
1

Incremental Transformation of Procedural Systems to Object Oriented Platforms

Ying Zou, Kostas Kontogiannis
Dept. of Electrical & Computer Engineering

University of Waterloo
Waterloo, ON, N2L 3G1, Canada
{yzou, kostas}@swen.uwaterloo.ca

Abstract
Over the past years, the reengineering of legacy software
systems to object oriented platforms has received
significant attention. In this paper, we present a generic
re-engineering source code transformation framework to
support the incremental migration of such procedural
legacy systems to object oriented platforms. First, a
source code representation framework that uses a generic
domain model for procedural languages allows for the
representation of Abstract Syntax Trees as XML
documents. Second, a set of transformations allow for the
identification of object models in specific parts of the
legacy source code. In this way, the migration process is
applied incrementally on different parts of the system. A
clustering technique is used to decompose a program into
a set of smaller components that are suitable for the
incremental migration process. Finally, the migration
process gradually composes the object models obtained at
every stage to generate a amalgamated object model for
the whole system. A case study for the migration of a
medium size C system to C++ is discussed as a proof of
concept.

1. Introduction

Legacy systems are mission critical software systems that
entail comprehensive business knowledge and they
constitute large assets for organizations. However, their
quality and operational life are constantly deteriorating
due to the maintenance activities. With the rapid
technology updates, there is great pressure to migrate or
port existing systems into modern platforms where better
and faster operating, development, and maintenance
environments exist. One possible solution to leverage the
business value of such systems is to re-engineer them into
the object-oriented platforms. With properties such as
encapsulation, inheritance, and polymorphism inherent in
object-oriented designs, the migrated systems can be
easier maintained, reused and integrated with other
applications in network centric environments.

Most of today’s legacy systems are written in
procedural languages. In a nutshell, the object oriented
migration process involves the analysis of the Abstract
Syntax Tree (AST) of the procedural code, the
identification of object models, and the generation of
object oriented code with desired software quality levels.
In this context, the software reverse engineering
community has proposed methods to migrate systems
written in various procedural languages, such as
COBOL[6], Fortran[18], and C[12, 13], into object-
oriented platforms. In this paper, we propose an
incremental source code transformation framework that
allows for procedural system to be migrated to modern
object oriented platforms. First the system is parsed and a
high level model of the source code is extracted. In the
proposed framework we introduce the concept of a
unified domain model for a variety of procedural
languages such as C, Pascal, Cobol, and Fortran. Such
unified models can be implemented in XML and denote
common language features such as routines, subroutines,
function, procedures, types, statements, variables and
declarations, just to name a few.
Second, to keep the complexity and the risk of the
migration process into manageable levels, a clustering
technique allows for the decomposition of large systems
into smaller manageable units. A set of source code
transformations allows for the identification of an object
model from each such unit. Finally, an incremental
merging process allows for the amalgamation of the
different partial object models into an aggregate
composite model for the whole system In this way, the
migration task is tackled in a “divide-conquer” manner.
The sections below discuss these concepts in detail.

This paper is organized as follows; Section 2 reviews
the related work in literature. Section 3 discusses the
concepts pertaining to a unified domain model fro the
representation of procedural code using XML formats.
Section 4 presents an incremental transformation process
to migrate procedural systems to object oriented
platforms. Section 5 provides a list of transformations and

This work is supported by the IBM Center for Advanced Studies
IBM Toronto Laboratory, NSERC, and the Consortium for Software
Engineering Research, Canada.

2

section 6 presents a migration case study. Finally section
7 concludes the paper.

2. Related Work

Source Code Representation
There is a growing stream of activities related to XML
representation of source code. In [1], a system for
annotating C++ and Java is presented. Specifically, Java
and C++ grammars are mapped to corresponding DTDs
using domain models. Consequently, semantic actions
have been added to custom-made parsers in order to
annotate the input stream (source code) with XML tags
that are compliant to a domain model DTD. In this
approach, common structures between object oriented
languages are abstracted in a more generic DTD that aim
to model object oriented language constructs.

In [2], an XML based representation of Java source
code, called JavaML, is presented. A converter, built with
the Jikes Java compiler framework, translates from the
classical Java source code representation to JavaML, and
an XSLT stylesheet converts from JavaML annotated text
back into the original source.

In [3], the InterMediate Language (IML) is proposed
to model and analyze source code. IML allows for
sophisticated data-flow and control-flow analyses to be
built. Extensions to IML have been discussed in [13],
where the Resource Graph (RG) is proposed to abstract
global information, such as call, type, and usage relations
for architectural design recovery.

In [4], the Graph Exchange Language (GXL) is
proposed as a data exchange format among software
analysis tools. GXL is designed for the representation of
typed graphs. The CPPX project [5] extracts the C++ facts
from the GNU gcc compiler in the binary format and
represents the fact into an interchange language for
semantic graphs, such as GXL.

Object Oriented Migration
For the migration of procedural code to object oriented
designs, there has been significant research activity in
systems for migrating COBOL to OO-COBOL[6],
Assembly to C[7], C to C++[8, 9]/Java[10], RPG to
C++[11]. In the relevant literature, several methods for
identifying an object model from a legacy system have
also been defined [21 –24]. Overall, these research efforts
focus on the identification of objects and abstract data
types (ADTs). In [11], the identification of an object
model from RPG programs is presented. Objects are
centered around persistent data stores, while related parts
of code in the legacy system become candidate methods.
In [12, 13], an object model is discovered directly from
procedural code written in C. Candidate objects are
selected by analyzing global data types and function
formal parameters. An evidence model helps to attach the
.

Procedural
Langauge

Domain Model

C

Fortran

Pascal

Basic

Procedural
Languages

Extract

Domain Model
in XML DTD

Generic
Procedural

Source Code
Representation

in XML

Validate

Model

Map

Map

Map

Map

Figure 1: Generic Procedural Code Representation
Framework

methods to a candidate class and choose an appropriate
object model This evidence model consists of state
change information, return types, and data flow patterns.
In [14], [20], a concept analysis method is provided to
identify modules from C code. It is based on lattice theory
to identify similarities among a set of objects based on
their attributes. The positive and negative information is
used to identify potential modules. Another
objectification method is presented in [15]. The method
is based on documentation and informal information, such
as user manuals, requirement and design specifications,
and naming conventions. However, for legacy systems,
the external information is not always available, and this
technique may not always be applicable. The technique
may also be used to analyze source code informal
information such as comments and identifier names and
from other non-linguistic aspects of OO code. However,
there is a need for a systematic approach to control both
the complexity of the migration process and the quality of
the new migrant system.

3. Source Code Representation

In order to analyze the source code, it is critical to
represent the program source code at a higher level of
abstraction than source code text. Program representation
provides means to generate abstractions, appropriate input
to a computational model for analyzing and reasoning
about programs, and methods for the translation and
normalization of programs. In this section, we discuss the
program representation techniques that are based on
procedural language domain models and the XML
markup language. To build a generic representation for
specific categories of procedural languages, there are two
major steps involved, namely, the abstraction of the
individual procedural language domain models and the
representation of such an abstraction in a generic format,
as illustrated in Figure 1. The focal point is to identify the
functional equivalent constructs and aggregate them at a
higher level of abstraction

3

Figure 2: Sample Domain Model for Expressions

For example, language constructs such as “subroutine” in
Fortran and “Function” in C, denote similar concepts that
for the purpose of language modeling can be aggregated
by a unique term “procedure”. Due to size limitations in
this paper we will focus our discussion on a domain
model that stems mostly from the C programming
language. The specific domain model is generic enough to
handle constructs from various programming procedural
languages such as Fortran, Pascal, and Cobol. A subset of
such language domain model for Expressions represented
in UML is illustrated in Figure 2. For this purpose, the
UML object-oriented modeling language is utilized to
denote language syntactic constructs and AST edges as
associations. The association links represent the attributes
of non-primitive types and are denoted as mappings from
one class to another. As shown in Figure 2,
expression is a basic construct, including sub-classes,
such as identifier reference, literal
constant, arithmetic expression, or
assignment expression. The expression, as a
base class, contains the common attributes and shares
them with its subclasses, such as literal,
arithmetic expression, identifier
reference by inheritance. The expression is self-
reflective, with which an association points back to itself.
Therefore, an expression can contain one or more
expressions.

3.1. Source Code Representation Using XML

3.1.1. Representation of ASTs in XML

There are two approaches to extract the abstract syntax

<EXP RESSION-ST AT EMENT >
 <EXP RESSION-ST AT EMENT -BODY>
 <EXP RESSION>
 <ASSIGNMENT -EXP >
 <ASSIGNMENT surface-synt ax="shuffle_level = num _decks * 26">
 <ASSIGNMENT -T ARGET surface-synt ax="shuffle_level">
 <IDENT IFIER-REF id-name="shuffle_level"/>
 </ASSIGNMENT -T ARGET >
 <ASSIGNMENT -SOURCE surface-synt ax="num_decks * 26">
 <MULT IP LICAT ION surface-synt ax="num_decks * 26">
 <MULT IP LICAT ION-ARGS>
 <IDENT IFIER-REF id-name="num_decks"/>
 <INT -LIT ERAL int -long="NIL" in t -radix="10"

in t -unsigned="NIL" int -value="26"/>
</MULT IP LICAT ION-ARGS>

 </MULT IP LICAT ION>
 </ASSIGNMENT -SOURCE>
 </ASSIGNMENT >
 </ASSIGNMENT -EXP >
 </EXP RESSION>
 </EXP RESSION-ST AT EMENT -BODY>
</EXP RESSION-ST AT EMENT >

Figure 3: XML Element Structure for Expression
Statement in C

tree and encode it in XML. The bottom-up approach,
utilizes the concept of a domain model definition that
denotes the syntactic structures of a programming
language such as Pascal, Fortran, and C. Tools that utilize
this approach include Refine for C/Fortran/COBAL,
Datrix for C++/C/Java.

The other approach, referred to as the top-down
approach, examines the grammar of the specific
programming language, and defines a standard logical
structure for an annotated Abstract Syntax Tree. By
following the language grammar rules, different parsers
can extract the necessary information from the source
code and encode it in a uniform and language-neutral
format. Using a domain model definition extracted from
the specification of a given programming language (i.e.
ANSI C), a hybrid approach to define the logical structure
of the entities of an Abstract Syntax Tree in terms of a
Document Type Definition (DTD) document can be
utilized by following the steps below.

In the first step, a domain model for a given

programming language is defined as a collection of
classes, hierarchies, and association. By recursively
traversing the hierarchy of the domain model entities, the
given domain model can be mapped to a Document Type
Definition (DTD). Specifically, domain model classes are
mapped as DTD elements, and associations are mapped as
DTD attributes. During parsing the semantic actions of
the parser can be used to generate an XML representation
of the source code as illustrated in Figure 3. In the second
step, the domain model for a given language and its
corresponding DTD can be enhanced with information

4

Fortran Domain Model Generalized Domain Model

Structure-Statement Structure
Record-Statement Struct Variable Declaration

Common-Statement Global Variable Declaration
Programs Program

Executive Program File
Program Unit Function-Def

Type-Statement Declaration
Read-Statement Function-Call
Call-Statement Function-Call

Indexable-Name/function-
Params-

Function-call

Character-Statement String
Equivalence-Statement Union-Struct

Intrinsic-Statement Function-Pointer

Table 1: Generalization of the Fortran Domain Model.

such as unique identifier numbers, linkage, and analysis
information. Similarly, domain model generalizations
include the introduction of elements that relate to system
constructs such as system, module, and component.
 In this context, the generic XML based representation
for procedural code can be designed as to contain
common language structures found in a group of
programming languages including files, libraries, data
types, data definitions, variables, constants, macros,
expressions, statements, I/O utilities and functions.

For our work, the AST of each individual procedural
language is extracted and represented in the XML format.
The XSLT (eXtensible Stylesheet Language
transformation) is used to define transformation rules to
generalize individual domain models represented as a
DTD to more generic domain models. An example
mapping for Fortran constructs is illustrated in Table 1.

4. Incremental Migration Process

In this section, an incremental process model to migrate
legacy systems into object-oriented platforms is
presented. The need for an incremental migration process
is strong since large systems are not migrated at once
because of the complexity and the risk involved. It is
therefore important that a technique that identifies system
segments that serve as “work areas” in the migration
process to be devised. We aim to divide a system into a
collection of cohesive “work areas”, which group
exclusively related entities for the migration process.
Consequently, the XML based AST for every such
“work-area” segment is generated, and in turn the
migration process operates iteratively on each segment
(shown in Figure 4).

In the following subsections, these issues are addressed in
detail.

Procedural
Source Code

Cluster1 Cluster2 Clusterk

XML
based
AST1

XML
based
AST2

XML
based
ASTk

......
Object

Oriented
Code

Decomposition

AST Extraction

OO
Migration

OO
Migration

OO
Migration

Figure 4: Incremental Object Oriented Migration Process

4.1. A System Segmentation Algorithm

Most clustering techniques presented in literature utilize
certain criteria to decompose a system into a set of
meaningful modular clusters. Such criteria attempt to
achieve a cluster with low coupling, high cohesion,
interface minimization and shared neighbors. In the
context of the object-oriented migration, we strive to
produce clusters that assemble the maximum source code
properties related to a class candidate. In this respect,
essential source code entities are called seeds. Other
entities that associate with this seed entity form a cluster.
An association is a directed edge from a seed to its related
entities.

Criteria on the Selection of a Seed
A seed is selected according to its potential to be
considered a class candidate in the new migrant system.
In this context, a seed can be chosen from aggregate data
types, global variable declarations, function parameter
declarations, and function pointer declarations.
Specifically, the aggregate data types include struct type
definitions, union type definitions, arrays, and
enumeration definitions. In this case, the fields in an
aggregate data type become the data members in a class
candidate. Similarly, a global variable is encapsulated as a
data member in a class candidate. Moreover, a function
pointer declaration is treated as a clustering seed for the
reason that a function pointer declaration defines a type
for the functions passed as parameters.

Criteria on the Selection of Entities
Due to the object oriented design principle that a class
encapsulates data and the related methods, we focus on
the discovery relations between data declarations and
functions that use such data. Such relations include type
references, data updates, and data uses. The algorithm for
selection of entities given a seed is illustrated in Program
1. Furthermore, the clustering algorithm, illustrated in

5

Program 2, is composed of three major steps. First, all the
functions in the original procedural system are identified
and stored in a set F. Second, all the seed candidates are
identified and stored in a sequence. Finally, for each seed
the associated entities, including functions and aggregated
data types are collected in a cluster. Consequently, every
result cluster is represented as a tuple in the form of a
tuple <seed, associated function set, associated
aggregated data type set>.

The overall segmentation algorithm takes the
AST(Abstract Syntax Tree) as an input, and produces
clusters represented by a sequence of tuples as an output.
The pseudo code programs below illustrate the process for
identifying migration work-area segments.

Program 1: Algorithm for Collecting Related Entities

Collect_Related_Entities(Ti, F, T, S)
Input:

Ti: an aggregate type, a global variable, or function pointer
type considered to be a seed
F: a set of all functions
T: a set of all aggregated types and global variable
declarations
S: AST view of a system

Output:
P : a tuple contains Ti, a set of related functions and a set of
related types

Algorithm:
Begin:

--Initialize the set of related functions

iTM =∅;

--Initialize the set of related aggregated

iTR =∅;

-- Tj has data member in the type of Ti

}))(

 and |{

(

_

ij

ijjtypesincluded

TT

TTandTTTR

berhasDataMemisType =

∈∈=
;

-- Tj is cased into the type of Ti

})(

 and |{_

ij

ijjtypescasted

TT

TTandTTTR

isCastedTo =

∈∈=
;

--Tj and Ti have data members

}()(

 and |{

)

_

ij

ijjtypescloned

TT

TTandTTTT

bersgetDataMembershasDataMem ⊆

∈∈= ;

-- Tj and Ti have data members that are mapping to each other

}())(

 and |{

)

_

(ij

ijjtypesmapped

TT

TTandTTTT

berhasDataMemberhasDataMemohasMappedT =

∈∈= ;

typesmappedtypescloned

typescastediT

TT

TT
typesincluded

R

__

__

∪∪

∪=
;

-- Fj has parameters with the type of Ti

}))(|{ (ijjjparameter TFFFFM erhasParametisTypeand =∈=
-- Fj has return value with the type of Ti

}))(|{ Re(ijjjreturn
TFFFFM turnhasisTypeand =∈=

-- Fj update variables related to Ti
)} |{ (jijjupdate

FTFFFM esupdatedTypand ⊆∈=

-- Fj is actual passing function to the function pointer type of
-- parameter

}

 |{

)()laration(PointerDecisFunction

_

i
T

j
F

FFFM

getTypeand
i

T

andjjfunctionsactual

=

∈=

functionsactual
M

updatereturniT MMM
parameter

M
_

∪∪∪=

P←<Ti,
iTM ,

iTR >;

return P
End

Program 2: Algorithm for Clustering
Segment_System (S)
Input:

S: AST view of a system
Output:

Sp: set of clusters
Algorithm:
Begin

-- Initialize a partition P into an empty tuple
P= ∅;
-- Initialize the cluster set Sp into an empty set
Sp=∅;
-- Identify all the functions and store them in a set F
F ← getAllFunctions(S);
--Identify all seed candidates
[T1, T2, …, Tn] ← getAllSeeds(S);
T ← [T1, T2, …, Tn];
-- Identify clusters
for each type Ti in T loop

>< }T,...,{T},F,...,{F,T m

iT
1
1T

k
iT

1
iTi ←

 Collect_Related_Entities(Ti);

P ← >< }T,...,{T},F,...,{F,T m

iT
1
1T

k
iT

1
iTi ;

Sp ← Sp with P;
end loop;
Sp = [P1, P2, …Pn];
return Sp

End

6

T0

T2

T1
F0

F1

F2

F3

F4

P0

P1

P2

Figure 5: Example for System Segmentation Algorithm

Figure 5, illustrates a result of applying the clustering
algorithm, where three clusters have been identified:

P0 =<T0, {F0, F1}, {T1}>,
P1 =<T1, {F2, F4}, ∅>,
P2 =<T2, {F3, F4}, {T1}>.

The algorithm and the clustering criteria allow for

overlapping regions to exist. When the overlap occurs on
aggregate data types, it may indicates a multi-inheritance
relationship among the generated class candidates.
However, if an overlap occurs on functions it reflects
conflicts in method assignment. As one function can be
only attached to one class as a method, the conflict has to
be resolved. In order to achieve good quality in the
migrated system, we provide a qualitative method and an
evidence model to determine the choice of the class
candidate that the function should be attached to [16, 17].
Finally, in the context of incremental migration process, it
is important to independently select and migrate a cluster
without relying on the information in other clusters. In
this respect, the shared regions are duplicated in each
cluster while converting the clusters in the XML format.
In other cases that some functions are not related to any
seeds, we wrap such “leftover” functions into one cluster.

4.2. Incremental Migration Process

The decomposition of a program produces a set of smaller
work areas. The algorithm for the incremental
transformation is illustrated in Program 3. It takes the
sequence of identified clusters as input and generates
incrementally an object-oriented system in the end. The
migration process is divided into k phrases one for each
cluster. The algorithm iterates over each cluster, and
updates the system object model, referred to as OM. It is
worth to note that the clusters are applied in the order that
is constrained by the function calls inside the shared
functions. As previously stated, the shared functions will
cause the conflicts in method assignment. The conflicted
functions called by other functions in conflicts should be
resolved first. Therefore, the clusters with less function
call dependencies in the shared functions are migrated
first. In summary, the transformations are performed in
four steps, (as shown in Program 4):

These steps are:
1) generate new class candidate which is added into the

object model;
2) attach the associated functions into the new class

candidate, and update the object model;
3) resolve conflicts when a function can be assigned to

either the current class candidate or the existing class
candidate in the object model (the resolving
techniques have been presented in the research papers
[16, 17]); and finally,

4) refine the object model by identifying class
associations.

Transform_Clusters(Sp)
Input:
 -- a sequence of clusters, k is the number of the clusters

Sp=[P1,P2,…,Pk]
Output:

OM: object model of the system
Algorithm:
Begin:

OM=∅;
Order_Clusters(Sp);
 while (phrase < k) do

OMphrase=Generate_Object_Model(OM, Pphrase);
OM= OMphrase;
phrase = phrase + 1;

end while
return OM

End

Program 4: Algorithm for Generating Object Model from
a Cluster
Generate_Object_Model(OMi-1, Pi)
Input:

OMi-1: the accumulated object model from clusters
1..i-1;
Pi: the ith cluster;

Output:
 OM: the accumulated object model from clusters 1..i;
Algorithm:
Begin:

OM=Generate_Class(OMi-1, Pi);
OM=Attach_Methods(OM, Pi);
OM=Resolve_Conflicts(OM, Pi);
OM=Refine_Object_Model(OM);
return OM;

End

The transformations that allow for generating class
candidates, attach methods to classes, resolving conflicts,
and refine the obtained object model are outlined in the
following sections.

7

5. Object Model Identification

This part of the process is divided into three steps namely,
class identification, private data member identification
and method attachment. The following sections provide
indicative transformations that can be applied in each
step.

5.1 Class Identification

The first step towards the migration of procedural source
code to an object-oriented platform is the selection of
possible object classes. This task can be automated to a
large extend using a number of different software analysis
techniques. However, no matter how sophisticated the
analysis techniques are, user assistance and guidance is
crucial on obtaining a viable and efficient object model.
Significant domain information can be utilized by the user
to guide the discovery process and to obtain a better and
more suitable object model. The object identification
techniques focus on two areas: a) the analysis of global
variables and their data types, b) the analysis of complex
data types in formal parameter lists. Analysis of global
variables and their corresponding data types is focusing
on the identification of variables that are globally visible
within a module. For each variable its corresponding type
is extracted from the Abstract Syntax Tree, and a
candidate object class is generated. Data type analysis is
focusing on type definitions that are accessible via
libraries. Examples include typedef C constructs. Data
types that are used in formal parameter lists become also
primary class candidates. The union of data types that are
identified by the global variable analysis and data type
analysis forms the initial pool of candidate classes.

5.2 Private Data Member Identification

Data type analysis
Aggregate data types refer to a collection of data
members inside a user-defined source code structure, such
as struct and union in C. The pre-condition of this
transformation rule requires that the struct type is not
defined inside any other struct type. Since such
struct type is globally available to be referenced by
functions and can be used by other declarations
throughout the program, it is will be suitable to be a class
candidate in the new system. The post-condition
characterizes the result of the transformation that all of
the data members of the struct type become the
private class attributes. Similarly, the union type can be
converted into class candidate with the pre-condition that
it is not embedded inside any other struct type
definitions.

Variable analysis

Although C++ allows for global constant definitions to be
accessible within file and global scope, keeping these
scopes of variables unchanged in the new system would
violate the principles of encapsulation and information
hiding in the target object oriented system. The
transformation rule aims at eliminating such extensive
scopes, by encapsulating such declarations as a private
data member in an individual class.

5.3 Method Attachment

Parameter type analysis
A formal parameter in a procedure or a function indicates
that the function references a data item of a particular
type. In the process of object model extraction, we
consider procedures and functions as method candidates.
To maximize the cohesion inside the class and minimize
the coupling between classes, the procedures and the
function with struct parameter types are attached to the
class candidates that are generated from these struct
types.

Return type analysis
The return type of a function indicates that the function
possibly uses and/or updates the data fields of the
aggregate type of the return value. Especially, in the case
that a function without a parameter of an aggregate type,
the return type provides strong evidence to assign such a
function to the class candidate originated from the return
type.

Variable usage analysis
In the case that a function has neither aggregate type
parameters, nor a return value of a aggregate type, the
frequency of usage of aggregate types in the function
body is considered as an evidence to transform the
function to method in the class candidate that is generated
by the aggregate type used.

6. Object Model Refinement

6.1 Inheritance Identification

Data type cast
In cast operations, the compiler will automatically change
one type of data into another when appropriate. Casting
allows to make this type conversion explicit, or to force it
when it wouldn’t normally happen. Implicit cast operation
between two data types suggests that these data types
share common data fields or are interchangeable.

Struct in struct
The data fields of a struct type are a group of variable
declarations, the type of which can be another struct
type. In this context, the outer struct type reuses the

8

definition of the inner struct type. This feature can be
said that it implies the inheritance relation between the
class candidates generated from the inner struct type
and the outer struct type.

Union type defined in a struct type
Union types denote that their data members share the
same memory space. This source code feature of the
original procedural system provides a subtle difference
from the semantics of a C struct where all members
are referenced as a single distinct group. By contrast, here
only one union data member can be referenced at a
time, and different data members cannot co-exist in the
same time. In the case that union type is defined in the
scope of another structure definition, the common
structure of the union data member and the rest of the
struct data fields can be extracted as a super-class,
while each of the union data members can be transformed
to a subclass.

Data clones
If two or more structures differ only with respect to few
fields, the common fields of these structures can be
extracted in order to form a super class. Moreover,
subclasses can inherit from it with their non-common
fields as their private attributes.

6.2 Polymorphism Identification

Switch statement replacement
One of the most important characteristics of quality
source code designs is the limited use of switch (or
case) statements. A switch statement in the
procedural code that uses in its evaluation condition
expression a type code, can be replaced by a set of
polymorphic methods. The type code that is used to
determine which case statement will be invoked can be
transformed to an individual class with an abstract
polymorphic method. Furthermore, each of the possible
values of the type code may form sub-classes, and define
a concrete polymorphic method that corresponds to case
statement bodies labeled by the type code value. The
same transformation rule for generating inheritance
relations applies also when a function has a type code as
its parameter to indicate that its behavior is determined by
the value of the parameter.

Function pointer replacement
There are two ways C functions can be invoked namely,
by name and by address. Invocation by name is by far the
most common one when the functions to be called are
decided at the compile time. Invocation by address is used
to determine at run time the concrete functions to be
executed. In this context, each possible function pointer

reference can become a class and their corresponding
source code can become a polymorphic method.

A comprehensive set of transformation rules to perform
each of above migration steps are presented in [16], [17].
To govern the order of transformation composition, the
pre/post conditions for each transformation are formally
specified in OCL.

7. Case Studies
Source Code Representation
To investigate the effectiveness of the generic procedural
source code representation framework, the domain model
for the C programming language was examined and
generalized. Furthermore, the C source code for various
systems has been represented in the form of XML DOM
trees. We have used the Refine/C Parser by Reasoning to
obtain an XML version of the C source code. In this
context, we could have used any parser for this task, but
we have chosen the Refine parser because of the
flexibility of its API. Table 2 provides some comparison
statistics related to the size of the original source codes,
the number of clusters identified and the average size of a
cluster in XML format. As shown in the Table 2, each
component is of a manageable size for the software
analysis purposes.

Object Oriented Migration
For our experiments, we have applied the proposed
incremental migration technique to extract an object
model for the BASH (Bourn Again SHell) originally
written in C. A software analysis tool that us based on the
proposed migration process was developed to migrate it
into C++. For this case study, we have identified 186
classes including 91 classes generated from the aggregate
data types as seeds and 95 classes from global variable
declarations as seeds. An example object model generated
in the middle of the migration process is illustrated in
Figure 6. The highlighted part in Figure 6 illustrates
SHELL_VAR as a newly identified class with two possible
methods (variable_in_context and get_seconds). These
methods are in conflict with the class candidate since can
also be assigned to other class candidates as well. For
each of the methods in conflict, the choice to which class
to assign the method is determined by the quality impact
on specific software qualities. The method is attached to
the class with a higher likelihood to achieve the high
cohesion and low coupling [25], [26], [27]. The detailed
explanation to the likelihood computation is presented in
[16, 17]. The tables on the right side of the screenshot (as
shown in Figure 7) provides the quality computation
result for method get_seconds with the respect of
cohesion and coupling if the method is assigned into
either SHELL_VAR or seconds_value_ assigned.

9

System C Source
Code Size

Cluster

System Size
in XML

Avg. Cluster
Size in XML

AVL
Tree

168,286
Bytes

9 1.69MB 278,722
Bytes

CLIPS 983,127
Bytes

325 38.03MB 423,084
Bytes

BASH 1,257,838
Bytes

327 16.9MB 404,992
Bytes

Table 2: System Segmentation Result

Figure 6: Example Class Breakdown of BASH System

Figure 7: Quality Computation for Method in Conflicts

Figure 8: Class Diagram of Migrated System

The co-efficient Pije refers to the likelihood to achieve
low coupling and high cohesion. The third table
summates the transformation effects on these two quality
factors. As a result, the assignment to SHELL_VAR gives
higher contributions. In addition, the first column in the
Figure 7
lists the order of resolving the functions in conflicts.
Finally, a partial of the class diagram for the migrated
system is illustrated in Figure 8.

8. Conclusion

In the context of the object-oriented migration, a generic
reengineering framework should consist of four key
elements, that include a unified model for source code
representation, incremental transformation process for the
migration of large systems, a comprehensive set of
transformation rules, and a quality control mechanism to
ensure the migrated system with the desired software
quality.

In this paper, a unified source code representation
framework that utilizes language domain models is
represented in XML and Data Type Definition
documents. The focal point is to select a model that is rich
enough to express all the possible syntactic constructs in
the procedural languages. To facilitate the analysis of

10

large systems a segmentation algorithm is provided to
decompose a program into a set of smaller components
where incremental migration can be achieved. In such a
way, a large system can be reengineered gradually in
order to reduce the risk and computation costs involved.
Finally, results from a case study to identify an object
model for the Bash Unix shell are presented.

Future work will include the design of wrappers that
allow for the integration of system components that have
been already migrated to an object oriented platform with
the rest of the legacy system that is still is in its original
procedural form.

References

[1] E. Mamas, K. Kontogiannis, “Towards Portable

Source Code Representation Using XML”, 7th
WCRE’2000, November 2000.

[2] Greg Badros, “JavaML: A Markup Language for
Java Source Code”,
http://www.cs.washington.edu/homes/gjb/papers/jav
aml/javaml.html.

[3] R. Koschke, J.-F. Girard, and M. Würthner, “An
intermediate representation for integrating reverse
engineering analyses” , 5th WCRE’2000, November
2000.

[4] R. C. Holt, et al., “GXL: Toward a Standard
Exchange Format”, 7th WCRE 2000, November
2000.

[5] http://swag.uwaterloo.ca/~dean/cppx/
[6] Harry Sneed, “Object Oriented COBOL Recycling”,

in the Proceedings of 3rd Working Conference of
Reverse Engineering, 1996.

[7] M. P. Ward, “Assembler to C Migration using the
FermaT Transformation System”,

[8] Kostas Kontogiannis, et. al. “Code Migration
Through Transformations: An Experience Report”,
In the Proceedings of CASCON 1995.

[9] Michael Siff and Thomas Reps, “Identifying
Modules via Concept Analysis”, IEEE Transactions
on Software Engineering, Vol. 25, No. 6, Nov.
1999.

[10] Johannes Martin and Hausi A. Muller, “C to Java
Migration Experiences”, in the Proceedings of the
Sixth European Conference on Software
Maintenance and Reengineering March 2002.

[11] De Lucia, G.A. Di Lucca, A.R. Fasolino, P. Guerra,
S. Petruzzelli, “Migrating Legacy Systems toward
Object-Oriented Platforms”, 1997, IEEE.

[12] Ying Zou, Kostas Kontogiannis, “A Framework for
Migrating Procedural Code to Object Oriented
Platform”, in the proceedings of 8th Asia-Pacific
Software Engineering Conference, 2001.

[13] K. Kontogiannis, P. Patil, “Evidence Driven Object
Identification in Procedural Systems’’, STEP’99,
September 1999, pp. 12-21.

[14] Michael Siff and Thomas Reps, “Identifying
Modules via Concept Analysis”, IEEE Transactions
on Software Engineering, Vol. 25, No. 6, Nov.
1999.

[15] Letha H. Etzkorn, Carl G. Davis, “Automatically
Identifying Reusable OO Legacy Code”, Computer,
IEEE, October, 1997.

[16] Ying Zou, Kostas Kontogiannis, “Quality Driven
Transformation Compositions for Object Oriented
Migration”, the 9th IEEE Asia Pacific Software
Engineering Conference (APSEC), Gold Cost,
Queensland, Australia, December 2002 , pp. 346-
355.

[17] Ying Zou, Kostas Kontogiannis, “Migration to
Object Oriented Platforms: A State Transformation
Approach”, the 19th IEEE International Conference
on Software Maintenance (ICSM), Montreal,
Quebec, Canada, October 2002, pp.530-539.

[18] Theurich, G.; Anson, B.; Hill, N.A.; Hill, A.;
“Making the Fortran-to-C transition: how painful is
it really?”
Computing in Science & Engineering, Volume: 3
Issue:1, Jan/Feb 2001 Page(s): 21 –27

[19] Martin Fowler, “Refactoring: Improving the Design
of Existing Code”, Addison-Wesley, 2000.

[20] C. Lindig and G. Snelting, “Assessing Modular
Structure of Legacy Code Based on Mathematical
Concept Analysis”, In Proc. Of International
Conference on Software Engineering, 1997.

[21] H. A. Sahraoui, W. Melo, H. Lounis, F. Dumont,
“Applying Concept Formation Methods To Object
Identification In Procedural Code”, In Proc. Of 12th
Conference on Auotmated Software Engineering,
1997.

[22] Letha H. Etzkorn, Carl G. Davis, “Automatically
Identifying Reusable OO Legacy Code”, Computer,
IEEE, October, 1997.

[23] Aniello Cimitile, et.al, “Identifying Objects In
Legacy Systesm Using Design Metrics”, The
Journal of Systems and Software 44 (1999),
Elsevier.

[24] De Lucia, G.A. Di Lucca, A.R. Fasolino, P. Guerra,
S. Petruzzelli, “Migrating Legacy Systems toward
Object-Oriented Platforms”, 1997, IEEE.

[25] Stephen H. Han, “Metrics and Models in Software
Quality Engineering”, Addison-Wesley, 1995.

[26] S.R. Chidamber, C.F. Kemerer, “A Metrics Suite for
Object Oriented Design”, IEEE Transaction,
Software Engineering, 1994.

[27] W. Li, and S. Henry, “Object-Oriented Metrics
Which Predict Maintainability”, Journal of Systems
Software, 1993.

