
A Software Transformation Framework for
Quality-Driven Object-Oriented Re-engineering �

Ladan Tahvildari and Kostas Kontogiannis
Dept. of Electrical and Computer Eng.

University of Waterloo
Waterloo, Ontario
Canada, N2L 3G1

fltahvild,kostasg@swen.uwaterloo.ca

Abstract

In re-engineering object-oriented legacy code, it is fre-
quently useful to introduce a design pattern in order to
improve specific non-functional requirements (e.g., main-
tainability enhancement). This paper presents a methodol-
ogy for the development of a quality-driven re-engineering
framework for object-oriented systems. First, a catalogue
of design motifs (primitive design pattern transformations)
is presented. Then, the transformations for the design pat-
terns in the GoF book are defined as a composition of these
primitive transformations. Non-functional requirements for
the migrant system can be encoded using soft-goal inter-
dependency graphs and can be associated with design pat-
tern transformations that are applied for the migration of
an object-oriented legacy system.

1 Introduction

Over the past few years, legacy system re-engineering
has emerged as a business critical activity where the migrant
system has to conform to hard and soft quality constraints
(or non-functional requirements) such as “the new system
should be more easily maintainable than the original sys-
tem”. In this paper, we propose a framework that enhances
through re-engineering specific quality characteristics of a
subject object-oriented system by transforming it to a form
that possesses better maintainability characteristics. Specif-
ically, we develop a catalogue of transformations that uses
quality requirements to define and guide the re-engineering
process.

�This work was funded by the IBM Canada Ltd. Laboratory, Center for
Advanced Studies in Toronto; also by the Ontario Graduate Scholarship
(OGS) of Canada.

We assume the following scenario. An existing object-
oriented legacy system is being re-engineered to conform
with a new requirement (i.e.,to enhance its maintainability).
After analyzing the code and the requirements for the target
system, it is concluded that the existing structure of the sys-
tem makes the desired requirement difficult to achieve. It
is therefore required to transform the system to a new struc-
ture where certain characteristics of its source code hold and
facilitate further evolution activities. In this context, the in-
troduction of design patterns has been attributed to reduce
coupling and increase cohesion enabling thus certain types
of program evolution to occur with minimal changes to the
program itself.

In [29], we aimed to devise a workbench in which re-
engineering activities do not occur in a vacuum, but can be
evaluated and fine-tuned in order to address specific qual-
ity requirements for the new target system. In [31], we in-
cluded an initial compilation factors and simple transfor-
mations both at source code and architectural levels which
affect two particular software qualities, performance and
maintainability. We have also collected initial results us-
ing two medium-size software systems, mostly manually.
We refer to this approach as “Quality-Driven Software Re-
engineering” [32]. In [30], we examined design patterns
from a different perspective namely, their classification and
usage for software re-engineering and restructuring. Specif-
ically, twenty three GoF design patterns were re-classified
in terms of a layered model that is denoted by six different
relations. We also discussed how the classification scheme
can be useful for the re-engineering and restructuring of
object-oriented systems. This classifications was developed
to support the wider goal of improving the quality and the
design of migrant code while maintaining its original func-
tionality.

In this paper, we are interested to investigate transforma-
tions and refactoring operations that introduce GoF design

Proceedings of the International Conference on Software Maintenance (ICSM�02) 
0-7695-1819-2/02 $17.00 © 2002 IEEE 



               

High Maintainability

High Control
Quality

Modularity
High

Cohesion
High

High Module
Reuse

Control Flow
High High

Encapsulation

Flow Coupling
Low Control 

High Data Consistency

Low Data Coupling

High Structure     Quality

Low I/O Complexity

High Source Code Quality High Documentation Quality

Structure

: Quality Attribute/Soft-Goal

Legend

Consistency

Figure 1. Maintainability Soft-Goal Interdependency Graph Decomposition.

patterns to an object-oriented system as means to restructure
the system and for the new system to meet specific qual-
ity requirements. For achieving this goal, we first aim to
develop a catalogue of transformations and refactoring op-
erations [10] that can be used to enhance specific software
qualities. Second, we aim to provide a process by which
transformations can be composed and applied to a system
through the introduction of design patterns. For the first ob-
jective, we present a comprehensive list of transformations
that can be used to produce the design patterns presented in
the GoF book. For addressing the second objective, we pro-
pose a layered model whereby the transformation process
is based on investigative functions for evaluating precondi-
tions, supportive functions for positioning the system to a
form that a transformation can be applied, primitive design
pattern transformations, and complex design pattern trans-
formations.

This paper is organized as follows. Section 2 presents
a soft-goal interdependency graph for maintainability and
discusses its role in the proposed re-engineering context.
Section 3 presents the proposed transformations, while Sec-
tions 4 and 5 discuss each transformation in detail using
first-order predicate logic (FOPL) notation and also present
their impact on soft-goal interdependency graph. Section 6
discusses an application scenario of the proposed transfor-
mations. Section 7 presents related work. Finally, Section 8
provides the conclusion and insights of future work.

2 Maintainability Soft-Goal Interdepen-
dency Graph

To represent information about software qualities, and
the software transformations that may affect them, we adopt
the NFR framework proposed in [6]. In the NFR frame-

work, quality requirements are treated as potentially con-
flicting or synergistic goals to be achieved, and are used to
guide and rationalize the various design decisions taken dur-
ing system development. The NFR Framework introduces
the concept of soft-goals whose level of success is evalu-
ated by the success of other soft sub-goals. The soft-goal
interdependency graphs have been proposed for supporting
the systematic, goal oriented process of architectural de-
sign [6]. The leafs of the soft-goal interdependency graph
represent transformations which fulfill or contribute posi-
tively/negatively to soft-goals above them. Given a quality
constraint for a re-engineering problem, one can look up the
soft-goal interdependency graph for that quality, and exam-
ine what are the transformations or soft-goals that may af-
fect the desired quality positively or negatively.

In this paper, we have chosen maintainability enhance-
ment as a re-engineering requirement for the new migrant
system. Figure 1 shows portions of the soft-goal interdepen-
dency graph for the maintainability non-functional require-
ment. This graph attempts to represent and organize a com-
prehensive set of software attributes that relate to software
maintainability. The graph was compiled after a thorough
review of the literature [1, 4, 15, 17, 18, 22]. We have classi-
fied the maintainability non-functional requirements (NFR)
soft-goal graph into two major areas namely, attributes that
relate to source code quality [14], and attributes that relate
to the documentation quality. We argue that both source
code and documentation quality soft-goals must be satisfied
for a system to have high maintainability. This is referred to
as an AND contribution of the offspring soft-goals towards
their parent soft-goal, and is shown by grouping the inter-
dependency lines with a single arc. The source code quality
soft-goal can be further decomposed into two sub-soft-goals
namely, high control structure quality, and high information

Proceedings of the International Conference on Software Maintenance (ICSM�02) 
0-7695-1819-2/02 $17.00 © 2002 IEEE 



structure quality [14, 18] with an AND contribution as is
depicted in Figure 1. It is important to note that in this work
we only describe soft-goals relevant to the source code of
the target system. It is also possible to identify maintainabil-
ity related soft-goals that do not depend directly on source
code properties. However, identifying such transformations
would require knowledge about specific environmental fac-
tors (such as management and process modeling issues) and
are outside the scope of the work presented in this paper.

For this research work, we are particularly interested
to investigate proper transformations that introduce design
patterns as means to restructure an object-oriented legacy
system so that the new migrant system conforms with spe-
cific design patterns and therefore possibly meets specific
non-functional requirement (NFR) criteria. It has been ar-
gued that maintainability can be partially achieved with the
use of design patterns. For example, the State design pattern
makes it easier to add new states in a system without alter-
ing the functionality of existing states. Ironically, experi-
ence drawn from software engineering practice reports that
improved methods during system maintenance and evolu-
tion may result in higher maintainability indicators. Hence,
it is important to consider how and by what means one can
improve maintainability during re-engineering. For achiev-
ing this goal, we need to develop a list of transformations
and refactoring operations [10] that introduce design pat-
terns and also can be used to enhance specific software qual-
ities during re-engineering. It is important to realize that
these transformations can no longer be viewed as NFRs,
since they can be implemented directly into a system. How-
ever, such transformations are still viewed as soft-goals, be-
cause can be decomposed if need be into more specific ones,
and can be partially achieved.

3 A Methodology for Developing Transfor-
mations

In developing a transformation for a particular design
pattern, we consider existing work in the design patterns
and refactorings literature. examining the design pattern
catalogue [5, 11, 12, 13], it is clear that certain motifs occur
repeatedly across the catalogue. For example, a class reg-
isters another class only via an interface. It has been pre-
sented in [30] that specific design motifs can be combined
in various ways to produce a wide variety of existing de-
sign patterns. The process of devising and composing trans-
formations to introduce design patterns in an ill-designed
object-oriented system is both a top-down one for higher
level transformations, and a bottom-up one for the lower
level design motifs. The importance of such techniques lies
in the fact that they may allow us to implement a design pat-
tern transformation as a composition of lower level design
motifs. Our proposed transformation framework is defined

in a layered model as illustrated in Figure 2. The rationale
behind this proposed layered definition of transformations
is further elaborated in the following sections.

Prmitive DPs

Transformations

Complex DPs

Transformations

Functions

Layer 1

Layer 2

Layer 3

Legend: Uses

Investigative
Functions

Supportive

Transformations

Positioning 

Figure 2. Transformations in a Layered Model.

3.1 Transformation Notations

In defining a transformation, it is necessary to specify
sets of preconditions for applying it and sets of postcondi-
tions to describe the effect of the transformation. In our
work, we specify the preconditions and postconditions in
first-order predicate logic (FOPL) with the following nota-
tion based on [20] and also used in [7, 25]. This will be
used extensively wherever it will be necessary to be precise
about the effect of applying a transformation to a program.

� f [x=y] : Denotes a function which maps the element x
to y. This syntax is used in postconditions to denote
the effect of the transformation or refactoring opera-
tions. Note that the name of a new function produced
as the result of applying a transformation or refactor-
ing is written with a prime (0), so stating that the func-
tion f is updated with the new element (x; y) would be
written as : f 0 = f [x=y].

� ? : Used in a postcondition to denote an undefined
value. For example, if a transformation removes a
method called m, then to indicate that m no longer
belongs to any class using the classOf investigative
function we assert that : classOf 0 = classOf [m= ?].

3.2 Proposed Transformation Framework

In developing a transformation related to a particular de-
sign pattern, we wish to reuse previously defined transfor-
mations. For example, a class may register another class

Proceedings of the International Conference on Software Maintenance (ICSM�02) 
0-7695-1819-2/02 $17.00 © 2002 IEEE 



Name Purpose

classCreation A class that can be created by a given constructor.
classOf A class to which the given method belongs.
containClass A class that contains a given object reference.
containMethod A method that contains a given object reference.
contstructorInv A constructor that is invoked by a given object.
createsObject True if a method creates an object of the same class.
declares True if a class contains a method in its interface.
defines True if a concrete method contains in a (super)class.
equalInterface True if two interfaces declare the same public methods.
implmInterface True if there is a link from an interface to another.
isAbstract True if a class/method is declared to be abstract.
isClass True if there is a given class in the program.
isInterface True if there is a given interface in the program.
isPrivate True if a method/field is a private member of its class.
isPublic True if a method/field is a public member of its class.
isStatic True if a method/field is a static member of its class.
name Name of a given class/interface/method/constructor.
sig Signature of a given method/constructor.
superclass Direct superclass relationship of a class.
type Returns the class/interface of a given reference.
uses True if a method directly reference a field or invoked

by another method or object reference.

Table 1. A List of Investigative Functions.

only via an interface (named ABSTRACTION in this re-
search work). These design motifs lead to primary de-
sign pattern transformationsas shown in layer 2 of Figure 2.
These transformations can be combined in various ways to
produce complex transformations related to different design
patterns as shown in layer 3 of Figure 2. By focusing on the
development of primitive design pattern transformations,
we are able to build a library of useful transformations that
can be reused. Each of the primitive design pattern trans-
formation which will be further elaborated in Section 4 has
the following structure :

Preconditions. These are assertions, written in first-
order predicate logic, that must hold in order to be able to
apply a transformation. They pertain to the examination of
the source code features that must be present for the trans-
formation to be applied [28]. In defining these precondi-
tions, assertions should be made about the program, such
as a certain class exists or a given name is not already in
use. We need to define a set of investigative functions as
shown in layer 1 of Figure 2 to enable these assertions to
be made. Table 1 provides a brief description of these func-
tions in an alphabetic order. These functions serve two re-
lated roles. First, they are implemented as actual operations
that can be applied to an object-oriented program in order
to extract information about specific source code features.
Second, they are used as predicates for examining whether
a specific transformation can be applied in a specific source
code context (e.g., to test whether a method is in a certain
class or to find the signature of a given method).

Transformation Process. This is a concise, step-by-step
description on how to carry out and implement design pat-
tern transformations. The proposed transformation process
is facilitated by the application of the following types of
functions and transformations :

� Investigative Functions: aim to verify that specific
conditions and source code properties hold before a
transformation is attempted. Table 1 provides a list of
such investigative functions.

� Supportive Functions: aim to position a system to
a form that a specific transformation can be applied.
These functions transform the system but they dot not
necessarily contribute directly towards achieving the
target requirement. Table 2 provides a list of such Sup-
portive functions.

� Positioning Transformations: aim to introduce basic
design patterns and refactorings [21] to the original
system towards achieving the desired target require-
ment (i.e. enhance the maintainability). These oper-
ations are depicted in layer 1 of Figure 2. Most of
them are standard and would be part of any refactoring
suite [10, 21], such as the addClass [10] operation.

Postconditions. These pertain to mappings from inves-
tigative functions to investigative functions. They denote
specific conditions that must hold after a transformation is
applied.

Possible Effect on Soft-goals. The goal is to formal-
ize and automate the application of transformations that af-
fect the specific target quality for the migrant system. This
part associates each transformation to one or more non-
functional requirement. In this paper, we consider only
maintainability just to illustrate the proposed quality-driven
re-engineering framework.

4 Primitive Design Pattern Transformations

As mentioned above, primitive transformations and
refactorings are design motifs that occur frequently. In
this way, we consider them as lower level constructs in our
framework. Each transformation in this category is denoted
by a precondition, a transformation process description, a
postcondition, and a description of its possible effect on tar-
get requirements. These lower level transformations and
refactorings are discussed in more detail in the following
sections.

4.1 ABSTRACTION Transformation

This transformation is used to add an interface to a class.
This enables another class to take a more abstract view of

Proceedings of the International Conference on Software Maintenance (ICSM�02) 
0-7695-1819-2/02 $17.00 © 2002 IEEE 



Name(Parameters) Informal Description Preconditions Postconditions

abstractClass Construct and return an interface 1) isClass(c) 1) isInterface0 = isInterface[interface=true]
(c, newClass) (newClass) that reflects all the 2) equalInterface0 = equalInterface[(c; interface)=true]

public methods of a given class(c). 3) name0 = name[interface=newClass]
abstractMethod Construct and return a method 1) isMethod(m) 1) isAbstract0 = isAbstract[method=true]
(m) that has the same name & signature 2) name0 = name[method=name(m)]

as a given method(m). 3) sig0 = sig[method=sig(m)]
emptyClass Construct and return an empty No conditions 1) name0 = name[returned=name]
(name) class(name). 2) 8 e : Method=F ield=Constructor;:classOf(e) = returned
makeAbstract Returns a method(newClass) creates No conditions 1) createsObject0 = createsObject[(c; returned)=true]
(c, newClass) the same object as a constructor(c). 2) name0 = name[returned=newClass]

Table 2. A List of Supportive Functions.

the first class by accessing it via the added interface. It re-
quires two parameters namely : i) the name of the class to
be abstracted (c), and ii) the name of the new interface to be
created (newInterface).

� Preconditions :
(a) isClass(c)

(b) :isClass(newInterface) ^
:isInterface(newInterface)

� Transformation Process : This transformation entails
the following steps : 1) an interface (tmp) do be cre-
ated using abstractClass supportive function that re-
flects the public methods of this class, 2) the addition
of this interface to the program using positioning trans-
formations such as addInterface and 3) the addition of
an implements link from the class to the newly created
interface.

� Postconditions :
(a) name0 = name[tmp=newInterface]

(b) isInterface0 = isInterface[tmp=true]

(c) equaleInterface0 =
equaleInterface[(c; tmp)=true]

(d) implmInterface0 =
implmInterface[(c; tmp)=true]

� Possible Effect on Soft-goals : High Control Flow
Consistency(+), High Cohesion(++), High Data
Consistency(++), Low I/O Complexity (�)

4.2 EXTENSION Transformation

This transformation is used to construct an abstract
class from an existing class and to create an extends re-
lationship between the two classes. It is related to AB-
STRACTION transformation but rather than building a
completely abstract interface from the class, it builds an
abstract class where only certain specified methods are de-
clared abstractly. This transformation requires three param-
eters namely : i) the name of the existing class (c), ii) the

name of the class to be created (newClass), and iii) the name
of the methods to be abstracted (abstractMethod).

� Preconditions :
(a) :isClass(newClass) ^

:isInterface(newClass)

(b) isClass(c)

(c) 8 f : Field; m : Method;
f 2 c; m 2 c; m 62 abstractMethod;
if uses(m; f) then :isPublic(f)

� Transformation Process : This transformation re-
quires for its application the following steps : 1) to
create an empty class called newClass using the empty-
Class supportive function, 2) the insertion of the newly
created class into the inheritance hierarchy just above
the class c using the addClass positioning transforma-
tion 3) to create an abstract method for each method
in abstractMethod using positioning transformation
which is added to this new class using addMethod po-
sitioning transformation 4) to move any methods not in
abstractMethod from the class c to the newly created
class using the pullUpMethod positioning transforma-
tion.

� Postconditions :
(a) isClass0 = isClass[newClass=true]

(b) equaleInterface0 = equalInterface
[(c; superclass0(c))=true]

(c) 8 m : Method; m 2 c;
m 62 abstractMethod; classOf 0 = classOf
[m=superclass0(c)]

(d) 8 m : Method; m 2 abstractMethod;
declares0 = declares
[(superclass(c);m; direct)=true]

(e) 8 m : Method; m 2 c;
m 62 abstractMethod; 8 f : Field;
f 2 c; uses(m; f);
classOf 0 = classOf [f=superclass(c)]

Proceedings of the International Conference on Software Maintenance (ICSM�02) 
0-7695-1819-2/02 $17.00 © 2002 IEEE 



� Possible Effect on Soft-goals : High Control Flow
Consistency(+), High Cohesion(++), High Module
Reuse (++), Low Data Coupling(�).

4.3 MOVEMENT Transformation

This transformation is used to move parts of an existing
class to a component class, and to set up a delegation rela-
tionship from the existing class to its component. This one
requires three parameters namely : i) the name of the exist-
ing class (c), and ii) the name of the new class to be created
(newClass), and iii) the name of the methods to be moved
(moveMethods).

� Preconditions :
(a) isClass(c)

(b) :isClass(newClass) ^
: isInterface(newClass)

(c) 8 m 2 moveMethods; m 2 c

(d) 8 f : Field; f 2 c;
name(f) 62 \movement00

(e) if f : Field 2 cls; cls 2 superclass(c);
name(f) = \movement00 then isPrivate(f)

� Transformation Process : This transformation re-
quires the following steps for its implementation :
1) an empty class to first be added to the program us-
ing addClass positioning transformation, 2) an exclu-
sive component of this class to be added to the c class,
3) each method to be moved first to be “abstracted” us-
ing theabstractMethod supportive function, 4) at this
point, a proper positioning transformation may be in-
voked to move the method to the new class.

� Postconditions :
(a) isClass0 = isClass[newClass=true]

(b) 9 f : Field; f 2 c such that
type0 = type[f=newClass]
name0 = name[f=\movement00]

(c) 8 m : Method 2 moveMethods;
8 x : Field=Method; defines(c; x);
uses(m; x); isPublic0 = isPublic[x=true]

(d) 8 m : Method 2 moveMthods;
classOf 0 = classOf [m=newClass]

(e) 8 m : Method 2 moveMethods;
9 n : Method; classOf 0(n) = c;
name0(n) = name(m);
sig0(n) = sig(m) such that
uses0 = uses[(n;m)=true]

� Possible Effect on Soft-goals : High
Modularity(++), Low Control Flow Coupling(�),
High Module Reuse(+).

4.4 ENCAPSULATION Transformation

This transformation is used when one class creates in-
stances of another, and it is required to weaken the asso-
ciation between the two classes by packaging the object
creation statements into dedicated methods. This transfor-
mation can be implemented with three parameters namely :
i) name of the class to be updated (creator), ii) name of the
product class (product), and iii) name of the new construc-
tor method (createProduct).

� Preconditions :
(a) isClass(creator)

(b) 8 c : Constructor; c 2 product
:define(creator; createProduct; sig(c))

� Transformation Process : This transformation re-
quires the following steps to be implemented : 1) for
every constructor in the product class, a new method
called createProduct using makeAbstract supportive
function that performs this construction and to be
added to the creator class using the supportive func-
tion addMethod, 2) for all product objects created in
the creator class to be replaced with invocations of the
appropriate createProduct method. This last part re-
quires a positioning transformation to replace the given
object creation expression e with an invocation of the
method createProduct using the same argument list.

� Postconditions :
(a) 8 e : ObjectCreationExprn;

classCreation(e) = product;
containClass(e) = creator;
9 m : Method such that
createsObject0 = createsObject
[(constructorInv(e);m)=true]
name0 = name[m=createProduct] ^
defines0 = defines[(creator;m)=true]

(b) 8 e : ObjectCreationExprn;
classCreation(e) = product;
containClass(e) = creator;
name(containMethod(e)) 6=
createProduct;
containMethod0 = containMehod[e= ?]

� Possible Effect on Soft-goals : Low Control
Flow Coupling(+), High Data Consistency(�), High
Encapsulation(++), Low Data Coupling(++)

4.5 BUILDRELATION Transformation

This transformation is used when one class (c1) uses, or
has knowledge of another class (c2), and the relationship
between the classes to operate in a more abstract fashion

Proceedings of the International Conference on Software Maintenance (ICSM�02) 
0-7695-1819-2/02 $17.00 © 2002 IEEE 



via an interface is required. It may well happen that there
are methods in the c1 class that need to access the c2 class
directly. For example, they may instantiate the c2 class, and
these methods should be excluded from the transformation.
This transformation requires four parameters namely : i) the
name of the class to be used (c2, ii) the name of the super
class (c1), iii) the name of the abstract interface to be used
(usedInterface) and, iv) the name of methods (methodName.

� Preconditions :
(a) isInterface(interface) ^ isClass(c1)

^ isClass(c2)

(b) implmInterface(c2; usedInterface)

(c) 8 m : Method; m 2 c; isStatic(m);
8 o : ObjectRef; type(o) = c2;
containClass(o) = c1; : uses(o;m)

(d) 8 f : field; f 2 c2; isPublic(f)
8 o : ObjectRef; type(o) = c2;
containClass(o) = c1; : uses(o; f)

� Transformation Process : This transformation re-
quires the following steps to be implemented : 1) to
register each object reference in the class c1 that is of
the type c2, 2) to exclude any references that are con-
tained in any method called methodName, 3) to modify
their existing types from the class c2 to the interface
usedInterface. This last step requires a positioning
transformation to replace the given object reference o
with the interface usedInterface.

� Postconditions :
(a) 8 o : ObjectRef; type(o) = c2;

containClass(o) = c1;
name(containMethod(o)) in methodName;
type0 = type[o=usedInterface]

� Possible Effect on Soft-goals : High Control Flow
Consistency(++), Low Control Flow Coupling (+),
Low I/O Complexity (�)

5 Complex Design Pattern Transformations

In this section we discuss how design patterns in the GoF
book [11] can be defined as a composition of the primitive
design pattern transformations which were discussed above
in Section 4. Within the limits of this paper, we present only
the creation of a subset of the GoF patterns. Some of the
fundamental and commonly used GoF patterns we consider
are the “Factory Method” from Creational Patterns cate-
gory, the “Composite” from Structural Patterns category,
and the “Iterator” from Behavioral Patterns category. These
are sufficiently complex to illustrate the use of the proposed
transformation composition framework. Figure 3 depicts

the level of reuse of the primitive transformations for these
three design patterns of the Gamma et al catalogue. As it
can been seen, a considerable level of reuse was achieved.
As shown in Figure 3, when a primitive transformation (also
is called operationalization which is a possible design al-
ternative for meeting NFRs in the target system [6]) makes
a contribution towards one or more parent soft-goals, it is
related to the latter in terms of a link labeled +, ++, or �,
��. A simple example of this interdependency graph is that
the transformation “Factory Method Design Pattern Gener-
ator” contributes very positively (++) to the soft-goal high
control flow consistency and negatively (�) to the soft-goal
low I/O complexity using “BUILDRELATION” primitive
design pattern transformation (a type of operationalization
which can be implemented directly).

The intend of the Factory Method pattern is to define an
interface for creating an object, but let subclasses decide
which class to instantiate [11]. The Factory Method Design
Pattern Generator lets a class defer its instantiation to sub-
classes. The transformation consists of the following steps :
1) the application of the “ABSTRACTION” primitive de-
sign pattern transformation to generate an interface that re-
flects how the creator class uses the instances of the prod-
uct that it creates, 2) the application of the “ENCAPSULA-
TION” primitive design pattern transformation so that the
construction of product objects can be encapsulated inside
dedicated, overridable methods in the creator class, 3) the
application of the “BUILDRELATION” primitive design
pattern transformation so that the creator class can register
the product class only via the interface created in the previ-
ous step, 4) the application of the “EXTENSION” primitive
design pattern transformation so that the creator class can
be inherited from an abstract class where the construction
methods are declared abstractly.

The intend of the Composite pattern is to enable a client
class to treat a single component object or a composition of
objects in a uniform fashion [11]. The result of Composite
Design Pattern Generator transformation is that the client
class uses the component class through its interface. It is
also easy to extend the client so that it uses compositions of
components in place of the single component instances. The
transformation consists of the following steps : 1) the ap-
plication of the “ABSTRACTION” primitive design pattern
transformation on the component class in order to produce
the component interface, 2) the application of the “BUIL-
DRELATION” primitive design pattern transformation in
order to abstract the client class from the component class
and use the component interface instead.

The intend of the Iterator pattern is to enable sequen-
tial access to the elements of an aggregate object without
exposing the underlying representation of the object [11].
The Iterator Design Pattern Generator allows for multiple
concurrent iterations over the aggregate object in a way that

Proceedings of the International Conference on Software Maintenance (ICSM�02) 
0-7695-1819-2/02 $17.00 © 2002 IEEE 



��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

               

High Maintainability

High Control
Quality

Modularity
High

Cohesion
High

High Module
Reuse

High Structure     Quality

High Source Code Quality High Documentation Quality

Structure

BUILDRELATION ABSTRACTION MOVEMENT EXTENSION ENCAPSULATION

High
Data   Consistency

Low Data CouplingLow I/O Complexity

GeneratorGenerator
Composite Design Pattern

Generator
Factory Method Design Pattern Iterator Design Pattern

Legend

Encaps.
High

: Operationalization

: NFR Soft-Goal

: Target

: Design Decision

: Operationalization

+

-

_

++

++

++

Control 
Low

+ _ +
++ +++

+

-

++
+

-

Flow Coupling
++

Consistency
Flow

Control
High

Link

Target-Link

Figure 3. Relating Transformations to Maintainability Soft-Goal Graph.

the underlying structure of the aggregation is not exposed.
The transformation consists of the following steps : 1) the
application of the “MOVEMENT” primitive design pattern
transformation to copy the iteration methods and fields to
the new iteration class, which is parameterized with an in-
stance of the aggregate class and delegates any internally
generated, more iterator requests to this instance, 2) the ap-
plication of the “ABSTRACTION” primitive design pattern
transformation on the iterator class in order to produce an
iterator interface, 3) the application of the “ENCAPSULA-
TION” primitive design pattern transformation to add an
construction method for the iterator to the aggregate class.

6 Usage of the Transformation Framework

In this section, we discuss the usage of the proposed lay-
ered transformations towards the design and development of
a quality and requirements-driven software re-engineering
framework. We have applied this layered catalogue of
transformations on the WELTAB Election Tabulation Sys-
tem [33], a medium-size software system that supports the
collection, reporting, and certification of election results by
city and country clerk offices in the USA. WELTAB was
originally written in an extended version of Fortran, then
converted to C. An Object-Orientation Migration Tool [23]
has been applied to migrate the C source code to new
object-orientedC + + code.

For this experiment, we have started from an object-

oriented version of WELTAB that was not structured and
did not support design patterns for its implementation. Our
objective was to transform this object-oriented WELTAB
system to a new design that conforms with specific de-
sign patterns and its maintainability characteristics are en-
hanced. For this task, we have first considered Structural
Patterns because they are concerned with the way classes
and objects are composed to form larger structures. The
Composite pattern describes how to build a class hierarchy
that is made up of different kinds of objects. For exam-
ple, in the WELTAB system, there are two classes, namely
“RECORD” which produces base tables and, “REPORT”
which prints the tables. It shows the necessity of having
an abstract class that makes up these different kind of ob-
jects. The key point is to have a Composite pattern, namely
“DateGen” that represents both primitives and their contain-
ers. We compose two objects into tree structures to rep-
resent part-whole hierarchy. This lets the clients “Report-
Gen” and “TableGen” treat individual objects and composi-
tions of objects uniformly. This Composite pattern is found
to improve maintainability because it allows for component
sharing [30].

As for the introduction of Behavioral Patterns, we have
considered the Iterator pattern which allows to access an
aggregate object’s contents without exposing its internal
representation. The pattern also supports multiple traver-
sals of aggregate objects. Providing a uniform interface for
traversing different aggregate structures is another reason to

Proceedings of the International Conference on Software Maintenance (ICSM�02) 
0-7695-1819-2/02 $17.00 © 2002 IEEE 



use this pattern that supports polymorphic iteration. Our ex-
perimental results [31] indicate that by applying the Iterator
pattern, we obtain an increase in maintainability. One ex-
ample for the introduction of this pattern is the “Info” class
that provides a single simplified interface for accessing and
traversing elements related to classes “VOTEUNIT”, “OF-
FICE”, “CMPREC”, and “RECORD” generated as models
for units, offices, precincts, and candidates. Structuring this
part of the system into subsystems has been proven to re-
duce its complexity [31].

In this context, the proposed transformation scheme
helped us to select those target design patterns that may
have a significant measurable impact with respect to main-
tainability enhancements on the migrant code. These en-
hancements can be measured in term of software maintain-
ability index metrics measurements.

7 Related Work

Software quality has been recognized to be an impor-
tant topic since the early days of software engineering [24].
Over the past 30 years,a number of researchers and prac-
titioners alike have examined how systems can meet spe-
cific software quality requirements [3, 15]. Complemen-
tary to the product-oriented approaches, the NFR (Non-
Functional Requirements) Framework [6] takes a process-
orientedapproach to dealing with quality requirements. The
NFR framework is one significant step in making the re-
lationships between quality requirements and design deci-
sions explicit. The framework uses non-functional require-
ments to drive design to support architectural design level
and to deal with the changes.

The recent interest on software architecture and design
patterns has refocused the attention on how these software
qualities can be achieved [16]. Klein and Barbacci have an-
alyzed the relationship between software architecture and
quality attributes [18, 1]. The Software Engineering In-
stitute’s (SEI’s) work in Attribute-Based Architecture Style
(ABAS) [18] was the first attempt to document the relation-
ship between architecture and quality attributes. By codify-
ing mechanisms, architects can identify the choices neces-
sary to achieve quality attribute goals.

The re-engineering of legacy systems has become a ma-
jor concern in today’s software industry. Traditionally,
most re-engineering efforts were focused on systems writ-
ten in traditional programming languages such as Fortran,
COBOL, and C [19, 27]. Unfortunately, none of them pro-
vides means for guiding the re-engineering process within
the context of achieving specific target qualities for the mi-
grant system. The problem of coping with qualities or non-
functional requirements during re-engineering has been ex-
perimentally tackled by developing a number of tools that
met particular quality requirements [2, 9, 23].

Our idea on transformations which improve the design of
the existing code builds upon the work of William Opdyke
on refactoring C++ programs [21]. He developed a suite of
low-level refactorings that can be applied to a C++ program.
This work was also used as the basis for the SmallTalk
Refactoring [25]. Our work extends that work by using
refactorings (positioning transformations) as a basis for de-
veloping a more sophisticated type of transformations that
can introduce a design pattern and relate them to non-
functional requirements to guide re-engineering tasks.

Similarly, Eden [8] has developed a prototype tool called
the patterns wizard that aims to apply a design pattern to an
Eiffel program but it is not suitable for the re-engineering of
legacy code. This work is very similar to ours in that it takes
a meta-programming approach and organizes the transfor-
mations into four levels : design patterns (our complex
design pattern transformations), micro-pattern (our primi-
tive design pattern transformations), idioms (our position-
ing transformations), and the abstract syntax tree.

The works of Schulz [26] and Cinneide [7] are also
related to the work presented in this paper. Specifi-
cally, in [26] the refactoring operations [21] were merged
with the so-called design operators. However, in [7] the
author merge refactoring work with a library of mini-
transformations.

However, not much effort has been invested for system-
atically documenting quality attributes as a guide for the
software re-engineering process at the architectural level.
In this context, the proposed transformation framework as
a layered architecture allows for achieving specific quality
requirements in the migrant system to be modeled as a col-
lection of soft-goal graphs.

8 Conclusion

We have proposed a layered software transforma-
tion framework to support object-oriented software re-
engineering at the architectural level. The layered frame-
work enables for the transformations to be modeled in a
language independent way. Also it enables for the reuse and
composition of existing transformations. We believe that
this framework is noteworthy for two main reasons. First, it
attempts to address a problem that challenges the research
community for several years, namely the maintenance of
object-oriented mission critical systems. Second, it aims to
devise a workbench in which re-engineering activities do
not occur in a vacuum, but can be evaluated and fine-tuned
in order to address specific quality requirements for the new
target system such as, enhancements in maintainability.

Our current work involves applying this methodology to
generate a broader variety of design patterns. Also, we work
on extensions of the framework that allow for the estima-
tion of the impact a transformation has on maintainability

Proceedings of the International Conference on Software Maintenance (ICSM�02) 
0-7695-1819-2/02 $17.00 © 2002 IEEE 



and other non-functional requirements (e.g. performance)
when applied to a software system. We are also investigat-
ing algorithmic processes that can be used to automate the
selection and application of the transformations given spe-
cific re-engineering scenario.

References

[1] M. Barbacci, R. Ellison, J. Stafford, C. Weinstock, and
W. Wood. Quality attribute workshops. Technical report
cmu/sei-2001-tr-010, Software Engineering Institute, May
2001.

[2] I. Baxter and C. Pidgeon. Software change through design
maintenance. In Proceedings of the IEEE International Con-
ference on Software Maintenance (ICSM), pages 250–259,
October 1997.

[3] B. Boehm et al. Characteristics of Software Quality. Else-
vier North-Holland Publishing Company, Inc., 1978.

[4] B. W. Boehm and H. In. Identifying quality requirement
conflicts. IEEE Software, 13(2):25–35, March 1996.

[5] F. Buschmann et al. Pattern-Oriented Software Architec-
ture : A System of Patterns. John Wiley and Sons, 1999.

[6] L. K. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-
Functional Requirements in Software Engineering. Kluwer
Publishing, 2000.

[7] M. O. Cinneide. Automated Application of Design Patterns :
A refactoring Approach. PhD thesis, Department of Com-
puter Science, Trinity College, Dublin, 2000.

[8] A. Eden, A. Yehudai, and J. Gil. Precise specification and
automatic application of design patterns. In Proceedings
of the IEEE Automated Software Engineering (ASE), pages
143–152, November 1997.

[9] P. Finnigan et al. The software bookshelf. IBM Systems
Journal, 36(4):564–593, November 1997.

[10] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[11] E. Gamma, R. Helm, R. Jahnson, and J. Vlissides. Design
Patterns : Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[12] M. Grand. Patterns in Java, volume 1. John Wiley & Sons,
1998.

[13] M. Grand. Patterns in Java, volume 2. John Wiley & Sons,
1999.

[14] J. R. Hagemeister. A Metric Approach to Assessing the
Maintainability of Software. PhD thesis, Department of
Computer Science, University of Idaho, 1992.

[15] International organization for standardization (iso). In-
formation Technology, Software Product Evaluation,
Quality Characteristics and Guidelines for Their Use,
ISO/IEC 9126, 1996.

[16] R. Kazman, L. Bass, G. Abowd, and M. Webb. Saam: A
method for analyzing the properties of software architec-
tures. In Proceedings of the International Conference on
Software Engineering (ICSE), pages 81–90, May 1994.

[17] R. Kazman, M. Klein, and P. Clements. Attam : Method
for architecture evaluation. Technical Report CMU/SEI-
2000-TR-004 ADA382629, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, 2000.

[18] M. Klein, L. Bass, and R. Kazman. Attribute-based ar-
chitecture styles. Technical Report CMU/SEI-99-TR-022
ADA371802,Software Engineering Institute, Carnegie Mel-
lon University, Pittsburgh, PA, 1999.

[19] K. Kontogiannis, J. Martin, K. Wong, R. Gregory, H. Műller,
and J. Mylopoulos. Code migration through transforma-
tions : An experience report. In Proceedings of IBM CAS-
CON’98 Conference, pages 1–13, 1998.

[20] J. Loeckx and K. Sieber. Foundation of Program Verifica-
tion. Wiley & Sons, 1987.

[21] W. Opdyke. Refactoring Object-Oriented Framework. PhD
thesis, University of Illinois, 1992.

[22] D. L. Parnas. On the criteria to be used in decomposing sys-
tems into modules. Communications of the ACM, 15:1053–
1058, 1972.

[23] P. Patil. Migration of procedural systems to object-oriented
architectures. Master’s thesis, Department of Electrical and
Computer Engineering, University of Waterloo, 1999.

[24] R. S. Pressman. Software Engineering: A Practitioner’s
Approach. McGraw Hill, 2000.

[25] D. Roberts. Eliminating Analysis in Refactoring. PhD thesis,
University of Illinois at Urbana-Champaign, Department of
Computer Science, 1999.

[26] B. Schulz, T. Genssler, B. Mohr, and W. Zimmer. On the
computer aided introduction of design patterns into object-
oriented systems. In Proceedings of the 27

th TOOLS Con-
ference, 1998.

[27] H. Sneed and E. Nyary. Down-sizing large application pro-
grams. Journal of Software Maintenance: Research and
Practice, 6(5):105–116, 1994.

[28] L. Tahvildari, R. Gregory, and K. Kontogiannis. An ap-
proach for measuring software evolution using source code
features. In Proceedings of the IEEE Asia-Pacific Software
Engineering (APSEC), pages 10–17, Takamatsu, Japan, De-
cember 1999.

[29] L. Tahvildari and K. Kontogiannis. A workbench for qual-
ity based software re-engineering to object-oriented plat-
forms. In Proceedings of the ACM International Conference
in Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA) - Doctoral Symposium, pages 157–
158, Minneapolis, Minnesota, USA, October 2000.

[30] L. Tahvildari and K. Kontogiannis. On the role of design
patterns in quality-driven re-engineering. In Proceedings
of the IEEE 6

th European Conference on Software Main-
tenance and Re-engineering (CSMR), Hungary, Budapest,
March 2002.

[31] L. Tahvildari, K. Kontogiannis, and J. Mylopoulos.
Requirements-driven software re-engineering. In Proceed-
ings of the IEEE 8

thInternational Working Conference on
Reverse Engineering (WCRE), pages 71–80, Stuttgart, Ger-
many, October 2001.

[32] L. Tahvildari, K. Kontogiannis, and J. Mylopoulos. Quality-
driven software re-engineering. The Journal of Systems and
Software, Special Issue on : Software Architecture - Engi-
neering Quality Attributes, to appear.

[33] Weltab election tabulation system. Also available at
http://pathbridge.net/reproject/cfp2.htm.

Proceedings of the International Conference on Software Maintenance (ICSM�02) 
0-7695-1819-2/02 $17.00 © 2002 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


