
Tracing Evolution Changes of Software Artifacts
through Model Synchronization ∗

Igor Ivkovic1 and Kostas Kontogiannis2

1Dept. of Electrical and Computer Engineering
University of Waterloo

Waterloo, ON N2L3G1 Canada
iivkovic@swen.uwaterloo.ca

2 Dept. of Electronic and Computer Engineering
Technical University of Crete

Chania, 3700 Greece
kkontog@softnet.tuc.gr

Abstract

Software evolution encompasses all activities related
to engineering software, from its inception to retirement.
Propagating change across software models that are al-
tered due to maintenance activities is a first step towards
maintaining consistency between architectural, design, and
implementation models. Model synchronization techniques
initially presented within the context of Model Driven Archi-
tecture provide an instrument for achieving change trace-
ability and consistency. In this paper, we present a frame-
work whereby software artifacts at different levels of ab-
straction such as architecture diagrams, object models, and
abstract syntax trees are represented by graph-based MOF
compliant models that can be synchronized using model
transformations. In such a framework model dependencies
are implicitly encoded using transformation rules and an
equivalence relation is used to evaluate when two models
become synchronized.

1. Introduction

One of the major problems the software industry is fac-
ing is the drift of software designs and architectural descrip-
tions from the source code that is constantly changed due
to evolution or maintenance activities. Evolution of soft-
ware includes modifications performed at all stages of the
software development lifecycle, from inception to retire-
ment. Such modifications are performed on a wide range

1 This work is funded in part by the IBM Canada Ltd. Laboratory,
Center for Advanced Studies (CAS) in Toronto.

of software artifacts ranging from those at a high level of
abstraction, such as business processes, to architecture, de-
sign, and source code-level artifacts, such as architecture
graphs, object models, and abstract syntax trees. Each
change that is performed in any of these models is not al-
ways carried out in a systematic fashion, and maintenance
problems occur when a change on one artifact is not con-
sistently mapped and applied to another artifact of a soft-
ware system. The complexity of each change mapping is
inherently compounded with decisions regarding potential
information loss or gain related to differing levels of ex-
pressiveness of assorted artifacts.

In this paper, we investigate the problem of synchro-
nization between software models when one is altered due
to evolution or maintenance activities. Furthermore, we
present a framework for what we refer to as Model-Driven
Software Evolution (MDSE) paradigm that is based on prin-
ciples of Model Driven Architecture (MDA) [7]. In this
context, our view of software is in terms of models, each at
a different level of abstraction (i.e., requirements, architec-
ture, design, implementation). Each such model conforms
to and is an instance of a corresponding metamodel. [17]
Our research is focused on metamodels that have a common
graph theoretical basis and are compliant with the Meta-
Object Facility (MOF) [10].

Model synchronization can be explicit or implicit. In
explicit approaches, the dependence relations between two
models are directly defined and encoded (i.e., through a
static table). These approaches are rigid as they require
the creation and maintenance of structures necessary to
track dependencies between models. For instance, relations
among models that are once established would need to be
updated every time a source or target model is changed. In

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

implicit approaches however, the relations between mod-
els are defined in higher-order terms (e.g., relations be-
tween metamodels), and actual dependence relations be-
tween models are hence implied. The implicit approaches
would offer definite advantages over explicit ones by per-
mitting the establishment of dependency relations that are
more flexible, customizable, and easier to maintain. Such
relations would not be updated every time a model instance
is changed, but would be updated when demands imposed
on the synchronization method are changed. In practice, im-
plicit synchronization will not suit all scenarios and a hybrid
approach that emphasizes implicitness while supporting ex-
plicit mappings would be desirable.

Our goal in this paper is to present a methodology for
model synchronization, where change traceability is its cen-
tral part. For achieving this goal, we first aim to derive
a framework that can be used to represent and map mod-
els in a way that provides enough semantic information for
synchronization. Secondly, we aim to derive a traceability
framework, compliant with our representation framework,
for tracking changes so that each alteration action is viewed
in terms of its atomic units. Finally, we intend to pro-
vide a process by which our methodology can be applied
to achieve synchronization of models at different levels of
abstraction.

To realize the first goal, we introduce an intermediary
Graph Metamodel for Synchronization (GMS). This meta-
model is an instance of MOF but is less abstract and more
capable of providing desired semantic detail. To address the
second goal, we introduce a Transformation Metamodel for
Synchronization (TMS), where we view each model alter-
ation as a combination of graph changes: insert node/edge,
modify node/edge, and delete node/edge. For the third
objective, we provide a synchronization algorithm that is
based on dependency relations implicitly defined by map-
ping source and target metamodels as graphs using GMS.

The rest of this paper is organized as follows. Sec-
tion 2 presents related research and discusses how our find-
ings build on previously published results in the area of
model transformation and traceability management. Sec-
tion 3 presents the basics of model synchronization and
examines related aspects. Section 4 introduces our ap-
proach to model synchronization, including the represen-
tation framework, the traceability framework, and the algo-
rithm for model synchronization through traceability. Fi-
nally, Section 5 gives the conclusions and directions for fu-
ture research.

2. Related Research

Systematic change of software models is attained
through model transformation. Czarnecki and Helsen pro-
vide a classification of model transformation approaches

[2]. Based on this classification, each model transforma-
tion consists of transformation rules that are combined to
achieve a particular change. Each transformation rule con-
sists of two distinct parts: a left-hand side (LHS), which
refers to the source model, and a right-hand side (RHS),
which refers to the target model. Both LHS and RHS can be
represented as a combination of (1) patterns, such as string,
term, and graph patterns; (2) logic, such as computations
and constraints on model elements; and (3) variables, which
hold model elements of source, target, or some intermediary
model. Transformation rules can be unidirectional or bidi-
rectional, and can be parameterized to allow configuration
and tuning. In our approach, we do not focus on specifi-
cation and analysis of model transformations, but instead
view transformations as components of the model synchro-
nization framework. Based on the traceability classification
from [2], we intend to derive traces that are stored sepa-
rately while the traceability control will be automatic for all
rules and synchronization control semi-automatic (i.e., au-
tomatic for some rules).

Engels et al. in [5] have discussed the transformation of
UML Class Diagrams and UML Collaboration Diagrams
into Java code. They have shown how to deal with both the
structural and behavioral (e.g., flow) mapping problems be-
tween UML and Java using a pattern-based transformation
algorithm. The pattern used is an instance of a metamodel
from which one can identify parts of the source diagram that
is to be transformed. The goal of this approach was preser-
vation of semantic information through transformation but
there was no discussion on how the defined transformations
could be used in model synchronization.

Shen et al. [12] have used UML stereotypes to extend
the UML metamodel in order to support model refinement.
They have shown how Object Constraint Language (OCL)
expressions can be used to define synchronization rules.
The limitation of their approach is that they only support
changes of UML static models at different levels of abstrac-
tion, without considerations of synchronization with other
modelling languages.

In the area of consistency checking, change synchro-
nization is interpreted as synchronization of model views.
Fradet et al. [6] consider synchronization of multiple views
of software architecture by first defining each view for-
mally and then algorithmically checking inter-view consis-
tency. Wirsing et al. [15] have looked at synchronization
of views across the entire development lifecycle by creating
an intermediary comparison view. Engels et al. have used
the Communicating Sequential Processes (CSP) language
for checking behavioral consistency among views [4]. Fi-
nally, Larsson and Burbeck [9] have shown a model-view-
controller approach to consistency checking by insisting
that each transformation between a model and the views has
an inverse that can be automatically calculated. In our ap-

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

proach, we have decided to base our methodology on graphs
as a common basis and view all synchronized models as
graphs. We have also decided to express our framework in
less-formal terms (e.g., OCL) in order to facilitate its easier
adoption and extension to practical application scenarios.

The importance of traceability and its relation to syn-
chronization was discussed in the area of traceability man-
agement. In [3], Desfray points out the importance of trace-
ability management in the MDA-based approaches to en-
sure consistency among models. The key aspects of trace-
ability are identified as follows:

• Element identification, where using the name of the el-
ement as an identifier, was said to be spurious. Instead,
it is mentioned that assigning a universally unique
identifier to each model element should lead to a more
successful traceability management.

• Implicit traceability, where related tools should trans-
parently maintain relations among model elements
based on natural properties of models (i.e., traceability
based on inherent relations). For example, a message
in UML can be related to an operation or can link to an
association.

• Explicit traceability, where it will be necessary in cer-
tain cases to manually define explicit relations between
elements. For example, a link could be created be-
tween a Use Case and classes that implement it.

• Traceability and external elements, where external ar-
tifacts such as documentation or source code are re-
lated to model elements, but they themselves are man-
aged externally. Under such conditions, it is crucial
that each external element is uniquely identified by the
modelling environment in order to maintain traceabil-
ity.

Kowalczykiewicz and Weiss confirm these points and
also reiterate the importance of traceability integration into
software development [8]. Cysneiros et al. [1] demon-
strate how to use traceability to synchronize i* [16] with
UML models. They also demonstrate how to implement
model synchronization using XML. However, their frame-
work uses synchronization rules that identify elements by
their names and other lexicographical properties, and not
based on their unique identifiers as suggested above. Within
our approach, we follow the directions for traceability and
define an unique identifier for each model element. We in-
corporate implicit traceability through a mapping between
metamodels while leaving an opportunity for explicit rela-
tions to be defined through explicit mapping tables.

3. On Model Synchronization

From the related work above [9], a definition of “model
synchronization” can be inferred as the process of establish-
ing an equivalence between two models when one of them
is altered. The equivalence can be defined through a set of
dependency relations between model elements. Additional
concerns that may apply include:

• Source and target models can be at the same (intra-
model synchronization) or different (inter-model syn-
chronization) level of abstraction. Out of the two, the
intra-model synchronization in general would be sim-
pler, as dependencies among model elements would
be implied through reflection of the same applicable
metamodel. The inter-model synchronization would
in general require dependency mapping between dif-
ferent metamodels; for example, as in synchronization
of software architecture models with design class dia-
grams or source code models. We should also note the
existence of special cases such as UML, where models
that might be at different levels of abstraction would
be derived from the same UML metamodel.

• Source and target metamodels can be different and be
used to express information at notably dissimilar levels
of abstraction (e.g., synchronization of use cases with
abstract syntax trees). Mapping dependencies among
these metamodels would be quite hard and meaningful
synchronization without intermediary models might
not be always possible.

• Source and target models may be initially synchro-
nized and the applicable equivalence relation holds.
We refer to this scenario as “Model Synchronization
Through Traceability”, and this is the central topic of
this paper. In this case, changes performed on the
source model are traced, translated, and then applied
to the target model. After each iteration, the corre-
sponding equivalence relations are checked to verify
that synchronization was performed successfully; if
the check fails, additional input will be required.

• Source and target models may also not be initially syn-
chronized and the applicable equivalence relation does
not hold. We refer to this scenario as “Model Syn-
chronization Through Equivalence” and is a point of
future research. In this case, the source model is trans-
formed into its equivalent representation in terms of
the target’s metamodel. Additional elements of the tar-
get model that do not violate the equivalence relations
are then added to the newly derived model. The new
model once verified to be consistent with the source
would then replace the target model.

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

• Finally, when source and target models can not be syn-
chronized for the given equivalence relation, additional
input is required. To achieve synchronization, changes
must be made more elaborate or could be performed
manually to modify either the affected equivalence re-
lation or one of the models. This topic is out of the
immediate scope of the paper where we assume that
the models can be synchronized.

4. Model Synchronization Through
Traceability

In order to derive a model synchronization methodology,
our three principal objectives are as follows:

1. To introduce a graph formalism as a representation
framework for model synchronization.

2. To derive a transformation framework for model syn-
chronization based on GMS.

3. To derive a synchronization algorithm based on implic-
itly defined dependence relations, as means by which
our methodology can be applied in practical problems.

4.1. Graph Metamodel for Synchronization

Towards our quest for defining a framework for model
synchronization, a fundamental question that needs be an-
swered is related to the formalism that should be used to
represent models that relate to software artifacts at differ-
ent levels of abstraction. This formalism has to be concise,
formal, yet easy to understand, use, and process.

The objective for such a formalism is not only to allow
simplification and enable model synchronization, but also
to maintain enough semantic detail so that implicit depen-
dencies among models could be formally established. Our
first attempt for a solution to this problem was to use MOF,
which provides a solid foundation for the specification of
other models. However, we concluded that MOF is too ab-
stract for purposes of synchronization, as it lacks a method
for expressing relevant model semantics. In addition, es-
tablishing dependency relations among models where MOF
is a common method of representation is not trivial and
is prone to ambiguity due to an inherently high abstrac-
tion level. Instead of MOF, we have considered graphs
as a common denominator for representing models. These
graphs can then be modelled in MOF for implementation
and processing purposes. Graphs provide a simple structure
— they represent an organization of nodes and edges —
and allow easy establishment of dependencies among in-
stances. Augmented with labels, types, attributes, and di-
rections, graphs are also capable of supporting semantic de-
tail that is required for synchronization. Other approaches

that were considered, such as formal logic, did not offer the
well suited balance between simplicity and expressiveness
found in graphs. As a result, we have decided to use graphs
as the core of our representation approach.

1 *

GraphEdge GraphNode

Graph Metamodel for
Synchronization (GMS)

GraphElement

+ GUID : String
+ label : String
+ type : String

GraphDependency

+ constraint : OCLExpression
+ explicitMappingTable : Table *

2

+ source
+ target

GraphAttribute

+ label : String
+ type : String
+ value : String

Figure 1. Graph Metamodel for Synchroniza-
tion

To express GMS (Figure 1) and other metamodels in this
paper, we have utilized MOF / UML semantics [11]. GMS
is represented in terms of MOF and it was derived to de-
note directed, typed, labelled graphs with attributes [13].
Each such graph G consists of a set of nodes and edges
where each element has its own Globally Unique IDen-
tifier (GUID) and each edge connects exactly two nodes.
Each node or edge has a label and type (e.g., “Customer ::
UML Class” for a node, “Uses :: UML Association” for
an edge) and can additionally have attributes with their own
names, types, and values. Dependencies among graphs are
established through dependency nodes, which contain ap-
plicable constraints (e.g., expressed in OCL-compliant no-
tation [14]). Dependency nodes could also contain a map-
ping table, which allows explicit mapping among specific
model elements using their GUIDs. This table would con-
tain three columns: first for the identifier of the source ele-
ment, second for the equivalence operator defined globally
for all models or locally for specific dependency, and third
for the identifier of the target element. Examples of equiva-
lence operator include (1) explicitly-existential, where nei-
ther source nor target element can exist without the other,
(2) existential, where only source cannot exist without the
target, (3) containment, where source contains the target el-
ement, etc. An example of the containment operator defini-
tion is given in Figure 3.

To demonstrate the usage of GMS, we show a UML
Class Diagram Metamodel for Synchronization (Figure 2).
This model, meant as a simplified example of the UML
metamodel, includes the integral elements that are neces-
sary for modelling UML classes and their relationships, and

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

Attribute

+ name : String
+ type : String
+ visibility : String
+ multiplicity : String
+ scope : String
+ initValue : String

Method

+ name : String
+ retType : String
+ visibility : String
+ polymorphic : Boolean
+ scope : String
+ preCondition : OCL
 Expression
+ postCondition : OCL
 Expression

Relationship

+ endName1 : String
+ endName2 : String
+ endType1 : String
+ endType2 : String
+ Visibility1 : String
+ Visibility2 : String
+ Multiplicity1 : String
+ Multiplicity2 : String
+ IsNavigable1 : Boolean
+ IsNavigable2 : Boolean

Class

+ name : String
+ type : String
+ stereotype : String
+ constraint :
 OCL Expression

1 *

1

*

+ setMethod

+ getMethod

MethodParameter

+ name : String
+ type : String
+ kind : String
+ initValue : String

1 *

UML Class Diagram Metamodel
for Synchronization

+ target

+ source

ModelElement

+ GUID : String

Figure 2. UML Class Diagram Metamodel for
Synchronization

it can be mapped to GMS as shown below.

• Class, Relationship, Attribute, Method and Method-
Parameter entities map to GraphNode, where type of
the node (e.g., “UML Class”) maps to “type : String”
and name of the attribute (if available) maps to “label :
String”.

• Each of the other attributes (e.g., “stereotype : String”)
maps to GraphAttribute, where the type (e.g., “visibil-
ity”) maps to “type : String” and the value (e.g., “pub-
lic”) maps to “label : String”.

• Associations among classes map to GraphEdge, where
association label (e.g., “source”) maps to “name :
String” and association type (e.g., “aggregation”) maps
to “type : String”.

The mapping between the derived metamodel for syn-
chronization and GMS is configurable and is based on the
desired level of semantic granularity required for synchro-
nization of model elements. For instance, the metamodel
presented in Figure 2 is based on the assumption that the
synchronization of models instantiated from this metamodel
would demand the level of semantic detail presented here.
Accordingly, each of the model elements that had several
attributes beside its name and type was mapped to a node,
and its attributes were mapped to graph attributes. In com-
parison, if some of the model elements did not warrant the
same level of detail and did not include attributes relevant
to synchronization, they could themselves be represented as
graph attributes.

Based on this example, metamodels for other models
that are used to support evolution activities can be de-
rived. Moreover, any two metamodels compliant with GMS
that represent models suitable for synchronization (e.g.,
models from successive stages of development lifecycle)
can be matched by establishing dependency relationships.
Each dependency node in between two metamodels would,
through its existence, indicate that two types are dependent.
And, through constraints internal to the node, it would pre-
cisely define the mapping between element types and their
related attributes. It is worthy to note that each dependency
node would connect to exactly one element from each meta-
model. However, each metamodel element could have more
than one dependency node connected to it, thereby allowing
one-to-many or many-to-many relations.

ModelElement
UML Class Diagram Metamodel
for Synchronization (simplified)

+ target

+ source

Relationship

+ endName1 : String
+ endName2 : String
+ endType1 : String
+ endType2 : String
+ Visibility1 : String
+ Visibility2 : String
+ Multiplicity1 : String
+ Multiplicity2 : String
+ IsNavigable1 : Boolean
+ IsNavigable2 : Boolean

Class

+ name : String
+ type : String
+ stereotype : String
+ constraint :
 OCL Expression

Architectural Box-and-Arrow Diagram
Metamodel (ABDM) for Synchronization (simplified)

ModelElement

0..1 1..*

<<dependency>>
Class-to-Package

(see OCL Expression)

Package

+ name : String
+ type : String

Subsystem

+ name : String
+ type : String+depends

Dependency Class-to-Package {
 Operators
 T1 <contains> T2 implies
 explicitMappingTable -> exists (tuple | tuple = (T1, T2, contains))
 Mapping
 forEach (nodeC : Class | exists (nodeP : Package | nodeP <contains> nodeC)
}

explicitMappingTable
(manually defined)

Figure 3. An Example of Metamodel Mapping
for Synchronization

To demonstrate the mapping between GMS-based meta-
models, we show a an example of Architectural Box-and-
Arrow Diagrams and UML Class Diagrams (Figure 3). This
instance is based on the assumption that each class in the
UML model must be a part of a package in the architectural
model and cannot exist otherwise. This assumption is en-
coded as a containment relationship specified using OCL.

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

This condition would during synchronization imply that if a
package that contains a particular class is deleted, that class
and all its attributes, operations and associations would also
be deleted. Within the mapping, we make a reference to the
explicit mapping table that can be used to manually define
containment relations among suitable elements. This table
is used to verify the assumption behind the dependence re-
lation.

In our example (Figure 3), we utilize OCL to express
relations between individual meta-classes. However, this
approach can be adapted to express relations between pat-
terns of meta-classes by choosing a different specification
language (e.g., graph grammars).

Transformation Metamodel for
Synchronization (TMS)

InsertNode

+ nodeName : String
+ nodeType : String

InsertEdge

+ sourceName : String
+ targetName : String
+ edgeLabel : String
+ edgeType : String

DeleteEdge

+ sourceName : String
+ targetName : String
+ edgeLabel : String
+ edgeType : String

DeleteNode

+ nodeName : String
+ nodeType : String

ModifyNode

+ nodeName : String
+ nodeType : String

«extends»
ModifyEdge

+ sourceName : String
+ targetName : String
+ edgeLabel : String
+ edgeType : String

SetNodeLabel

+ newName : String

SetNodeType

+ newType : String SetEdgeLabel

+ newLabel : String

SetEdgeType

+ newType : String

SetEdgeSource

+ newSource : String

«extends»

SetEdgeTarget

+ newTarget : String

SetNodeAttribute

+ attributeName : String
+ attributeType : String

SetEdgeAttribute

+ attributeName : String
+ attributeType : String

SetNodeAttributeLabel

+ newName : String

SetNodeAttributeType

+ newType : String

«extends»

«extends»

SetEdgeAttributeLabel

+ newName : String

SetEdgeAttributeType

+ newType : String

GraphTransformation

+ GUID : String
+ preCondition : OCL
 Expression
+ postCondition : OCL
 Expression

Figure 4. Transformation Metamodel for Syn-
chronization

The presented example underlies the configurability of
our approach, where the level of granularity and semantic
detail is left fully customizable. Software engineers adapt-
ing this framework to their usage scenarios would not be
limited by our approach and could easily instantiate their
own synchronization mapping.

4.2. Transformation Metamodel for
Synchronization

Using GMS as the basis for representation of models, the
next goal is to derive a common transformation approach
that could be used to establish traceability capabilities for
synchronization. Given that all models in our problem
scope are viewed as graphs, their changes at their most ba-
sic (atomic) level could be viewed as simple graph changes
(e.g., insert, modify, or delete node or edge). From there, the
actual changes performed could be represented and traced
as combinations of graph changes. Hence, we define a
transformation metamodel for synchronization, which is an
abstraction of actual changes performed on models and is
based on GMS. Each (source) metamodel for synchroniza-
tionMGMS instantiated from GMS would also have a com-
plementary (target) metamodel MTMS , which would be an
instance of TMS and would define transformations for all
instances of MGMS . It also holds that all model trans-
formations performed on models that comply with MGMS

would then have to comply with the matching MTMS .
More specifically, TMS, as expressed in Figure 4, iden-

tifies basic graph operations as a hierarchy, and is based on
the assumption that performing a particular operation will
not violate the structural integrity of a graph. For that pur-
pose, each graph transformation will have its own globally
or locally defined pre and postconditions, which would en-
sure the preservation of the structural integrity. For exam-
ple, a node that is removed should not leave dangling edges,
but should be preceded with the removal of affected edges.

The mapping of TMS to an instance for UML Class Di-
agram transformations is not complex and is described as
follows.

• Each change to one of the entities of the class dia-
gram is mapped to its abstract representation in terms
of graph changes based on the mapping of UML class
diagram metamodel with GMS. For example, opera-
tion “InsertClass” is mapped to “InsertNode” and oper-
ation “DeleteAssociation” is mapped to “DeleteNode”.
Also, operation “SetClassName” is mapped to “SetN-
odeLabel” and operation “SetAssociationMultiplicity”
is mapped to “SetNodeAttribute”.

• To maintain structural integrity, required pre and post-
conditions are set in the root of the transformation
model hierarchy. These constraints specified in OCL
could, for example, ensure that class is not removed
until its attributes, operations, or associations are re-
moved or reassigned. Given that each operation inher-
its properties from the top level “GraphTranformation”
operation, these conditions would apply to all opera-
tions across the transformation model.

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

This UML Class Diagram Transformation Metamodel in
conjunction with similarly defined Architectural Box-and-
Arrow Diagram Transformation Metamodel could be used
to map and enact changes between models of these two
types, as discussed in the next subsection.

4.3. An Algorithm for Model Synchronization
Through Traceability

Before specifying the synchronization algorithm and its
details, it is necessary to mathematically define the notation
and the problem.

Let a model M be a set of typed nodes, edges, and
properties on these nodes and edges. Each M is an instance
of a corresponding GMS-compliant metamodel MM . A
node n of M is represented as a tuple (GUID, label, type,
A) and an edge e of M as a tuple (GUID, label, type,
sourceNode, targetNode, A). In each tuple, GUID is a
Globally Unique IDentifier used to unambiguously identify
nodes and edges while type is an element of MM . In
addition, let A be a set of attributes, where each attribute a
is represented as a tuple (label, type, value).

The problem of synchronization can then mathemati-
cally be described as follows: let M and G be two models
at different levels of abstraction synchronized through an
equivalence relation R (i.e., M R G). Given a sequence of
transformations T m that alters M to yield M′, the problem
is to identify a corresponding sequence of transformations
T g that when applied to G yields G′ such that M′ R G′.
We assume for simplicity that each transformation could
insert, delete, or modify a node, an edge, or an attribute.

The solution based on GMS and TMS frameworks
would be a sequence of translations from T m to T g ,
where each translation is mapped using one of the rules
from a set of applicable synchronization rules S. Each
synchronization rule would apply to a particular operation
(e.g., InsertNode), be based on a particular premise (i.e.,
relevant preconditions), and would include corresponding
actions. A rule could be expressed in a variety of notations
including OCL and graph grammars.

Synchronization rules would be based on dependencies
between the metamodels of M and G. Assuming that
Type1 D Type2 for a dependency relation D where R ⊃ D,
a simplified template for rules that map InsertNode trans-
formations from M to G would be as follows. Note that
similar templates would apply for other transformations
(e.g., DeleteNode, ModifyEdge).

Case 1. For each InsertNode (label, Type1), assuming that
D is one-to-one mapping with no constraints, execute

M1 :: T1

+ GUID

+uses
M2 :: T3

+ GUID

M3 :: T3

+ GUID

+uses

G1 :: TT3

+ GUID

G2 :: TT3

+ GUID

+uses

Tm:
InsertNode (M4, T1);
InsertNode (M5, T3);
InsertEdge (M3, M4);
InsertEdge (M4, M5);

Model M Model G

S:
forEach InsertNode (l1, T1)
 execute <nothing>
forEach InsertNode (l1, T3)
 execute InsertNode (<inputLabel>, TT3)
 execute EstablishRelation (<inputLabel>, l1, contains)
forEach InsertNode (l1, t1) where t1 <> T1 and t1 <> T3
 execute <nothing>
forEach InsertEdge (l1 : T1, l2 : T1)
 execute <nothing>
forEach InsertEdge (l1 : T1, l2 : T3)
 if exists (li : T3 | li <linked> l2)
 execute ll1 = FindRelation (li)
 execute ll2 = FindRelation (l2)
 execute InsertEdge (ll1 : TT3, ll2 : TT3)
 else
 execute <nothing>
forEach InsertEdge (l1 : T3, l2 : T1)
 <analog to previous>
forEach InsertEdge (l1 : T3, l2 : T3)
 execute ll1 = FindRelation (l1)
 execute ll2 = FindRelation (l2)
 execute InsertEdge (ll1 : TT3, ll2 : TT3)

Tg:
<nothing>;
InsertNode (<inputLabel>, TT3);
<nothing>;
InsertEdge (G2, <inputLabel>);

M1 :: T1

+ GUID

+uses
M2 :: T3

+ GUID

M3 :: T3

+ GUID

+uses

Model M'

G1 :: TT3

+ GUID

G2 :: TT3

+ GUID

+uses

Model G'

M4 :: T1

+ GUID

+uses

M5 :: T3

+ GUID
+uses

?? :: TT3

+ GUID

+uses

<contains>

<contains>

<contains>
<contains>

<contains>

D:
Operators
 node1 <contains> node2 implies
 explicitMappingTable -> exists (tuple |
 tuple = (node1, node2, contains))
Mapping
 M -> exists (node1 : T3) implies
 G -> exists (node2 : TT3 | node2 <contains> node1)
 G -> exists (node1 : TT3) implies
 M -> exists (node2 : T3 | node1 <contains> node2)

Figure 5. Model Synchronization of Generic
Models

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

InsertNode (<inputLabel>, Type2).

Case 2. For each InsertNode (label, TypeT) where TypeT
<> Type1, assuming that D is one-to-one mapping
with no constraints, execute <nothing>.

Case 3 and above. For each InsertNode (label, Type1),
assuming that D is a mapping with constraints, derive a
transformation t that satisfies constraints. Else, if con-
straints could not be satisfied, execute <nothing>.

As it can be seen in examples in Figure 5 and Figure 6,
not all of these cases would apply at the same time. More-
over, the rules could also contain implementation specific
operations (e.g., FindRelation, EstablishRelation) that are
used to comply with the constraints as set in D.

The algorithm for Model Synchronization Through
Traceability (abbreviated as MSTT) is as follows.

Algorithm: MSTT

Input:

1. Model M
2. Model G
3. Equivalence Relation R
4. Set of Synchronization Rules S
5. Sequence of Transformations T m

Output: 1. Model M′

2. Model G′

Steps:

Step 1. Let two models M and G be initially
synchronized under an equivalence relation
R (i.e., M R G). Also, let S be a set of
applicable synchronization rules.
Step 2. Let M be modified through a se-
quence of transformations T m resulting in a
model M′.
Step 3. For each transformation tm from T m,
use a corresponding synchronization rule s to
obtain transformation tg . Make each tg be a
part of T g in the order analog to T m.
Step 4. Apply T g to G to obtain G′, and ver-
ify that M′ R G′. Store the record of trans-
formation, indicating the outcome of apply-
ing T g.
Step 5. If M′ RG′ does not hold, identify vi-
olated constraints and either manually update
the constraints or the model elements that vi-
olate them, or declare failure.

To show the usage of the algorithm, we include the fol-
lowing two examples. In Figure 5, M and G are two generic
models where G is at a higher level of abstraction than M
and M R G for some relation R. The set of rules S for
synchronization of M and G is based on the dependency

Student :: Class

+ GUID

+uses

Account :: Class

+ GUID

AccountManager :: Class

+ GUID

+uses

StudentManagement ::
Package

+ GUID

+uses

Tm:
DeleteEdge (AccountHistory, Stack)
DeleteNode (Stack, Class);
InsertNode (HashTable, Class); % from a library
InsertEdge (AccountHistory, HashTable);

Model M :: UML Class Diagram Model G :: Architectural Diagram

S:
forEach InsertNode (l1, Class)
 if exists (lli : Package | lli <contains> l1 and G <contains> lli)
 execute <nothing>
 else if exists (lli : Package | lli <contains> l1)
 execute InsertNode (lli, Package)
 else
 execute EstablishRelation (<inputLabel>, l1, contains)
 execute InsertNode (<inputLabel>, Package)
forEach InsertNode (l1, T) where T <> Class
 execute <nothing>
forEach InsertEdge (l1 : Class, l2 : Class)
 execute ll1 = FindRelation (l1)
 execute ll2 = FindRelation (l2)
 if exists (edge | source = ll1 and target = ll2) then
 execute <nothing>
 else
 execute InsertEdge (ll1 : Package, ll2 : Package)
forEach InsertEdge (l1 : T1, l2 : T2) where T1 <> Class or T2 <> Class
 execute <nothing>
forEach DeleteNode (l1, Class)
 execute ll1 = FindRelation (l1)
 if exists (node : Class | ll1 <contains> node)
 execute <nothing>
 else
 execute DeleteNode (ll1, Package)
forEach DeleteNode (l1, T) where T <> Class
 execute <nothing>
forEach DeleteEdge (l1 : Class, l2 : Class)
 execute ll1 = FindRelation (l1)
 execute ll2 = FindRelation (l2)
 if not exists (edge | source = li and target = lj and ll1 <contains> li
 and ll2 <contains> lj)
 execute DeleteEdge (ll1, ll2)
 else
 execute <nothing>
forEach DeleteEdge (l1 : T1, l2 : T2) where T1 <> Class or T2 <> Class
 execute <nothing>

Tg:
<nothing>;
<nothing>;
InsertNode (DataStructures, Package);
InsertEdge (AccountManagement, DataStructures);

<contains>

Permission :: Class

+ GUID

+uses

AccountHistory :: Class

+ GUID

+uses

StudentManager :: Class

+ GUID

+uses

AccountManagement ::
Package

+ GUID
<contains>

Stack :: Class

+ GUID

+uses D:
Operators
 node1 <contains> node2 implies
 explicitMappingTable -> exists (tuple |
 tuple = (node1, node2, contains))
Mapping
 M -> exists (nodeC: Class) implies
 G -> exists (nodeP : Package |
 nodeP <contains> nodeC)
 G -> exists (nodeP : Package) implies
 M -> exists (nodeC : Class |
 nodeP <contains> nodeC)

Student :: Class

+ GUID

+uses

Account :: Class

+ GUID

AccountManager :: Class

+ GUID

+uses

StudentManagement ::
Package

+ GUID

+uses

Model M' :: UML Class Diagram Model G' :: Architectural Diagram

<contains>

Permission :: Class

+ GUID

+uses

AccountHistory :: Class

+ GUID

+uses

StudentManager :: Class

+ GUID

+uses

AccountManagement ::
Package

+ GUID
<contains>

HashTable :: Class

+ GUID

+uses

DataStructures ::
Package

+ GUID
<contains>

+uses

Figure 6. Model Synchronization of Design
and Architectural Models

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

relation D between types T3 and TT3. The relation D is il-
lustrated at the top of Figure 5 and it denotes that for each
instance of T3, there is an instance of TT3 such that T3 is
contained in the package of TT3; and that for each instance
of TT3, there is an instance of T3, such that T3 is contained
in the package of TT3. For simplicity, we assume that in
this case D ⇔ R, while in general, D ⊂ R (i.e., other
constraints beside the ones in D would be present). The
model M is transformed using a sequence of transforma-
tions T m into M′. The synchronization algorithm maps in-
dividual transformations from the given transformation se-
quence T m into transformations for a new sequence T g .
Each mapping is based on a rule that matches the transfor-
mation type. For example, InsertNode (M4, T1) is mapped
using the first rule from S — forEach InsertNode (l1, T1
) execute <nothing> — into <nothing> (i.e., no execution
necessary). Similarly, InsertEdge (M3, M4), where M3 is
of type T3 and M4 is of type T1, is mapped using the sixth
rule from S into <nothing>, as there is no link between M3
and another node of type T3 through M4. The resulting se-
quence T g is applied to G to obtain G′. Finally, it is verified
that M′ R G′ is true by checking that constraints of D are
satisfied.

Similarly, in Figure 6, we show two models M and G,
where M is a low-level design model and G is an archi-
tectural model. The model M is altered through T m, so
that the AccountHistory class is implemented not using the
internal Stack class but the external HashTable class from
DataStructures library. Since HashTable is not part of the
existing packages, as a result of the mapping of T m to T g ,
a new package DataStructures is created to indicate the ex-
ternal library with a new edge connecting it to the Account-
Management package.

4.4. A Process for Model Synchronization
Through Traceability

In this subsection, we identify a process that can be used
to instantiate our methodology for a practical synchroniza-
tion scenario. The steps in this process would be as follows.

Step 1. For two models M and G that need to be kept syn-
chronized, identify model types Mt and Gt.

Step 2. For identified model types, derive GMS-compliant
representation metamodels MMr and GMr with
enough semantic detail for intended synchronization.

Step 3. Establish necessary dependencies among MMr

and GMr using dependency relationships. If necessary,
manually insert tuples into explicit mapping tables to
indicate dependencies among specific model elements.
Modify MMr and GMr if necessary.

Step 4. For identified model types, derive TMS-compliant
transformation metamodels MMt and GMt so that
they are consistent with MMr and GMr respectively.
To preserve structural integrity, define necessary pre-
conditions and postconditions for those operations that
warrant it.

Step 5. Implement traceability capability (e.g., through
tracing feature of an IDE, or a model repository) based
on MMt and GMt.

Step 6. Verify that M and G satisfy dependency conditions
and manually update them if not equivalent at the be-
ginning.

Step 7. Assuming interactive synchronization (i.e., end
user requests synchronization), fragment the changes
performed into basic graph transformations and map
them using an algorithm described in the previous sub-
section. Ensure that a record of transformation is
stored after each batch of transformations is processed.

For more automatic support of synchronization, it is
clear that this algorithm would have to be implemented us-
ing a modelling API and then would have to be integrated
into an overall development lifecycle (e.g., made part of the
active Integrated Development Environment (IDE)). This
implementation problem is out of the scope of this paper,
and will be explored in future research.

5. Conclusions and Future Research

In this paper, we have introduced a methodology for
model synchronization to achieve traceability of changes of
software models that occur during software evolution and
maintenance. As part of our theory, we have introduced
frameworks for model representation and model transfor-
mation that are based on the concept of graphs. Each model
that is to be synchronized based on our methodology is
viewed as a graph, and each change made on this model
is viewed as an instance of a graph change. Based on this
approach, we are able to implicitly map changes between
models that are based on different levels of abstraction.
Within our theory, we have also shown an algorithm that
prescribes how our framework can be instantiated and ap-
plied to solve concrete synchronization problems.

We have classified this approach as primarily implicit,
where relations between model elements are implied from
dependency mappings between their metamodels. How-
ever, in practice, implicit mappings will not suffice for all
conditions. We have therefore incorporated as a first step,
a facility for explicit mappings between model elements in
terms of mapping tables, which refers to model elements by
their unique identifiers.

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

The focus for this paper is to set the foundations for a
methodology and to illustrate its capacity to handle struc-
tural synchronization of compatible models (e.g., models
from consecutive stages of development lifecycle). As part
of on-going work, we have yet to demonstrate the suitabil-
ity of our approach to handle behavioral synchronization;
for instance, synchronization of complex flows. Never-
theless, we believe that the proposed framework is a first
step towards establishing a formal, yet tractable framework
whereby software models and artifacts at different levels of
abstraction can be synchronized and can be maintained con-
sistent with each other when one of these models is altered
due to evolution activities.

References

[1] G. Cysneiros, A. Zisman, and G. Spanoudakis. A traceabil-
ity approach from i* and uml models. In Proceedings of
the 2nd International Workshop on Software Engineering for
Large-Scale Multi-Agent Systems (SELMAS), Lecture Notes
in Computer Science, Portland, OR, May 2003. Springer.

[2] K. Czarnecki and S. Helsen. Classification of model trans-
formation approaches. In Proceedings of the 2nd OOPSLA
Workshop on Generative Techniques in the context of Model
Driven Architecture, Anaheim, CA, October 2003.

[3] P. Desfray. Mda when a major software industry trend
meets our toolset, implemented since 1994. Technical re-
port, SOFTEAM, October 2001.

[4] G. Engels, R. Heckel, and J. M. Kster. Rule-based specifica-
tion of behavioral consistency based on the uml meta-model.
In Proceedings of the 4th International Conference on the
Unified Modeling Language (UML), volume 2185 of Lec-
ture Notes in Computer Science, Toronto, Canada, October
2001. Springer.

[5] G. Engels, R. Huecking, S. Sauer, and A. Wagner. Uml
collaboration diagrams and their transformation to java. In
Proceedings of the Second International Conference on The
Unified Modeling Language (UML), volume 1723 of Lec-
ture Notes in Computer Science, Fort Collins, CO, October
1999. Springer.

[6] P. Fradet, D. Metayer, and M. Perin. Consistency checking
for multiple view software architectures. In Proceedings of
the 7th European engineering conference held jointly with
the 7th ACM SIGSOFT international symposium on Foun-
dations of software engineering, Toulouse, France, October
1999.

[7] A. Kleppe, J. Warmer, and W. Bast. The Model Driven Ar-
chitecture: Practice and Promise. Addison-Wesley, 2003.

[8] K. Kowalczykiewicz and D. Weiss. Traceability: Taming
uncontrolled change in software development. In Proceed-
ings of the IV KKIO Conference, Tarnowo Podgrne, Poland,
2002.

[9] H. Larsson and K. Burbeck. Codex - an automatic model
view controller engineering system. In Proceedings of the
Workshop on Model Driven Architecture: Foundations and
Applications, Enschede, The Netherlands, June 2003.

[10] OMG. Meta object facility (mof) specification version 1.4.
Technical report, Object Management Group (OMG), April
2002. http://www.omg.org/docs/formal/02-04-03.pdf.

[11] OMG. Unified modelling language (uml) specification.
Technical report, Object Management Group, March 2003.
http://www.omg.org/docs/formal/03-03-01.pdf.

[12] W. Shen, Y. Lu, and W. L. Low. Extending the uml meta-
model to support software refinement. In Proceedings of the
Second Workshop on Consistency Problems in UML-based
Software Development, San Francisco, CA, October 2003.

[13] D. Varró and A. Pataricza. Mathematical model transfor-
mations for system verification. Technical report, Budapest
University of Technology and Economics, May 2001.

[14] J. Warmer and A. Kleppe. The Object Constraint Language:
Precise Modeling with UML. Addison-Wesley, 1998.

[15] M. Wirsing and A. Knapp. View consistency in software
development. In Proceedings of the 9th International Work-
shop on Radical Innovations of Software and Systems Engi-
neering in the Future (RISSEF), Venice, Italy, October 2002.

[16] E. Yu. Modelling Strategic Relationships for Process
Reengineering. PhD thesis, University of Toronto, 1995.

[17] Uml glossary. Online by Rational Software Corporation
and MCI Systemhouse Corporation, 2004. http://swiki.hfbk-
hamburg.de:8888/MusicTechnology/24.

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

	footer1:

