance comparison between the

main entry management algorithms implemented in our pro-

totype system, for three test cases of 200, 000 events each.

The no-replacement (NR) algorithm had the worst runtime

performance and significantly higher memory usage. In fact,

while the ARC and LRU/LFU variations reached a stable point

in their memory consumption within a short time, the heap

space of the NR process continued to grow indefinitely. In

our test system, 200, 000 events was the absolute maximum
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that the NR implementation was able to handle without an

out-of-memory exception.

Of the other two algorithms, ARC had a higher memory

usage than LRU/LFU, which was expected due to additional

space overhead imposed by its design. However, ARC proved

to be consistently faster and was able to provide better results

when tested with very large data sets in real-time mode, due

to its inherent adaptability to changes in the input.

C. Parallel processing

The proposed filtering algorithm is highly parallelizable,

using two orthogonal approaches:

First, the computation of the similarity measure of an input

event with the beacon events can be parallelized, with each

thread handling the comparison with a different beacon event.

Moreover, in most cases we can reasonably assume that the

input event set is macroscopically uniform when separated

into segments with a sufficiently small segment size. This

allows the system to scale by splitting the input event set into

small chunks that are then distributed into separately processed

stripes. Each computing node can have its own attribute value

weight sets and statistics engine, reducing the need for shared

data and extensive thread synchronization.

In our prototype system, we have implemented the first

approach, thus making full use of all processor cores in a

multi-processor system.

V. CASE STUDIES

In order to evaluate the proposed algorithm, we used net-

work captures from a subset of the DARPA Intrusion Detection

Evaluation 1999 [3] and the KDD 1999 [4] data sets. The

objective of the case study is to assess the proposed technique

by identifying whether intrusion sessions are contained in the

reduced logs computed using a collection of suspicious beacon

events. The DARPA data set contains raw network traffic

events while the KDD data set is a post-processed view of the

DARPA set illustrating event segments pertaining to network

intrusion attempts. The Wireshark [22] network analysis tool

was used to provide accurate reference event sets to be used

as a golden standard for evaluating precision and recall values.

More specifically, we have conducted a number of case studies

to evaluate and assess a) the run-time performance of the

approach by measuring the log reduction processing time as

a function of the size of the log data set; b) the quality of the

approach by evaluating precision and recall values for cases

drawn from both the DARPA and the KDD data sets; c) the

run-time memory usage of the approach as a function of the

caching algorithm used and; d) the stability of the approach

by varying the beacon set and; e) the compositionality of the

results by examining whether beacon sets selected from several

different sessions will also attract events pertaining to these

sessions.

A. Runtime performance

For measuring the runtime performance of the system we

have conducted a series of runs with variable size beacon
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Fig. 2. Processing time in relation to input size

sets, applied to both the DARPA and the KDD data sets.

The obtained results highlight two important characteristics

of the proposed system that ensure its scalability. First, since

each input log event is treated independently, the overall time

complexity is linear with regard to the number of events. In

fact, the event throughput of the system remains macroscop-

ically stable and depends only on the selection of beacon

events and the allocated computing resources. Second, the

system is highly parallelizable, with the prototype implemen-

tation making full use of all four allocated processors. Fig.2

demonstrates both the linear complexity of the algorithm, as

well as its scalability over multiple processors. The prototype

implementation running on a four-core 2.83 GHz processor

reduces a 200K event set in about 400 seconds, providing a

recall typically over 73%.

B. Memory usage

Memory usage is a crucial issue in log analysis, due to the

limitations in keeping whole streams of logged data in memory

and the lack of generalized methods for piece-wise processing.

Such methods, often sliding-window variations, are difficult

to use without a significant risk of losing important data. In

this approach we have experimented with caching techniques

borrowed from the area of operating systems, namely with the

ARC and the LRU/LFU algorithms. Our results indicate that

the use of such algorithms allows the system to keep important

events in the cache, even when these occurred at a point

in time that a sliding window type of approach would have

missed. The experimental results in memory and time usage

obtained by utilizing these algorithms are presented in Table I

of Section IV-B. These results indicate that the ARC algorithm

performs slightly better than the LRU/LFU algorithms, while

both caching techniques outperform the no-caching alternative,

which is not practically usable in most cases anyway.

C. Quality of results

1) Precision and recall: The event selection algorithm

of the proposed system is tunable via the threshold value
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threshold values
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Fig. 4. Recall/precision curve for the KDD data set using three different
threshold values

of the similarity measure standard score. Fig.3 depicts the

recall/precision relations obtained by applying 18 different

queries for different scenarios (SMTP, TELNET, HTTP+SSH)

in the DARPA data set. The graph is obtained by using the

interpolated precision method for fixed recall levels presented

in [23]. The results indicate that for a threshold of 0.5 (a more

relaxed cut-off point for similarity values), obtaining a recall

level over 90% has an expected precision of 3%. It is noted

that because the reduction is at the level of 95% and above,

the precision of 3% is acceptable for 90% recall. The number

of beacons in these experiments varied from 5 to 20 for cases

comprising of 57 to 1960 events. In this respect, the results

indicate that even with a small number of beacons we were

able to have a high rate of reduction and a high level of recall.

As expected, the results in Fig.3 indicate that for a threshold

value of 1.5, the precision increases as we become stricter

on the similarity cut-off value and a higher similarity value

requirement is imposed for considering two events related.

Similar to the above, we conducted a corresponding set of

experiments on the KDD data set. The objective is to assess
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Fig. 5. Stability analysis for four different levels of beacon set correctness

whether we are able to capture in the resulting reduced logs

whole collections of intrusion sessions by just providing the

system with a small set of suspicious beacon events belonging

in the intrusion set. In other words, the recall value indicates

whether we are able to assemble the whole intrusion session

by looking at a small subset of it, while the precision aims

to assess the noise in the obtained results. The results are

illustrated in Fig.4. It is noted that the reduction rate in this

set of experiments is also at a level of 95% and above. In this

type of evaluation we were still able to obtain a high recall

and a high reduction rate, indicating a consistent behavior of

the approach when applied to this data set as well.

2) Stability evaluation: The stability evaluation case study

was conducted to assess the obtained results when the beacon

set is varied by considering a percentage of the beacon events

that is not contained in the set of the events that should

be retrieved. The results are illustrated in Fig.5 and indicate

that random noise in the beacon event set does not influence

the quality of the obtained results, since noisy events do not

contribute to the calculation of the weights and similarity

values in a consistent manner, contrary to the more coherent

beacon events that belong to a use case. More specifically,

we have experimented with 100% of the selected beacons

belonging to the case and then comparing with the results

of the same beacon sets after introducing 10%, 25% and 50%
of random noisy beacons. Fig.5 illustrates that the precision

and recall levels are not significantly influenced by the noisy

beacons, indicating that the proposed approach exhibits an

acceptable level of stability with respect to the correct selection

of beacon events.

3) Compositionality of cases: For this collection of use

cases we have selected beacons spanning across different

cases, with the objective to identify whether we would be able

to attract events from both cases and recover the sessions the

beacons were referring to. Table II illustrates precision and

recall levels for combinations of HTTP, SMTP and TELNET

sessions when the beacons were selected across these sessions.

The results indicate that we have high recall levels (e.g.
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TABLE II
RESULT METRICS FOR DIFFERENT COMPOSITE QUERIES

Scenario Average Average Average
Recall (%) Precision (%) Reduction (%)

FTP+HTTP 76.667 0.101 88.596

FTP+SMTP 93.333 0.104 86.583

FTP+TELNET 96.667 0.063 76.884

HTTP+SMTP 83.333 0.120 89.569

HTTP+SSH 83.333 0.120 89.577

SSH+TELNET 96.667 0.064 77.178

76.66% for FTP and HTTP combinations) while maintaining

a high reduction rate.

D. Threats to validity

The threats to validity can be summarized in three points.

The first point deals with the nature of the data. More specifi-

cally, when events differ in only a limited number of attributes,

then a high similarity score may be computed while this small

difference warrants a low score in a specific domain. Another

type of such pathological behavior is when the distinguishing

factor for a low or high similarity value is the differences

in combinations of two or more attributes. The second issue

relates to the beacon event selection process. More specifically,

when the beacon events vary significantly on their values then

noise may be introduced in the obtained reduced data set.

Furthermore, the stability of the process may be affected if

the majority of non-random beacon evens do not belong in

the session that pertains to the problem at hand. Goal models

and other specification models can be possibly used to ensure

that the selected beacons are relevant to the case at hand.

Finally, the third type of threat to validity problem relates to

the similarity threshold selection process. More specifically,

lowering the similarity threshold allows more noise in the

results, while increasing the recall. Conversely, increasing the

threshold improves the precision, while reducing the recall at

the same time. There is no fixed algorithm to determine a

single threshold value. However, the cumulative distribution

function of the similarity scores often indicates a range of

threshold values by which high recall and reduction levels can

be obtained, for acceptable levels of precision.

VI. CONCLUSION

In this paper, we proposed a domain independent technique

that allows for filtering large log data sets, based on a

collection of beacon events that are selected by the operator

or an automated auditing process as the system operates. The

technique computes similarity values between logged events

and the beacon events. The objective is for these beacon events

to “attract” other events to form cohesive groups with a high

likelihood of corresponding to a complete use case.

Future work can expand towards several different directions.

First, the incorporation of feature reduction techniques, such

as those in [13] and [14] would allow the removal of select

attributes, thus improving the runtime performance and poten-

tially the quality of its results. Second, the parallelization of

the system using a distributed computing framework would

prove the scalability of the algorithm to large monitoring

infrastructures. Third, the combination of the system with a

stateful second-stage algorithm that would take inter-event re-

lationships into account, such as clustering or pattern matching

could possibly improve the overall precision. This work is

supported by CALabs of CA Technologies UK.
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