Requirements-Driven Software Re-engineering Framework

Ladan Tahvildari, Kostas Kontogiannis

Department of Elect. & Comp. Eng.
University of Waterloo’
Waterloo, Ontario
N2L 3G1, Canada

{ltahvild kostas} @swen.uwaterloo.ca

Abstract

Software re-engineering projects such as migrating code
from one platform to another; or restructuring a monolithic
system into a modular architecture are popular mainte-
nance tasks. Usually, projects of this type have to conform
to hard and soft quality constraints (or non-functional re-
quirements) such as “the migrant system must run as fast
as the original”, or “the new system should be more main-
tainable than the original”. This paper proposes a frame-
work that allows for specific design and quality require-
ments (performance and maintainability) of the target mi-
grant system to be considered during the re-engineering
process. Quality requirements for the migrant system can
be encoded using soft-goal interdependency graphs and be
associated with specific software transformations that need
to be carried out for achieving the target quality require-
ment. These transformations can be applied as a series of
the iterative and incremental steps that pertain both to the
design (architecture) and source code (implementation) lev-
els. An evaluation procedure can be used at each transfor-
mation step to determine whether specific goals have been
achieved.

1. Introduction

Legacy system re-engineering has emerged as a business
critical task activity over the past few years. Given the
amount of human effort required to manually re-engineer
even a medium-sized system, most re-engineering method-
ologies have come to rely extensively on tools in order to
reduce the human effort required. Not surprisingly, the
topic of software re-engineering has been researched heav-
ily for some time, leading to a variety of commercial tool-
sets for particular re-engineering tasks [7, 30], as well as
research prototypes which significantly advance the state-
of-the-art [9, 24].

1095-1350/01 /$10.00 © 2001 IEEE

71

John Mylopoulos
Department of Computer Science
University of Toronto
Toronto, Ontario
MS35S 3G4, Canada
jm@cs.toronto.edu

In most cases, software re-engineering tasks have to con-
form to hard and soft quality constraints (or non-functional
requirements) such as “the re-engineered system must run
as fast as the original”, or “the new system should be more
easily maintainable than the original”. These desired qual-
ities (or, more precisely, desired deltas on software qual-
ities) should play a fundamental role in defining the re-
engineering process and the tools that support it. Unfor-
tunately, there is little understanding of what this role is and
how to fit it in the re-engineering process. In the research
reported here, we are interested in developing a framework
that uses quality requirements to define and guide the re-
engineering process.

Section 2 of the paper addresses the problem more pre-
cisely. Section 3 of the paper adopts the Non-Functional
Requirements (NFR) framework to represent software qual-.
ities and their interdependencies. This section also re-
ports on our efforts to catalogue performance and main-
tainability qualities as well as relevant transformations that
have been proposed in the literature, using the NFR frame-
work. Section 4 discusses the proposed quality-driven soft-
ware re-engineering process. Section 5 describes a set
of experiments for evaluating the effectiveness of different
transformations on performance and maintainability at both
the source code and architectural levels, while Section 6
presents and discusses the results of these experiments by
trying them out on two different software systems. Finally,
Section 8 summarizes the contributions of this research and
outlines directions for further research.

2. Problem Definition

The scenario that we want to assume is as follows:
an existing legacy system is being re-engineered in order
to conform with a new requirement (i.e., performance en-
hancement). After studying the code and the desired re-
quirement, it is concluded that the existing structure of the
program makes the desired extension difficult to achieve,

|

1

and that the application of some design patterns or source
code transformations would help to achieve the desired
property. In this context, we aim to provide an automatic
support for the developer as much as possible. In this ap-
proach the developer can decide what design pattern or
transformation to apply towards achieving a specific non-
functional requirement for the new system.

To denote the problem more precisely, we assume that
the re-engineering process consists of a series of transfor-
mations ty,13, ..., t, on the abstract syntax tree AST'(S) [1]
of a software system S. We also assume that for each qual-
ity of interest, say @, there is a metric M Q which measures
how well a software system (or system fragment) fares with
respect to the quality. Examples of software properties for
the migrant system include “Software is written in Java”,
while examples of qualities include “time and space char-
acteristics”, “maintainability”, “portability”, “customizabil-
ity”, and the like. A quality-based re-engineering problem
is defined as follows:

Given a software system S, relevant quality metrics
M@, MQa2,..., MQ,, a desired software property P, and
a set of constraints Cy, Cy,...,C; on the software qual-
ities Q1,Q32, ..., @n, find a sequence of transformations
1,12, ...yt such that the new re-engineered system S§' =
tn{tn-1(...(t1(AST(S)...) is such that P(S’) and the con-
straints C1(S"), C2(5"), ..., C(S’) hold.

To tackle the problem posed above in a more systematic
fashion, we need to resolve several issues. Firstly, we need
a catalogue of heuristic transformations and refactoring op-
erations [10, 27] which are relevant to particular qualities,
e.g., elimination of GOTOs is relevant to maintainability,
while procedure in-lining is relevant to performance. Sec-
ondly, we need to know how such transformations would
affect other software qualities. For instance, we would like
to know how GOTO elimination would affect performance
or portability. Finally, we need quantitative data on the im-
pactofa paﬂiéular transformation on a particular quality. If
we applied the transformation once, would this improve the
quality metric. by 2% or 10%? This also raises another is-
sue: if we relied on such quantitative data, what would we
need to measure?

This paper reports on initial results addressing some
of these questions. The results include a catalog of the
transformations that affect performance and maintainabil-
ity quality requirements.

3. A Framework for Soft-goals

To represent information about different software quali-
ties, their interdependencies, and the software transforma-
tions that affect them, we adopt the Non-Functional Re-
quirement (NFR) framework discussed in detail in {5]. In
the NFR framework, quality requirements are treated as po-

72

tentially conflicting or synergistic goals to be achieved, and
are used to guide and rationalize the various design deci-
sions taken during system development. Because quality re-
quirements are soft and subjective by nature, they are often
achieved not in an absolute sense, but to a sufficient or satis-
factory extent. Accordingly, the NFR framework introduces
the concept of soft-goals whose achievement judged by the
sufficiency of contributions from other (sub-) soft-goals. A
soft-goal interdependency graph is used to support the sys-
tematic, goal-oriented process of architectural design. Soft-
goals can be related to other soft-goals in terms of relations
such as AND, OR, +, ++, or —, ——. The meaning of
these relations is as follows:

e AND(G,G1, Gy, ...,Gp) — soft-goal G is fulfilled
when all of G1, G4, ..., G, are fulfilled and there is no
negative evidence against it.

e OR(G,Gh,Ga,...,Gp) —soft-goal G is fulfilled when
one of G1, Gy, ..., G, is fulfilled and there is no nega-
tive evidence against it.

o +(G14,G,) ~soft-goal G contributes positively to the
fulfillment of soft-goal G 5.

o — (G4, Gy) ~soft-goal G contributes negatively to the
fulfillment of soft-goal (5.

According to the framework, software qualities are rep-
resented as soft-goals, i.e, goals that can be partially
achieved. The leafs of the soft-goal interdependency graph
represent transformations which fulfill or contribute posi-
tively/negatively to soft-goals above them. Given a quai-
ity constraint for a re-engineering problem, one can look
up the soft-goal interdependency graph for that quality, and
examine how it relates to other soft-goals, also what are the
transformations that may affect it positively or negatively.
Transformations are also represented as soft-goals (which
are fulfilled when they are included in the re-engineering
process). When a transformation makes a contribution to-
wards one or more parent soft-goals, it is related to the latter
in terms of a link labeled +, ++, or —, ——. An example of
soft-goal interdependency graph is that the transformation
“dead code elimination” contributes very positively (++)
to the soft-goals high control flow consistency and high data
consistency. It also contributes positively (4) to the per-
formance soft-goals low main memory utilization, and low
secondary storage utilization.

3.1. Maintainability Soft-goals

Maintainability is defined as the quality of a software
system that relates with the ease of adding new functional-
ity named perfective maintenance, porting the system from
one platform to another named adaptive maintenance, or

fixing errors named corrective maintenance [14]. Maintain-
ability can be evaluated by the system revision history and
source code measurements. Specifically, it can be measured
as a quantification of the time necessary to make mainte-
nance changes to the product, or as a percentage of code
affected [16, 26] when a code fix or modification is applied.

As described in 3, the leafs of the soft-goal interdepen-
dency graph represent transformations which fulfill or con-
tribute positively/negatively to soft-goals above them. In
this context, Figure 1 shows portions of a soft-goal interde-
pendency graph.. This graph attempts to represent and or-
ganize a comprehiensive set of software attributes that relate
to software i maintainability. The graph was compiled after
a thorough review of the literature [12, 28]. In the figure,
AN D relations are represented with a single arc, and OR
relations with a double arc. It is important to note that in this
work we only describe maintainability soft-goals that are
relevant to the source code. Other maintainability related
soft-goals, e.g.,, management related ones are not included
here.

High Maintainability

High Source Code Quality High Documentation Quality

High Control
Structure Quality

Good Overall Naming

Contral Fio

. Low Control
Flow Coupling

High
Encapsulation

High Module
Reuse

Good Overall Program Commentting

() High Data Consistency

Low use of

High Cobeslon
Unconditlonal Branching

() Low Data Coupling

. Low /O Complexity

Figure 1. Maintainability Soft-Goal Graph.

3.2. Performance Soft-goals

Similarly to maintainability, performance-related re-
quirements and their interdependencies are represented in
terms of a soft-goal interdependency graph. In Figure 2, the
high performance soft-goal is AN D decomposed into time
performance, and space performance [25]. The time per-
formance soft-goal is OR decomposed into low response
time and high throughput. The rest of the performance re-
lated decompositions are illustrated in Figure 2 which only
shows a small portion of the graphs that have been compiled
through a review of the literature [13, 25].

73

Good Performance

Good Space Performance

Low Secondary
Low Storage Utilization
Main Memory

Utilization

High Throughput

Low Time

N Low CPU Time
Running

Activities

Low User
CPU Time

Low System
CPU Time

Figure 2. Performance Soft-Goal Graph.

4. The Qu'ality-Driven Re-engineering Process

This research develops a software re-engineering model
that is driven by specific non-functional requirements. The
major theme to the proposed approach is to exploit the syn-
ergy between requirements analysis [36), software archi-
tecture [13], and reverse engineering [4]. Understanding
the architecture of an existing system aids in predicting the
impact evolutionary changes have on specific quality char-
acteristics of the system [31]. Requirements analysis tech-
niques, in turn, suggest what concepts are most useful in
understanding how an existing system works and how it
should evolve. This research proposal builds on this syn-
ergy by developing a re-engineering model that can be ap-
plied at two different levels of abstraction namely, architec-
tural and source code levels.

It means that our re-engineering approach should con-
sist of : 1) requirements analysis to identify specific re-
engineering goals, ii) model analysis to understand the sys-
tem’s design and architecture, iii) source code analysis
to understand a system’s implementation, iv) remediation
specification 10 examine the particular problem and to se-
lect the optimal transformation for the system, v) transfor-
mation to apply transformation rules in order to re-engineer
a system in a way that complies with specific quality crite-
ria, and vi) evaluation process to assess whether the trans-
formation has addressed the specific requirements set [32].

The re-engineering process includes the following steps
as shown in Figure 3. First, the source code is represented
as an Abstract Syntax Tree [1]. The tree is decorated using
a linker, with annotations that provide linkage, scope, and
type information. In a nutshell, once software artifacts have
been understood, classified and stored during the reverse en-
gineering phase, their behavior can be readily available to
the system during the forward engineering phase. Then, the
forward engineering phase aims to produce a new version
of legacy system that operates on the target architecture and

Heuristic
Rules

1l

i

|

: Quality
Goal-Driven — Requirement

| i High-Level New
Source Code Source Code Code Evaluation
ASG, AST. RSF, ...
UML Diagrams Done

Figure 3 Quality-Based Re-engineering.

meets specific non-functional requirements (i.e., maintain-
ability or performance enhancements). Finally, we use an
iterative procedure to obtain the new migrant source code
by selecting and applying a transformation which leads to
performance or maintainability enhancements. The trans-
formation is selected from the soft-goal interdependency
graphs. The resulting migrant system is then evaluated and
the step is repeated until quality requirements are met [32].
It means that the proposed process is iterative and incremen-
tal in nature.

5. Transformations Rules

This section describes the selected transformation rules
at both the source code and the architectural levels for our
goal-driven re-engineering process.

5.1. Transformations at Source Code Level

The transformation rules that have been chosen in this
study at source code level for enhancing maintainability are
as follows:

o Maximize Cohesion: The number of input-output
flows for a given module (i.e.,, a class and its cor-
responding public methods) is minimized by re-
organizing source code and by splitting methods and
functions.

e Minimize Coupling: The number of data dependencies
between methods (i.e., due to global variables) is min-
imized by introducing parameter passing and eliminat-
ing global data flow dependencies between modules.

o Goto Elimination: Goto statements in the source code
are replaced by iterative structures involving do, for
and while loops. This type of transformations pro-
duces structured code at the expense of introducing
more statements in the re-engineered code having a di-
rect negative effect on performance.

e Global Data Type Elimination: Global data types
* that have been only used in specific modules are re-

74

declared within the scope/module that are used. More-
over, data structures that are not used at all are elimi-
nated.

For maintainability measurements, we focus on source
code features both for the re-engineered and the original
source code. In particular, we adopted the LOC (Lines Of
Code), the Halstead suite of metrics [17], and McCabe’s cy-
clomatic complexity metric [22] whose objective is to deter-
mine the number of paths through a program that must be
tested to ensure complete coverage and to measure the dif-
ficulty of understanding a program. These metrics not only
have been found to correlate highly with source code com-
plexity, but also provide the basic information for comput-
ing maintainability indices. In order to determine the main-
tainability of the migrant code with respect to the maintain-
ability of the original code, we calculate the Software Main-
tainability Index (SMI) computed in three different ways.
The first (Method A) is based on Halstead’s effort met-
rics [26]. The second and third ways (Method B [21] and
Method C' [6]) are both based on Halstead’s effort, V(G)
(McCabe’s cyclomatic complexity), LOC (Lines Of Code),
and CMT (number of comment lines per module).

The transformation rules that have been chosen in the
study at source code level for enhancing performance are as
follows:

e Function Inlining : Here function or method calls are
replaced with inlined source code. Note that even
if some compilers attempt to perform automatically
function inlining, this works only for complete pro-
grams (with a main routine) and can not be applied
selectively.

e Bit Shifts vs. Integer Division and Multiplication:
Here division and multiplication operations in the
source code, are replaced by bit shifts.

e Loop Invariants and Sub-expression Elimination:
This transformation simplifies expressions inside an it-
erative statement (for, do, and while loops) with re-
spect to initialization of variables that can occur out-
side the scope of the iterative statement. We ex-
perimented with sub-expression elimination in cases
where the compiler could not perform this well-
known optimization (e.g., on conflicts between up-
dates and uses of variables that occur in common sub-
expressions) [1].

e Access optimization: The objective of this perfor-
mance optimization activity is to fit all the global scalar
variables of each system in a global variable pool.
Then, each of the global scalar variables get accessed
via pointer and an offset, instead of via constant ad-
dress. This way, more expensive load and store se-
quences are avoided and code size is reduced [2].

e Elimination of dead code : Eliminates routines or li-
braries that are not invoked or used anywhere.

The performance analysis is based on these two measure-
ments : 1) time command which returns total execution time
used by the program itself, as well as the system on behalf
of the program, ii) Dhrystone Benchmark which generates
a number that can serve as a comparison measure on how
optimizations applied by the compiler relate to the system’s
performance [34]. In this context, the highest the number,
the more an optimization may affect positively system per-
formance.

5.2. Transformations at Architectural Level

In addition to the transformations at the source code
level described above, we have also considered a number
of design patterns transformations at the architectural level.
Moreover, we have evaluated their impact on performance
and maintainability on the migrant code. In particular, we
have introduced six different design patterns, from three dif-
ferent categories of [11] as follows:

e Creational Patterns are concerned with the class in-
stantiation process. They become important as systems
evolve to depend more on object composition than
class inheritance. As that happens, emphasis shifts
away from hard-coding a fixed set of behaviors to-
ward defining a smaller set of fundamental behaviors
that can be composed into any number of more com-
plex ones. We selected two patterns from this category
namely, Factory Method, and Abstract Factory as they
are two common ways to parameterize a system by the
classes of objects it creates.

e Structural Patterns are concerned with how classes and
objects are composed to form larger structures. The
Composite pattern which describes how to build a class
hierarchy, and the Facade pattern which allows the
re-architecting a software system into subsystems and
helping minimize the communication and data flow de-
pendencies between subsystems were selected.

e Behavioral Patterns are concerned with the algorithms
and assignment of the responsibilities between objects.
The Iterator pattern which allows to access an aggre-
gate object’s contents without exposing its internal rep-
resentation, and the Visitor pattern which allows to
perform operations on objects that compose contain-
ers were chosen. " . '

6. Experiments . -

In this section, we apply the proposed quality-driven re-
engineering framework on two medium-size systems. First,

the the two case studies will be described and then the col-
lected results are presented and discussed at both the source
code and architectural levels.

Our experiments were carried on a SUN Ultra 10
(440MHZ, 256M memory, 512 swap disk) in a single user
mode. We use Rigi [24, 23] for extracting facts from the
source code in order to provide a high-level view of sys-
tems. We also use Together/C++ UML Editor [33] to pro-
vide an interface to the source code generated by the Object-
Orientation Migration Tool [29]. For collecting software
metrics, we use Datrix Tool [8].

6.1. Case Studies

We have applied the quality-driven re-engineering
framework described in Section 4 on the following two
medium-size software systems :

1. The WELTAB Election Tabulation System [35] that
was created in the late 1970s to support the collection,
reporting, and certification of election results by city
and county clerks’ offices in USA. It was originally
written in an extended version of Fortran on IBM and
Amdahl mainframes under the University of Michi-
gan’s MTS operating system. At various times through
the 1980s, it was run on Comshare’s Commander II
time-sharing service on a Xerox Sigma machine, and
on IBM 4331 and IPL (IBM 4341 clone) machines
under VM/CMS. Each move caused inevitable modi-
fications in the evolution of the code. Later, the sys-
tem was converted to C' and run on PCs under MS-
DOS. The latest version of the system is composed of
4.25 KLOC and 35 batch files. Specifically, there are
26 header files, 39 source code files, and the rest are
data files for a total of 190 files.

2. The GNU AVL Libraries is the second system we have
migrated to an object-oriented platform using the soft-
goal NFR interdependency graph. This system is a
public domain library written in C' for sparse arrays,
AVL, Splay Trees, and Binary Search Trees [15]. The
library also includes code for implementing single and
double linked lists. The original system was orga-
nized around C' structs and an elaborate collection of
macros for implementing tree traversals, and simulat-
ing polymorphic behavior for inserting, deleting and
tree re-balancing operations. The system is composed
of 4 KLOC of C code, distributed in 6 source files and
3 library files.

As discussed in 4, we adopt an incremental and iterative
re-engineering process that is driven by the soft-goal inter-
dependency graphs presented in Section 5. During each
step, we select a transformation, apply it to the code, and

Object Model After Migration from C to C++.

Table 1. Extracted Simple

Perf. Perf. SMI SMI SMI
System Tiansformation Rules Time | Dhrystone | Method A [26] | Method B [21] | Method C [6]
k (%diff) (%diff) (%diff) (%ediff) (%diff)
AVL Simple Object Model Extraction | —84.14 7.75 1.46 26.69 13.39
WELTAB | Simple Object Model Extraction | —24.14 2.49 4.43 12.84 9.35
Table 2. Impact of Source Code Level Transformations on Performance.
Perf. Perf. SMI SMI SMI
System Transformation Rules Time | Dhrystone | Method A [26] | Method B [21] | Method C (6]
x (%diff) | (%diff) (%diff) (%diff) (%diff)
AVL/WELTAB | Function In-lining 21.30 4.24 —4.16 —10.89 —12.39
AVL/WELTAB | Integer Division 14.81 3.37 —0.20 —0.80 —0.23
AVL Loop Invariants 14.68 2.26 —0.69 —2.81 —1.97
WELTAB Access Optimization 8.20 1.39 —0.10 —0.76 —0.19
WELTAB Dead Code Elimination 6.21 3.14 6.23 38.30 20.49

then obtain measurements related to the maintainability and
performance of the new system.

6.2. Discussions for Source Code Level Transforma-
tions ’

Using the transformations described in Section 5.1, we
have collected: experimental results in order to evaluate
the impact of particular transformations. Table 1, summa-
rizes experimental results obtained by comparing the per-
formance of the original system and the re-engineered sys-
tem before the application of any performance transforma-
tions. The results indicate that the new C' + + versions
‘of the subject systems are on average 54% slower that the
original system implemented in C. The observed perfor-
mance degradation is largely due to the frequent invocation
of object constructors, the elimination of the macros in the
original code, and the consequent introduction of class hier-
archies and run-time resolves polymorphic methods. Sim-
ilarly, the Dhrystone number indicates that the migration
to an object-oriented platform allows the compiler to per-
form better optimizations that may relate to higher perfor-
mance (positive increase in the Dhrystone number). Along
the same trend are the maintainability measurements that
indicate that the new C + + systems are more maintainable
than the original C systems.

The experimental results of Table 2 summarize the im-
pact of different transformations on system performance.
The results indicate that the highest positive performance
impact is due to function inlining, integer division opti-
mization and loop invariants. Specifically, function inlin-

76

ing reduces the overhead associated with traps to the ker-
nel, and simplifies the process stacks for passing parame-
ters and returning and results for methods or function invo-
cations. Similarly, the integer division transformation uses
hardware-based optimizations to enhance the performance
of division expressions. As far as the impact of transfor-
mations on the optimizations the compiler can apply, the
Dhrystone number indicates that in all cases the transfor-
mations allow for the compiler to generate binary code that
has the potential for higher performance (positive increase
in the Dhrystone number).

On the other hand, performance related transformations
are shown to degrade maintainability, as this is measured
by the three different indices presented in Section 5.1. In
particular, function inlining is found to be the most “expen-
sive” transformation with respect to maintainability due to
the side effect of introducing to a given code block a sig-
nificant amount of new statements, operators, and instruc-
tions. Moreover, it creates unstructured code and therefore
reduces its understandability. Similarly, loop invariants, in-
teger division, and access optimization have no significant
effect on maintainability. Finally, dead code elimination in-
creases both performance and maintainability.

This section summarizes the experimental results ob-
tained by applying the maintainability transformations pre-
sented in Section 5.1, In particular, Table 3 summarizes our
findings on the application of five transformations, namely
dead code elimination, global data type elimination, min-
imizing coupling, maximizing cohesion, and GOTO elim-
ination. The experimental results indicate that dead code
elimination is an excellent transformation for maintainabil-

Table 3. Impact of Source Code Level Transformations on Maintainability.

Perf. Perf. SMI SMI SMI
System Transformation Rules Time Dhrystone | Method A [26] | Method B [21] | Method C [6]
(%diff) (%diff) (%diff) (%diff) (%diff)
WELTAB | Dead Code Elimination 6.21 4.14 6.23 38.3 20.49
WELTAB | Global Data Type Elimination | —3.02 7.61 7.27 4.59 0.65
AVL Minimizing Coupling -3.83 14.64 4.37 4.63 4.78
AVL Maximizing Cohesion —2.99 12.11 1.07 1.89 2.20
WELTAB | GOTO Elimination —33.91 4.88 —0.59 —6.82 —3.54

Table 4. Impact of Architectural Level Transformations on Maintainability and Performance.

Perf. Perf. SMI SMI SMI
System Pattern Name Time | Dhrystone | Method A [26] | Method B [21] | Method C [6]
(%diff) (%diff) (%diff) (%ediff) (%diff)
AVL/WELTAB | Abstract Factory | —6.48 7.82 —4.78 ~7.22 -2.09
AVL/WELTAB | Factory Method 7.04 7.50 —1.94 -3.70 —1.19
AVL/WELTAB | Composite 5.35 0.55 11.53 5.24 2.69
AVL/WELTAB | Facade 11.14 6.12 9.82 8.14 3.91
AVL/WELTAB | Iterator —4.44 4.78 8.96 - 12,72 0.72
AVL/WELTAB | Visitor 4.08 4.87 7.44 5.81 0.88

ity because it minimizes the overall size of the code and
simplifies control and data flow of a module. Similarly,
global data type elimination allows for the minimization
of redundant data flow dependencies, due to inclusion of
libraries. Coupling and cohesion are two other properties
that are confirmed to affect positively maintainability with-
out significantly affecting negatively system performance.
On the contrary, GOTO elimination affects negatively the
maintainability indices. This occurs because GOTO elimi-
nation introduces more code (iterative statements).

6.3. Discussions for Architectural Level Transfor-
mations

Table 4 shows the results of applying transformations
that relate to design patterns. Also, Figure 4 and Figure 5
depict the target system WELTAB before and after applying
those patterns. We have used the Together/C++ UML Edi-
tor [33] in order to show the various relations between the
obtained classes.

e Creational Patterns: There are two common ways
to parameterize a system in terms of the classes of ob-
jects it creates. One way is to subclass the class that
invokes the appropriate constructors. This corresponds
to using the factory method pattern. Our experimental
results indicate an average of 2.5% decrease of main-
tainability by applying the creational design patterns

77

as shown in Table 4. Meanwhile, the application of
these patterns is shown to provide better performance
at the range of almost 7.04% on average. The factory
method pattern can make a design more customizable.
Often, industrial software system designs start by us-
ing the factory method and evolve towards other cre-
ational patterns as the designer discovers the points
where more flexibility is required.

The other way to parameterize a system relies more on
object composition. Specifically, the pattern allows for
the definition of a class that supports constructors that
can be parameterized. This is a key aspect of abstract
factory patterns which involve creating a new “fac-
tory object” whose responsibility is to create product
objects by invoking their corresponding constructors.
Comparisons between Figure 4 and Figure 5 clarify
the existence of this “factory object”. Figure 4 depicts
the object model obtained without considering any de-
sign patterns (simple object model extraction), while
Figure 5 illustrates the same system after applying the
selected design patterns.

For example, consider the “REPORT?” class in Figure 4
which is used to generate multiple reports. Differ-
ent reports have different appearances and headers for
printing. To be portable across reports, an application
should not be hard-coded for a particular report. \We
can solve this problem by defining an abstract “Report-

BiCe++ - CodesSources
RECORD N

record:RECORD &

-officeptx: OFFI

 EroeesvoaEsom)
+getallowch (int
+tgetoffaset () 1lc
+getrnprec () :int
+getnoffic i x

e s il cac O]
+getocard (int
+putcard{int
+ecread (FILE *

-head3:chaxr [1:
—head2:chaxr [1:
+gethead3 (int |
+gethead2 (int
+getheadl (int
+getheadO (int

o pE

—wtunit:int

-wvitprec:long int -
-]

+getvtunit () zint)

+getviprec () : Lo,

+getregistexaedi)
+getvitpoll () :lox
+getentrexr (int

+getflprecinf:§§
+get£1precvote§
+putfilexeport
+putfileocffice]
+putflprecinfc

il +putflprecvote

+getfilexepoxtis
+getfileoffice

+ewviczl (long int
+itxdim(int , ©
+eocvec {float ,
+evei {(chax *

a +getunitrmi() : <

+getunitno () 1 i
+getprecno() 1

+getregi=t () 4}
+prutuncode (int

+putunitrm{int
+putunitno (int

+putrxeport (int :
+putlongrep (ir:"
+getheadec (in

-—cmtime:chax (-
~omdateschax [
-cmreg:long int
—empoll : long dig:
+getcmelec {int
+getomtime (int
+gaetcomdate (int
+getcmreg () 1o
+getenpoll () .'L:‘Aé

| tgetocmprec () = 1¢
. +getprfini ¢) i

+putcmelec (int
+putomtime {int

+putcmdate (int
5

Figure 4. Object Model of WELTABIII.

Gen” class that declares an interface for creating each
kind of reports as shown in Figure 5. This class acts as
an Abstract Factory Pattern. Our results indicate that
the Abstract Factory Pattern reduces the performance
by almost 7%, possibly due to the dynamic nature of
selecting an invoking the proper constructors. A de-
sign that uses the Abstract Factory Pattern is even more
customizable than those that use the Factory Method
Pattern. However, the incorporation of this pattern has
been shown to decrease maintainability by an average
of almost 4.5%. This is a typical case of conflicts in the
NER soft-goal interdependency graph (customizability
vs. performance and maintainability).

Structural Patterns: The Composite Pattern de-
scribes how to build a class hierarchy that is made up
of two kinds of objects: primitives and composites.
It means that the key to the Composite Pattern is an
abstract class that represents both primitives and their
containers. This pattern is found to improve main-
tainability because it allows for component sharing.
Experimental results indicate maintainability improve-
ment at the levels of 6% on average. Similarly, this
pattern allows for performance increase as well, be-
cause it allows for explicit superclass references and

tents without exposing its internal representation. The
pattern also supports multiple traversals of aggregate
objects. Providing a uniform interface for traversing
different aggregate structures is another reason to use
this pattern that supports polymorphic iteration.

Our experimental results indicate an average increase
of maintainability at the level of 7%. However, the
pattern reduces performance by almost 4% because of
more than one traversal can be pending on an aggregate
object. Moreover, we used the Visitor Pattern when-
ever we wanted to perform operations on objects that
compose containers. This pattern makes it easy to add
operations that can be applied in an iterative way and
depend on the components of complex objects. A new
operation over an object structure can be added by sim-
ply adding a new visitor class. This pattern helps mak-
ing the system more maintainable. Our results show an
average improvement of 4.5% for maintainability in-
dices. The Visitor Pattern helps in applying operations
to objects that don’t have a common parent class. This
results in a reduction of traversal time, and makes it a
good transformation to use for performance enhance-
ments.

simplifies component interfaces. Our experimental re-
sults confirm this result for an average increase of 5%.

7. Related Work

o Behavioral Patterns: For this part, we have used
the Iterator Pattern to access an aggregate object’s con-

Over the last 30 years, a number of researchers and prac-
titioners have examine how systems achieve software qual-

78

ration\VE LABIC*+ - CudelSulrceel:un(lllerdlionfDelalIl.vl Packag

HeadPr’inte ReportGen

| Fdhead{int E
+shead (int

~pHeadPrinter:He

wvotRep

~Voteilonk |

| Tgetoutpa:
+getnformi |

| tgetfoxm(

- +putoutpc .

| +putnformy,

Foetvote
+getvipol
+getvitpre
+getvtun:

| tgetcmreg
+getcumt (i

S

—dcname: chz

e msadlecasals =¥
+putdenane

+getcandrm

+_fread(FII
+_fwrite (Flg,

-~headcichax [
+getlongrep

+getoffrset ()

+lprint (FILE
+lhprint {FIL
+putlongrep i

| +fcloseall)
+iabzl (long
+failurxe (int
+1lscomp (chax

+putcard(int§
+pget () :
+poll () :
+aped() :
dveet

+getrtallos
+putlfprei:
+putrtallos

—untapilt:ini®

+getunitrm() -
+getuntnprec
+getuntatart

T
TableGen
—pPPxOff ;: PxO
2

PrOff

~prtinf:iint [J4
| Fgetprtint (in
| +togetallow(int
| +tgetoffint (in
+putprting (in

-fprecname:cl
—— &
+getdualrm()
+getfprecnam
+getfofficen,

rprec:int

+getducand ()

&
+getncand () : i

+getrwrite () :

3

—_—

-—untstart:in
—untaplit:in
—untwarxds:in

Toetuntapiic)
+getuntwaxda
+getuntavcbsa
+getuntatart
+getuntnprec
+putuntsplit
+putuntwards
+putuntavcbs -

pPre _dnrfo
—unitno:int
-precno:long .i
-regirt:int

~congr:int

Fgetunitno)
+getprecno ()
tgetregint ()
+getcongx () :
+getazenate ()

| +tgetdistct () :.

+getcollege ()
tgetvothow () :.
+getrepre (int

+putdualnmic) tgetndual () i

Figure 5. Object Model of WELTABIII with Design Patterns.

ity attributes. Boehm and International Organization for
Standardization (ISO) introduced taxonomies of quality at-
tributes [3, 18]. The Software Engineering Institutes (SEI)
work in Attribute-Based Architecture Style (ABAS) [19]
was the first attempt to document the relationship between
architecture and quality attributes. However, no one has
systematically and completely documented the quality at-
tributes as a guidance for the software re-engineering pro-
cess.

The problem of coping with qualities during re-
engineering has been experimentally tackled by develop-
ing a number of tools that met particular quality require-
ments. In [20], a tool-set has been developed that assists
on the migration of PL/IX legacy code to C' + + while
maintaining comparable time performance. [29] describes
a re-engineering tool that supports the transformation of C
code to ' + + code that is consistent with object-oriented
programming principles. In both cases, the approach was
experimental. First, a tool has been built to perform the re-
engineering task, then a trial-and-error strategy was used to
select a particular set of transformations which ensured that
the re-engineered code satisfied given quality constraints.

8. Conclusion

We have proposed a framework for software re-
engineering which is requirements-driven in the sense that

79

it uses desirable qualities for the re-engineered code to de-
fine and guide the re-engineering process. This framework
is noteworthy for two main reasons. First, it attempts to ad-
dress a problem that challenges the research community for
several years, namely the maintenance of object-oriented
mission critical systems. Second, it aims to devise a work-
bench in which re-engineering activities do not occur in a
vacuum, but can be evaluated and fine-tuned in order to ad-
dress specific quality requirements for the new target system
such as, enhancements in maintainability, and performance.

The contributions of the paper include an initial compi-
lation of factors and transformations which affect two par-
ticular software qualities, performance and maintainability.
As well, we have presented a framework for experimentally
evaluating the effect of different transformations on differ-
ent qualities, and have collected initial results using two
medium-size software systems.

Further research is required to refine the framework and
make it more readily usable. In particular, we are working
on extensions of the framework that allow the estimation
of the impact of a transformation on the qualities of a par-
ticular software system. We are also investigating a new
approach to software metrics which is founded on soft-goal
interdependency graphs.

Acknowledgments

This work was funded by the IBM Canada Ltd. Labora-
tory, Center for Advanced Studies in Toronto, and also by

|
f
;

the Natural Sciences and Engineering Council (NSERC) of
Canada. The authors also thank William Andreopoulos of
the University of Toronto for his help in the early version of
this paper. |

References

(1
[2)

[3]

4

(51

[6]

7

(8]

[9]
(10}

(1]

{12]

[13]
[14]
[15]

(16]

[17]

[18]

A. V. Aho, R. Sethi, and U. Jeffrey. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1988.

D. F. Bacon. Fast and Effective Optimization of Statically
Typed Objeict—Oriented Languages. PhD thesis, Computer
Science Division, University of California, Berkeley, 1997.
B. Boehm et al. Characteristics of Software Quality. Else-
vier North-Holland Publishing Company, Inc., 1978.

E. J. Chikofsky and J. H. CrossIl. Reverse Engineering and
Design Recovery : A Taxonomy. IEEE Software, pages 13—
17, January 1990.

L. K. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-
Functional Requirements in Software Engineering. Kluwer
Publishing, 2000.

D. Coleman, B. Lowther, and P. Oman. The Application
of Software Maintainability Models in Industrial Software
Systems. The Journal of Systems and Software, 29:3-16,
1995.

J. R. Cordy and 1. H. Carmichael. The TXL Programming
Language Syntax and Semantics Version 7. Technical Re-
port 93-355, Department of Computing and Information Sci-
ences, Queen’s University, Kingston, Canada, June 1993.
Datrix Metric Reference Manual, Version
4.1. Bell Canada, 2000. Also available at
http://www.iro.umontreal.ca/labs/gelo/datrix.

P. Finnigan et al. The Software Bookshelf. IBM Systems
Journal, 36(4):564-593, November 1997.

M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

E. Gamma, R. Helm, R. Jahnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

D. Garlan, G. E. Kaiser, and D. Notkin. Using Tool Abstrac-
tion to Compose System. IEEE Computer, 25:30-38, June
1992.

D. Garlan and M. Shaw. An Introduction to Software Archi-
tecture. World Scientific Publishing Co., 1993.

C. Ghezzi, M.] azayeri, and D. Mandrioli. Fundamentals of
Software Engineering. Prentice Hall, 1991.
GNU AVL Libraries. Also
http://www.interads.co.uk/“crh/ubigx.

J. R. Hagemeister. A Metric Approach to Assessing the
Maintainability of Software. PhD thesis, Department of
Computer Science, University of Idaho, 1992.

M. Halstead. Elements of Software Science. Elsevier North-
Holland Inc., 1977.

International Organization for Standardization (ISO).
Information Technology, Software Product Evaluation,
Quality Characteristics and Guidelines for Their Use,
ISO/EC 9126, 1996.

available at

80

(191

[20]

[21]

(22]

[23]

241

{25]

[26]

[27]

(28]

[291

(30]

[31]

[32]

(33]

[34]

[35]

[36]

M. Klein, L. Bass, and R. Kazman. Attribute-Based Ar-
chitecture Styles. Technical Report CMU/SEI-99-TR-022
ADA371802, Software Engineering Institute, Carnegie Mel-
lon University, Pittsburgh, PA, 1999.

K. Kontogiannis, J. Martin, K. Wong, R. Gregory, H. Muller,
and J. Mylopoulos. Code Migration Through Transforma-
tions: An Experience Report. Proceedings of IBM CAS-
CON’98 Conference,pages 1-13, 1998.

B. Lowther. The Application of Software Maintainability
Metric Models to Industrial Software Systems. Master’s the-
sis, Department of Computer Science, University of Idaho,
1993.

T. McCabe. A Complexity Measure. IEEE Transactions on
Software Engineering, 2(4):308-320, 1976.

H. Muller. Rigi as a Reverse Engineering Tool. Technical
Report DCS-160-IR, University of Victoria, Victoria, BC,
Canada, 1991.

H. Muller, M. Orgun, S. Tilley, and J. Uhl. A Reverse En-
gineering Approach to Subsystem Identification. Software
Maintenance and Practice, 5:181-204, 1993,

B. A. Nixon. Dealing with Performance Requirements Dur-
ing the Development of Information Systems. In Proceed-
ings of the IEEE International Symposium on Requirements
Engineering, pages 42-49, January 1993.

P. Oman and J. R. Hagemeister. Constructing and Testing of
Polynomials Predicting Software Maintainability. The Jour-
nal of Systems and Software, 24:251-266, 1994.

W. Opdyke. Refactoring Object-Oriented Framework. PhD
thesis, University of Illinois, 1992.

D. L. Parnas. On the Criteria to be Used in Decompos-
ing Systems into Modules. Communications of the ACM
(CACM), 15:1053-1058, 1972.

P. Patil. Migration of Procedural Systems to Object Oriented
Architectures. Master’s thesis, Department of Electrical and
Computer Engineering, University of Waterloo, 1999.
Software Refinery, Reasoning Systems. Also available at
http://www.reasoning.com.

L. Tahvildari, R. Gregory, and K. Kontogiannis. An Ap-
proach for Measuring Software Evolution Using Source
Code Features. In Proceedings of the IEEE Asia-Pacific
Software Engineering (APSEC), pages 10-17, December
1999.

L. Tahvildari and K. Kontogiannis. A Workbench for Qual-
ity Based Software Re-engineering to Object Oriented Plat-
forms. Proceedings of ACM International Conference in
Object Oriented Programming, Systems, Languages, and
Applications (OOPSLA) - Doctoral Symposium, pages 157—
158, October 2000.
Together/C++ UML Editor.
http://www.togethersoft.comy/.
R. P. Weicker. Dhrystone: A Synthetic Systems Program-
ming Benchmark. Communications of the ACM (CACM),
27(10):1053-1058, 1984.

WELTAB Election Tabulation System. Also available at
http://pathbridge.net/reproject/cfp2.htm.

R. Wieringe. Requirements Engineering: Frameworks for
Understanding. John Wiley & Sons, 1996.

Also available ét

