Towards Portable Source Code Representations Using XML

E. Mamas
{evan@swen.uwaterloo.ca}
Dept. of Electrical &
Computer Engineering
University of Waterloo
Waterloo ON. N2L 3Gl
Canada

Abstract

One of the most important issue is source code anal-
ysis and software re-engineering is the representation of
source code text at an abstraction level and form suitable
for algorithmic processing. Moreover, source code repre-
sentation schemes must be compact, accessible by well de-
fined application programming interfaces (APIs) and above
all portable to different operating platforms and various
CASE tools. This paper proposes a program representa-
tion technique that is based on language domain modes and
the XML markup language. In this context, source code is
represented as XML DOM trees that offer a higher level
of openess and portability than custom-made tool specific
Abstract Syntax Trees. The DOM trees can be exchanged
between tools in textual or binary form. Similarly, the do-
main model allows for language entities to be associated
with analysis services offered by various CASE tools, lead-
ing to an Integrated Software Maintenance Environment.

1 Introduction

There is a pressing demand for legacy software systems
to be at all times current and operational. In order to achieve
these objectives, software developers constantly maintain
their legacy systems so that, they can be ported to new en-
vironments, and eliminate dependencies on obsolete pro-
gramming languages, operating systems, or software archi-
tectures. A great problem in such maintenance tasks is ac-
cessing, organizing, and managing information related to
the software system. This includes the source code itself,
call graphs, data dependencies, links to external documen-
tation, informal memos etc. It is estimated that up to 50%

*This work was funded by the Natural Sciences and Engineering Re-
search Council of Canada, the Consortium for Software Engineering Re-
search, and IBM Canada Ltd., Centre for Advanced Studies. Inquiries for
this paper can be sent to kostas @swen.uwaterloo.ca

1095-1350/00 $10.00 © 2000 IEEE

K. Kontogiannis
{kostas@swen.uwaterloo.ca}
Dept. of Electrical &
Computer Engineering
University of Waterloo
Waterloo ON. N2L 3Gl
Canada

or more of a software engineer’s time is spent on such in-
formation searching for related program understanding and
maintenance tasks [Pressman97].

The project’s objective is to investigate the requirements,
design issues and implementation issues for systems which
store, organize, and manage information related to large
amounts of legacy code for the purpose of system main-
tenance and reengineering. The project is founded on the
premise that software artifacts, such as source code, Ab-
stract Syntax Trees (ASTs), call graphs, documentation, in-
formal notes and memos from developers, can all be stored,
organized, and managed by a generic system, which we
shall call a Integrated Software Maintenance Environment
(ISME). The ISME aims on providing support for software
reengineering tasks. One can think of a ISME as a spe-
cialized DBMS, tailored to the representation of software-
related information, also offering specialized interfaces for
CASE plug-ins in support of software maintenance tasks.
ISME is intended to make it easier to load and integrate
all relevant information about a legacy system, as well as
search, access and correlate information during a migration
process by supporting the interface of the code base with
existing CASE tools and transformation plug-ins.

2 Related Work

In this section we discuss related work performed by var-
ious research groups in the area of source code modeling
and program representation. The area of program represen-
tation deals with the techniques and methodologies to rep-
resent information about a software system at various levels
of abstraction that are suitable for algorithmic processing.

In this respect, program representation aims on facilitat-
ing source code analysis that can be applied at various levels
of abstraction and detail namely at:

e the physical level where code artifacts are represented

as tokens, syntax trees, and lexemes,

o the logical level where the software is represented as a
collection of modules and interfaces, in the form of a
program design language, annotated tuples, aggregate
data and control flow relations,

¢ the conceptual level where software is represented in
the form of abstract entities such as, components, ab-
stract data types, and communicating processes.

These representations are achieved by parsing the source
code of the system being analyzed at various levels of detail
and granularity.

One such representation is the Abstract Syntax Tree. Ab-
stract Syntax Trees or ASTs in short, are tree structures
that represent all the syntactic information contained in the
source code [Aho86]. Every node of the tree is an element
of the language. The non-leaf nodes represent operators,
while the leaf nodes represent operands. Abstract Syntax
Trees suppress unnecessary syntactic details (whitespace,
symbols, lexemes, punctuation tokens) and focus on the
structure of the code being represented. The AST nota-
tion is the most commonly used structure in compilers to
represent the source code internally in order to analyze it,
optimize it and generate binary code for a specific platform.

Abstract Semantic Graph, or ASG in short, provides a
rich abstract representation of source code text. ASGs are
composed of nodes and edges. Nodes represent source code
entities, while edges represent relations. Both the nodes and
the edges are typed and have their own annotations that de-
note semantic properties [Devanbu96].

The ASG as a program representation scheme has been
used by the Datrix [Datrix] and it is currently used to model
C++ and Java source code. In Datrix the ASG is annotated
with data and control flow information gathered from the
source code at parse time (i.e. scoping, call graph informa-
tion).

Program Dependence Graph, or PDG in short, is a graph
that combines control flow and data flow information into
a single structure [Ferrante87]. In a PDG, nodes represent
statements, expressions or regions of code and edges rep-
resent data and control dependency information. The de-
pendencies expressed in a PDG, are a result of processing
the source code information or the corresponding AST. The
PDG is useful for static and dynamic slicing techniques,
program transformation and code optimizations.

The Rigi Standard Format, or RSF in short, is a format
for representing source code information. It is a generic,
intuitive format that is easy to read and parse. The infor-
mation that RSF is currently used for can be classified as
metadata. This allows RSF to be generic and to use the
same format to represent program information for a variety
of programming languages without any changes. The syn-
tax of RSF is based on entity-relation triplets of the form

173

<relation, entity, entity>.Sequences of these
triplets are stored in self-contained files. Currently RSF is
the base format for the reverse engineering tool Rigi [Rigi].

The Tuple-Attribute Language, or TA in short, is a lan-
guage designed to represent graph information [Holt98].
This information includes nodes, edges and any attributes
the edges may contain. TA is easy to read, convenient for
recording large amounts of data and easy to manipulate.
The main use for TA is to represent facts extracted from
source code through parsers and fact extractors. In this way
TA can be considered to be a ”data interchange” format.

AsFix is a parse tree representation for terms and mod-
ules. The AsFix formalism is an instantiation of a more
generic format called ATerms. ATerms are used to repre-
sent structured information that is to be exchanged between
a collection of tools.

Graph Exchange Language, or GXL in short, is a pro-
posed format for exchanging information among tools that
analyze computer programs [Holt00]. The GXL format is
suitable for representing typed graph information. A graph
exchange format requires that both the schema and the data
of the graph are represented in the format and GXL accom-
plishes this with the use of XML.

Finally, in the area of CASE tool integration the Refine
Code-base Management System, developed by Reasoning,
is a product that provides support for software analysis and
transformation [Refine]. Refine uses ASTs for representing
source code information and provides a proprietary Soft-
ware Development Kit (SDK) for processing the informa-
tion.

3 Portable Source Code Representations

In this section we provide a brief introduction to the
XML language, the related Document Type Definition lan-
guage and the existing interfaces for working with XML
documents. Moreover, we explain how XML can be used
to represent source code at the AST level and we discuss
how programming language grammars can be mapped to
DTDs.

3.1 eXtensible Markup Language

XML is the acronym for Extensible Markup Language
and has been developed by W3C (the World Wide Web
Consortium). XML is an ideal format for storing structured
data intended for publishing or exchange between different
applications. XML derives from SGML (Standard Gener-
alized Markup Language) and in a way from HTML (Hy-
perText Markup Language). SGML was developed in 1986
as an international standard for document markup. HTML
was developed in 1992 as a language specific to Web pages.
What makes XML flexible is that it allows the end user to

specify custom tags and to associate semantic information
to source code text,

An XML document has a logical and a physical struc-
ture. The logical structure allows the document to be di-
vided into units called elements. These elements can con-
tain other elements in turn thus allowing for a complex log-
ical structure to be defined.

For example, to describe a book we need a book ele-
ment, a title element and an author element. Also, this book
will have a unique ISBN number that could be stored as an
attribute to the book element. Here is how this would be
expressed in XML:

<book ISBN="123456789">
<title>The story of my life</title>
<author>George Thomas</author>
<author>Tom Jhones</author>

</book>

The benefits of using a meta-language like XML in the
industry are many. First of all, the document publishing
applications can exploit it to develop better searching and
indexing techniques. The web applications would benefit
by having the power to dynamically customize the way the
same information is presented to the different users. The
most important benefit of all will be that of data exchange.
XML will allow the creation and use of common structures
that will be used between applications not only to exchange
data but also to communicate using messages. A detailed
description on the structure and uses of XML can be found
in [Bradley98] and [W3CXML].

3.2 DocumentType Definition

Document Type Definition, or DTD in short, is a tech-
nology directly related to XML documents. It provides a
way of defining the logical structure of the XML document.
The logical structure contains all the elements that can be
used and describes how they can be used in relation to each
other. This results in a document hierarchy. Without a
DTD, an XML document can only be checked to determine
if it is well formed. This means that every start tag is
followed by a corresponding end tag. The use of a DTD
allows us to check for validity of the XML document.
Everything that is in the XML document must conform to
the DTD specification. Therefore we are able to enforce
certain restrictions on how the XML document can be
composed and this makes it easy to create applications
that process these XML documents. The DTD contains a
number of declarations. Each declaration can be one of the
following declaration types:

174

ELEMENT

Elements are the basic contents of an XML file and
correspond to user defined tags (i.e. book, author) as
illustrated in the example above.. We can have empty
elements, or elements that contain other elements or text.
A model group (tag) is used to describe enclosed elements
and text.

ATTLIST

A list of attributes associated with a particular element can
be declared using ATTLIST. Every attribute has a name,
a type and a default value. The type determines the range
of values the attribute may hold. The allowed types are:
CDATA, NMTOKEN, NMTOKENS, ENTITY, ENTITIES,
ID, IDREF, NOTATION or name group. The default value
allows us to specify if the attribute is required, implied,
default or fixed.

ENTITY

Entities are used to avoid repetition in XML documents.
They are declared once and can be referred to many times.
Both internal and external entities are allowed in DTDs.
Internal entities are defined within the current DTD, while
external entities reside in a separate DTD.

NOTATION

Notations are used to refer to data that is not in XML
format. Notations can also be linked with entities by using
the NDATA keyword.

The following is a sample DTD that can be used to en-
force the logical structure of the example presented previ-
ously in the XML section. By examining the DTD we see
that a book must have one title and at least one author. Also
a book has a unique ISBN number as an attribute. Both the
title and author elements contain character data that stores
the information.

<!ELEMENT
<!ATTLIST
< ! ELEMENT
< !ELEMENT

book
book
title
author

(title, author+)>
ISBN CDATA #REQUIRED>
(#PCDATA) >

(#PCDATA) >

3.3 Working with XML documents

The World Wide Web Consortium has defined a standard
interface for accessing XML files called Document Object
Model (DOM) [DOMspec]. Another interface called Sim-
ple API for XML (SAX) [SAXspec] has been developed by
members of the XML-DEV mailing list.

Document Object Model (DOM)

DOM is a language neutral interface for allowing pro-
grams to access and update the structure and style of doc-
uments. DOM is a tree-based API that generates a internal
tree structure of the document and allows an application to
navigate and manipulate the tree. Every document is com-
posed of Nodes and a variety of node types are defined in the
DOM Core specification. The DOM tree for the XML ex-
ample presented previously is shown in Figure 1. Methods
for manipulating the tree or its components are provided by
the specific parser implementation. The advantage of this
interface is that the complete document exists in memory
and it can be easily processed and manipulated. The dis-
advantage is that working with large documents imposes a
large memory requirement.

The story of my lifil

George Thomas

Tom Jhones

Figure 1. Sample DOM tree.

Simple API for XML (SAX)

SAXis an event-based API that reports event as it is pars-
ing the XML document. An application that handles the
events can be build to perform various tasks. The key dif-
ference when compared to DOM is that SAX does not built
a tree representation of the XML file in memory. Therefore,
SAX is more convenient for tasks that do not require the
complete tree to be present in memory. A typical scenario
in which SAX would be a better choice occurs when for ex-
ample, we need to search a 10MB file to count the number
of ”Author” elements. The system requirements by SAX
are minimal when compared to DOM.

4 XML based representations for program-
ming languages

XML-based markup languages offer great flexibility as
well as the ability to represent documents as DOM anno-
tated trees. Our objective is to develop XML-based program
representations in which the corresponding DOM trees rep-
resent source code information at the same level as this

175

is provided by an AST generated by a language parser.
The proposed representation is simple but detailed enough
to represent the complete syntax of a specific program-
ming language in the form of a DTD schema and anno-
tated source code in the form of a DOM tree. In addi-
tion, the DTD schema is extensible to allow for new en-
tities and attributes to be added to model analysis results
obtained by source code analysis tools. These analysis-
specific schemata, can be defined separately and linked to
the basic source code DTD schema. When working with
multiple domain models, instead one can amalgamate and
aggregate these models into more general ones.

For example, representations for programming lan-
guages that use XML as the modeling environment provide
several advantages. Namely, these are:

e Easy to understand and manipulate
By keeping the representation of the language as close
as possible to the grammar of the language no extra
learning burden should be added to the tool develop-
ers. Since the grammar is something that developers
are already familiar with, our representations should
approximate the grammar as much as possible.

o Extensible
The need to accommodate for the evolving program-
ming languages requires that the representation is
equally easy to change. The representation should also
be flexible enough to allow for other representations to
be developed based on it as extensions.

e Widely supported
The success of a program representation is based on
how well it is supported. The development of APIs that
enable developers to easily read, store and change the
information based on the suggested representations is
very important. These APIs should be readily available
for a variety of platforms.

¢ Human Readable
Given the nature of the software maintenance tasks, it
is necessary for the format to be easily readable. Even
though most processing will be done automatically by
the tools, enabling a developer to read the information
directly will make the development task easier.

4.1 Annotating Source Code using XML

4.1.1 Mapping ASTs to DTDs

Given a specific programming language we need to define a
representation in which every valid source code document
can be mapped to. To accomplish this mapping from
ASTs to XML trees we need to define a method to map
the grammar of the programming language to a Document

Type Definition (DTD). The mapping at this level will
guarantee that all possible syntax trees defined by the
grammar (and therefore any source code program), can
‘be mapped to XML trees defined by the corresponding
DTD. One of the requirements when defining new XML
representations is to make them as easy to use as possible.
In this context, we provide a set of general transformation
rules that assist in implementing a good mapping from a
grammar to a DTD. Below, a list of transformation rules
for defining such mappings is presented.

o Non-terminal grammar symbols are mapped to ele-
ments.

Sequences of non-terminals are mapped to model se-

quence groups (i.e. using the ”,” symbol).

o Choices of non-terminals are mapped to model choice
groups (i.e. using the ”|” symbol).

e Non-Terminals that contain sequences of characters
are mapped to attributes.

¢ Optional non-terminals are mapped to model optional
choice groups (i.e. using the ”?” symbol).

o Lists of non-terminals are mapped to model set groups
(i.e. using the ”*” or ”+” symbol).

o Terminals are mapped to attributes.

e Choices of terminals are mapped to named group at-
tributes.

o Sequences of terminals are mapped to distinct at-
tributes.

The use and combination of these transformation rules
allow us to generate very elaborate mappings from gram-
mars to DTDs. Once a grammar is mapped to a DTD, the
ASTs for a specific program can be mapped to XML files.
These XML files can then be used in place of the ASTs or
the original source files for maintenance tasks.

4.1.2 Example Mappings

In order to demonstrate how the previous rules are used we
present the following two simple examples. In the first one,
we combine the rule for sequences of non-terminals and
the rule for optional non-terminals. The resulting element
declaration states that the element a contains an element b
which is optionally followed by element c. In the second
example we demonstrate the rule for mapping lists of non-
terminals to model groups is used with in conjunction with
the rule for mapping terminals to attributes. We see from the
grammar rule that b is an artifact for expressing the fact that

176

¢ can occur many times. The element declaration captures
this concept by simply using the ”+” symbol. The terminal
is mapped to an attribute declaration by storing the literal in
a string called value. In the table below the mappings for
both examples are shown.

Grammar | DTD

a:bcom <!ELEMENT a (b,c?)>

a: bLiteral | <!ELEMENT a (c+)>

b:c <!ATTLIST a value CDATA>
bc

4.2 Java Markup Language (JavaML)

The generation of a program representation for Java is
based on a parser generator tool called Java Compiler Com-
piler or JavaCC in short [JavaCC]. This tool was initially
developed by Sun Microsystems and it is the most popular
parser generator for Java. A parser generator is a tool that
uses a BNF grammar as input and generates source code
that can parse any instance of the BNF grammar. The popu-
larity of JavaCC is most probably due to the grammar for
Java that is shipped with the tool. The majority of Java
source code parsers are built using JavaCC and the Java 1.1
grammar. The Java 1.1 grammar was developed by Sriram
Sankar at Sun Microsystems and a copy of this grammar
can be found in the distribution of JavaCC package.

The complete DTD that we generated based
on the Java 1.1 grammar can be found at
http://swen.uwaterloo.ca/ evan/javaml.htmi. Below

we present a small example of a Java source file and its
corresponding JavaML representation as it is automatically
generated by adding semantic actions in the Java parser
generated by JavaCC.

Java source code
public class Car{
int color;

public int getColor () {
return color;}

}
JavaML representation

<ClassDeclaration Identifier="Car">

<FieldDeclaration>
<PrimitiveType Type="int"></PrimitiveType>
<VariableDeclaratorId Identifier="color"/>
</FieldDeclaration>

<MethodDeclaration Identifier=*“getColor">

<ResultType>
<PrimitiveType Type="int"/>
</ResultType>
<Block>
<ReturnStatement>
<PrimaryExpression>
<Name Identifier="color"></Name>
</PrimaryExpression>
</ReturnStatement>
</Block>
</MethodDeclaration>

</ClassDeclaration>
4.3 C++ Markup Language (CppML)

The generation of a representation for the C++ program-
ming language is based on a different approach than that
for Java. Instead of using a parser generator we took ad-
vantage of a compiler product that maintains the interme-
diate representation of the code and provides access to it
through an API. This product is the IBM VisualAge C++
[VACpp] compiler which is developed at the IBM Toronto
lab. VisualAge features a customized source code reposi-
tory which is called Codestore in which all the information
generated during the compilation process is stored. Pars-
ing, processing and code generation information can all be
accessed using the provided APIs. The goal behind the ar-
chitecture of VisualAge is to allow developers to maintain
and analyze C++ source code. Our goal in using VisualAge
is to demonstrate that a commercial product can be inte-
grated and used as a tool in a more complex environment.
Using a parser generator would have been another approach
in generating a C++ representation. The complete repre-
sentation for C++ that was generated using VisualAge can
be found at http://swen.uwaterloo.ca/ evan/cppml.html.
Sample source files and their representations are also avail-
able. The grammar that CppML was based on, was im-
plicitly extracted from the Codestore APIs, which was ob-
tained from the VisualAge development team and is expres-
sive enough to represent ANSI C++ compliant source files.

4.4 Object Oriented Markup Language (OOML)

The object oriented programming paradigm has been im-
plemented in a variety of programming languages. However
the key concepts remain the same no matter what the imple-
mentation is. Here, we demonstrate how the DTD schemata
for the Java and C++ programming languages, which are
both object oriented, are aggregated to a more generic rep-
resentation called OOML. It is noted that OOML does not
have all the information that exist in a source file, because
not all Object Oriented languages contain entities that can
be aggregated.

177

In order to generate OOML representations it is possible
to define mappings from the JavaML and CppML represen-
tations instead of using the source code directly. The imple-
mentation of such mappings can be done in two ways: The
first involves the use of the XML APIs to construct a pro-
gram that maps one representations to the other. The second
approach involves the use of XSLT [XSLT] transformations
which are designed to map one XML document to another.
Both approaches will achieve the same goal and the devel-
oper will have to select one. It needs to be clear though
that we are not interested in the implementation details of
either approach. Our goal is to identify similar concepts in
JavaML and CppML and describe how they can be mapped
to OOML.

A small example of how common constructs in
JavaML and CppML can be identified and mapped
to the OOML representation below. The complete
DTD for the OOML representation can be found at
http://swen.uwaterloo.ca/ evan/coml.html.

Both Java and C++, represent objects by using the con-
cept of classes, class methods and class variables. An object
is an abstract entity that contains some data and that is able
to perform some kind of operations on its data. A class can
be thought of as a template for creating an object. Every
class has a name that uniquely identifies the class. The class
variables define what data the object can store and the class
methods define what kind of operations the object can per-
form. In OOML this information is expressed as follows:

<!ELEMENT Class
(VariableDeclaration*,Method*) >
<!ATTLIST Class Identifier CDATA>

The relevant parts of the JavaML representation are
shown below:

<!ELEMENT ClassDeclaration
(UnmodifiedClassDeclaration) >

<!ELEMENT UnmodifiedClassDeclaration
(Name, ClassBody) >

<!ATTLIST UnmodifiedClassDeclaration
Identifier CDATA>

<!ELEMENT ClassBody
(FieldDeclaration{MethodDeclaration)*>

In order to map JavaML classes to OOML classes we
need the following mappings:

ClassDeclaration — Class
UnmodifiedClassDeclaration.Name +— Class.Identifier
FeildDeclaration — VariableDeclaration
MethodDeclaration — Method

Representing objects in C++ can is done using the fol-
lowing sections from the CppML representation:

<!ELEMENT Class ((%Declaration;)*,BaseSpecifier*,

TemplateArgument*)>
<!ATTLIST Class name CDATA>
<!ENTITY $ Declaration " (Function|Variable)">

The mappings from CppML to OOML are:

Class — Class

Class.name — Class.Identifier
Function — Method

Variable — Variable

5 An Integrated Software Maintenance Envi-
ronment

The Integrated Software Maintenance Environment
(ISME) is an environment that facilitates collaborative
software maintenance activities. The environment allows
source code to be represented in the form of DOM trees,
and provides means for CASE tools to register their services
with specific entities of the source code domain model.
For example a tool that computes cyclomatic complexity
metrics can be registered as a service associated with the
MethodDeclaration language entity. Hence, source
code entity nodes are linked with CASE tool services regis-
tered in the Integrated Software Maintenance Environment.
In this environment a variety of new software maintenance
tools can be developed for specific programming languages
using XML representations as discussed in the previous sec-
tion. Another feature of this environment is the ability to in-
tegrate existing tools by making use of these common XML
representations. The tool integration is taken a step further
by creating a distributed service manager module that al-
lows inputs and outputs for every tool in the environment.
These services are aware of all other services in the envi-
ronment and are able to communicate with other services in
order to perform more complex tasks via a control and data
integration module. Services can be local or distributed, al-
lowing tool developers to share the ISME environment and
the corresponding registered CASE tools with other devel-
opers in a collaborative manner. An XML schema can be
used to model and represent input and output data for the
registered CASE tools.

The features of ISME can be grouped in the following
three distinct categories:

e Data Integration deals with program representations
and how they can be used to enable tools to communi-
cate.

178

o Control Integration deals with making tools available
as distributed services.

o Repository Services deals with the persistency and
sharing of the processed data.

5.1 Data Integration

The term data integration refers to the features of the
ISME environment that enable new maintenance tools to
be built using common program representations and allow
existing tools to communicate and exchange data. When
talking about data integration it is important to make the
distinction between two separate concepts: Source Domain
Model integration and Analysis Domain Model integration.
In Source Domain Model integration there is a need to use
a common representation that all registered tools can use
as input for their software maintenance tasks. Similarly, in
Analysis Domain Model there is a need to create represen-
tations so that analysis results from registered tools can be
modeled and automatically used as input to other tools.

By having such representations available it becomes pos-
sible to perform a variety of maintenance tasks. First of all,
language-specific tools can be developed using the XML
representation for that language. When tools use a com-
mon representation, it is easier to compare software main-
tenance and analysis algorithms without having to worry
about the details of parsing the source files directly. Sec-
ondly, language-independent tools can be developed that
perform generic analysis for a variety of sources. Thirdly,
the language-specific and higher-level languages can be
used to exchange data between existing tools. Finally, it
is easier to create maintenance-specific representations that
extend the language-specific representations to facilitate for
exchange of maintenance results,

5.2 Control Integration

The term control integration encapsulates all the features
that the ISME offers for creating and using distributed ser-
vices out of software maintenance tools. In ISME, a ser-
vice corresponds to a CASE tool that performs a specific
task. In order for a service to become part of the ISME
environment we need to describe its functionality, its input
and output. In this section we explain how services can be
created and localized, how they can register/deregister with
the environment, how they can be configured dynamically
and how they can be invoked as part of a more complex
task. In our attempt to reuse existing technologies some of
the concepts presented in this section are based on the Jini
architecture[Jini] proposed by Sun Microsystems.

Before we proceed to the details of the services we
present the key features of a service in the ISME environ-
ment namely, services that are distributed, dynamic, secure,

Events

Senvice
Lookup

Regusst
Senice

Ceploys

Events

Senvice
Location

Resutt

Invoke Semvice

Registers

Events With

Registers
With

Figure 2. Architecture for service integration
using the ECA paradigm.

and easy to use and to integrate. Distributed means that
services (i.e. CASE tools) can exist in any machine on the
network. Users are able to select the right service by ex-
amining their descriptions and then provide the input and
receive the output. Dynamic means that services can be
added and removed to and from the ISME environment at
any time without having to stop and restart the whole envi-
ronment. In addition, the services can be configured dy-
namically to accommodate for updated features and new
security requirements. Secure, means that features are im-
plemented to make services available to a selected group
of users based on access control lists. Finally, the ease of
use and ease of integration can be accomplished by using
the Event Condition Action (ECA) paradigm. Using ECA
it will be possible to define transactions that will involve
the combined use of many services [Mylo96]. Service in-
tegration enables us to combine existing services in order
to define new and more complex ones. To provide support
for this, ISME uses transactions and events as specified in
the Jini architecture, as well as the Event-Condition-Action
(ECA) paradigm as presented in [Gregory00]. Jini speci-
fies a transaction protocol in which a series of operations
within one or multiple services can be wrapped in a single
transaction. The proposed service integration architecture
is depicted in Fig.2.

5.3 Repository Services

The need to perform maintenance tasks in large and com-
plex software systems imposes more requirements on the
environment in which these maintenance tasks are to be per-
formed. The first and most important one, is that of efficient
storage. Efficient in this context encapsulates the need for

179

%] Program
[name = avtiicc
@ 1 IncludedSource
© (] IncludedSource
@ (X PrimarySource
[name = avt.cop ;
& Include i
@ {1 Include
- [Include
Include
o include
@ (7 variable
@ 3 Eunction
D accessKind = public
O coumn= 14
D explicit= False

‘alidating fite: C\dal
alidation complete.

Figure 3. Screen shot of the prototype ISME.

large amounts of storage, as well as techniques to access
and update the data in an easy and fast manner. The sec-
ond requirement is that of version control. It is necessary
to keep track of different versions of software that has been
analyzed in the same way it is done for software that is de-
veloped. The third and final requirement is that of shared
access. The nature of the ISME environment will allow
multiple users to access and work on the same data. A safe
way of sharing the same data is of great importance.

In the ISME environment most of the data exists either
in plain text format or in XML format. A variety of services
for storing the data are provided within the ISME. These
services can exist locally or they can be accessed through
the network as previously described. The first option is to
use plain text files with some versioning software like RCS
[RCS]. Another approach is to take advantage of the ef-
ficiency and scalability that database management systems
offer. Using a database like DB2 with the XML Extender
[DB2XML] software we are able to store and index entire
XML documents in a relational database which offers per-
sistent storage. This approach is very efficient for large doc-
uments that need to be searched and updated frequently.

6 Prototype

A prototype environment was built using the Java pro-
gramming language. The reasons for selecting Java are nu-
merous. First of all, the prototype is able to run on a vari-
ety of platforms for which a Java virtual machine has been
developed. Secondly, integration with distributed technolo-
gies such as Jini will be easier. Finally, the majority of the
supporting technologies are readily available for Java. By
supporting technologies we refer to technologies such as
XML APIs, DTD viewers and XSLT tools to name a few.

Figure 4. Invocation of the Rigi tool from
ISME.

The core part of the prototype is the XML tree viewer as
shown in Fig. 3. The prototype is able to read JavaML,
CppML and OOML representations from source files or
from a DB2 Universal database for which there exists an
XML to DB2 schema translator. Once a representation is
loaded, the user is able to invoke tools that are registered
to operate on the current representation. All tools are reg-
istered in a central repository and for each tool there exists
a description and the input and output format. In addition,
each tool can be registered to handle specific events depend-
ing on what part of the tree these events originated from.
All the tools that are registered in the ISME prototype are
linked to buttons on the toolbar at the top of the screen.
In Fig. 3, a CppML representation of a source program is
loaded, and one of the five buttons on the toolbar (left top)
that represent registered tools is enabled. Each button cor-
responds to a different CASE tool registered in the ISME
environment and can be active for the current source code
entity selection. This means that only one tool is registered
to handle this type of trees. In this case the tool maps the
CppML representation to the higher level OOML. Once a
tool is invoked the results are displayed in the right panel
inside a textbox. In the current prototype, there is support
for storing the analysis results as an XML file. This storing
is achieved by using a very simple DTD as shown below.
This DTD enables the user to save the analysis type and
results associated with any element of the tree.

<!ELEMENT Results (Analysis*)>

Figure 5. Invocation of the Together C++ tool
from ISME.

Result CDATA #REQUIRED>

In the following subsections we illustrate five simple ser-
vices currently registered with the prototype ISME environ-
ment. The first three services correspond to tools that com-
pute the fan-in, fan-out, and McCabe metric. The fourth
and fifth services correspond to the Rigi and Together visu-
alization tools.

6.1 Registered Tools

Simple tools that calculate software metrics were devel-
oped to demonstrate how the ISME environment facilitates
software maintenance. These tools were developed to op-
erate on the OOML representations and therefore they can
be used to compute metrics for both Java and C++ source
files. Once a source file has been parsed and the correspond-
ing representation (JavaML or CppML) has been generated
then the mapping tool is used to generate the OOML rep-
resentation. All the information the tools need is available
in the OOML representation and the developer saves time
by implementing the tools only once. It must be noted that
not all tools will be able to operate at the OOML level. The
ones described here were intentionally selected to demon-
strate this point.

Fan-in
For any given function, this tool computes the total num-
ber of functions in the program that call the currently se-
lected function. This can be simply computed by counting

<!ATTLIST Results SourceFile CDATA #IMPLIEDshe number of MethodCall elements (with the correct identi-

<!ELEMENT Analysis EMPTY>
<!ATTLIST Analysis

Type CDATA #REQUIRED
AppliesTo CDATA #REQUIRED

fier) in the OOML representation. In addition we define the
fanin of a Class to be the sum of all the method fanins con-
tained within the Class. Similarly we can define fanin for
source elements. All this means is that the fanin tool is able

to perform it analysis on Method, Class and Source
elements. Inside the prototype ISME once a OOML repre-
sentation has been loaded and the user selects an appropriate
node then the fanin tool on the toolbar becomes enabled.

Fan-out
Fanout is very similar to how fan-in works. However in this
case fanout represents the number of calls to other functions
that originate from a given function. As before, we can de-
fine the fanout metric for Classes and Sources. The fanout
tool is also registered to handle events that originate from
Method, Class and Source elements.

McCabe Cyclomatic Complexity
The Cyclomatic Complexity or McCabe function as it is
more commonly known computes a number that describes
how complex the given function is. To calculate this met-
ric the possible execution paths for the function are deter-
mined by examining all the conditional statements and their
interleavings. The result is defined to be the number of
possible paths - 1. It should be noted that the Cyclomatic
Complexity tool in ISME is registered and active only with
MethodDeclaration elements and not with File or
ClassDeclarationsource code domain model entities.

Visualization Tools
Another category of tools we have integrated with the en-
vironment deals with visualization tools. In particular we
have integrated in the ISME the Rigi and the Together C++
tools. The Rigi tool is active for the Program entities,
while the Together C++ tool is activated for the File and
Program entities. In Fig.4 a Rigi invocation session for
use relations between ClassDeclaration objectsis de-
picted. Similarly, in Fig.5 an invocation of the Together
tool depicting the object model of a Programis illustrated.
New tools can be added as DTD schema extensions by spec-
ifying their name and their invocation signature.

7 Conclusion

Program representation plays an important role on build-
ing tools that facilitate software analysis and software main-
tenance. One of the most popular representations is the Ab-
stract Syntax Tree. However, building complete Abstract
Syntax Trees (AST) for program analysis purposes requires
not only a full parser but also customized semantic actions
to be added to this programming language parser so that the
AST can be easily analyzed and traversed by CASE tools.
In this paper, we have presented an alternative to building
Abstract Syntax Trees as a program representation scheme
is to define a language model in terms of a DTD and au-
tomatically annotate source text with XML tags. An XML
parser is used to parse the XML annotated source code and
create a DOM tree that corresponds to an annotated AST.
The benefit of using XML in this context is that the cor-
responding tree conforms with the language domain model

181

as defined in the corresponding language DTD. Moreover,
the DOM tree can be easily traversed and analyzed by using
Java or C++ libraries that are publicly available.

CASE tools can be associated with specific language
DTD entities and be activated only for these specific enti-
ties. In this context we have developed a prototype con-
trol integration architecture, where various CASE tools can
be invoked by the unified interface. The XML annotated
source code, its corresponding DOM tree, and the regis-
tered tools form an Integrated Software Maintenance Envi-
ronment (ISME) by analogy to an Integrated Development
Environment (IDE).

On-going and future work involves extending the cur-
rent prototype environment to support representations for
languages like Pascal, Cobol and PLIX. Finally, new tools
can be added to the environment and linked using the ECA
control integration paradigm. The prototype has been de-
veloped at IBM Canada, Center for Avdanced Studies, and
is being linked for further evaluation with Visual Age for
Java and Visual Age C++ compilers.

References

[Aho86] A. V. Aho, R. Sethi, and J.D. Ullman. Compiler
Principles, Techniques, and Tools. Addison-Wesley
Publishing Company, Reading, Massachusetts,
1986.

[Devanbu96] P.T. Devanbu, D. S. Rosenblum, A.L. Wolf.
“Generating Testing and Analysis Tools with Aria”,
ACM Transactions on Software Engineering and
Methodology, vol S no. 1, January 1996

[Datrix]. BELL Canada, Datrix Group, ”Abstract Semantic
Graph Reference Manual”, Version 1.3

[Rigi] University of Victoria, at URL:

http://rigi.uvic.ca, May 2000

”Rigi”

[Holt98] R. Holt. “An Introduction
Tupple-Attribute Language”
http://plg.uwaterloo.ca/
November 1998

to TA: The
at URL:
holt/papers/ta.html,

[Bradley98] N. Bradley, “The
Addison-Wesley, 1998

XML Companion”,

[W3CXML] World Wide Web Consortium,
sible Markup Language (XML)” at
http://www.w3.org/XML, September 1999

“Exten-
URL:

[DOMspec] World Wide Web Consortium, “Document
Object Model (DOM) Level 1 Specification Ver-
sion 1.0” at URL: http://www.w3.0rg/DOM, Octo-
ber 1998

[SAXspec] Megginson Technologie

[Alphawors] IBM Corporation, “Alphaworks” at URL:
http://www.alphaworks.ibm.com, May 2000

[JavaCC] Sun Microsystems, "JavaCC The Parser Genera-
tor”, at URL: http://www.metamamta.com/JavaCC,
May 2000

[VACpp] IMB Corporation, “VisualAge for C++” at
URL: http://www.ibm.com/software/ad/vacpp,
September 1999

[XSLT] World Wide Web Consortium, “XSL Trans-
formations (XSLT) Version 1.0” at URL:
http://www.w3.org/TR/xslt, November 1998

[DB2XML] IBM Corporation, “"DB2 XML Ex-
tender” at URL: http://www.ibm.com /soft-
ware/data/db2/extenders/xmlext/

[Jini] Sun Microsystems, “Jini Architecture Specifica-
tion”, edition 1.0.1, November 1999

[Gregory00] R. Gregory, K. Kontogiannis, "Customiz-
able Service Integration in Web-enabled Environ-
ments’”’s, "SAX 2.0: The Simple API for XML” at
URL: http://www.meginson.com/SAX/, May 2000
, To be published, April 2000

[Mylo96] J. Mylopoulos, A. Gal, K. Kontogiannis, M.
Stanley. A Generic Integration Architecture for
Cooperative Information Systems. In Proceedings

of Co-operative Information Systems’96. Brussels,
Belgium, 1996

[Pressman97] Pressman, R., Software Engineering: A
Practitioner’s Approach

[RCS] GNUProject, "Revision Control System (RCS)”, at
URL: http://www.gnu.org/software/rcs/rcs.html

[Ferrante87] J. Ferrante, K. J. Ottenstein and J. D. War-
ren. “The program dependence graph and its use in
optimization”, ACM Transactions on Programming
Languages and Systems, vol 9 no. 3, July 1987

[Holt00] R. C. Holt, A. Winter, A. Schurr, "GXL: Toward
a Standard Exchange Format”, To appear in WCRE
2000: Working Conference in Reverse Engineering,
Brisbane, Australia, November 2000

{Refine] Reasoning Inc. "CBMS WhitePaper” at URL:
http://www.reasoning.com/tech/tech.html

182

