An Approach for Measuring Software Evolution
Using Source Code Features *

Ladan Tahvildari, Richard Gregory, Kostas Kontogiannis
Department of Electrical & Computer Engineering
University of Waterloo
Waterloo, ON, N2L 3G1, Canada
{Itahvild, rwgregor, kostas } @swen.uwaterloo.ca

Abstract

One of the characteristics of large software systems is
that they evolve over time. Evolution patterns include mod-
ifications related to the implementation, interfaces and the
overall system structure. Consequently, system understand-
ing and maintainability tend to degrade over time unless
particular attention is paid to measure, assess and evalu-
ate the effects of the evolution activities. Traditionally, the
assessment of evolution activities has focused on the archi-
tectural level. However, in many cases it is easier to ex-
tract low-level program information from the Abstract Syn-
tax Tree rather than to discover the full architecture of a
large legacy system. This paper presents techniques for an-
alyzing the evolution of large systems even in cases where

no complete architectural views of the system exist, from in-
formation obtained solely from the AST. We present exper-

imental results by analyzing the evolution patterns across
different versions, of two popular systems, the Apache Web
server, and the Bash shell.

1. Introduction

Legacy software systems evolve over time. By having an
architectural description for a system, developers are able to
share a common mental model and form a high-level under-
standing of a system. This hides much of the detail that
clutters the implementation of a system, allowing software
engineers to reason about the entire system in addition to
the individual components.

‘This paper describes a methodology for analyzing the
evolution of large systems. In this way, a software engineer
can predict the type of evolution to which different software

*This work was funded by the IBM Canada Ltd. Laboratory - Cen-
ter for Advanced Studies (Toronto) and the National Research Council of
Canada.

0-7695-0509-0/99 $10.00 © 1999 IEEE

10

components will be subjected. We present results obtained
from experiments which identify low-level source code fea-
tures that can be used to provide an accurate view of soft-
ware evolution at the architecture level {10]. We examined
two software systems and conducted two independent stud-
ies on each. In the first study, we investigated evolution at
the architectural level with the focus on three categories: in-
terface evolution, implementation evolution, and structural
evolution. In the second study, we analyzed evolution by
examining the effect that changes in low-level source code
features (control flow in functions, parameter passing, data
flow properties, and metrics) had on the overall system ar-
chitecture. For each system, evolution distance measures
were defined that determine the degree of change from one
version to the next at both the source code and the architec-
tural level. The evolution distances obtained from these two
studies for each level were correlated to select the source
code features which have the greatest effect on evolution
at the architecture level (interface, implementation, struc-
ture). Evolution distances were computed based on inser-
tions, deletions, and modifications for source code and ar-
chitectural entities. These provide a measure of maintain-
ability and of the dissimilarity between system components
as a result of change.

This paper is organized as follows: Section 2 presents
related work, then Section 3 discusses our techniques for
software architecture recovery. In Section 4, we discuss our
approach for evolution analysis. Sections 5, 6, and 7 present
findings from the evolution analysis of Bash and Apache.
Section 8 provides an interpretation of our results and fi-
nally Section 9 discusses conclusion, ongoing, and future
work.

2. Related Work

One approach to recovering the understanding of a sys-
tem is to extract its architecture from high-level data flow

information [2]. A number of architecture design recov-
ery tools have been implemented to help developers under-
stand large software systems. These include PBS [4, 7],
GASE [8], and Rigi [13]. These tools provide high-level
views that describe the current system design. Moreover,
they help developers assess how closely a system’s imple-
mentation matches its intended structure. Most of these
tools aid in reconstructing an architecture based on facts ex-
tracted from the source code of a system.

More recently, other models have been proposed as a
means for architectural design recovery. Murphy presents
in [14] the concept of reflexion models that allow interac-
tions and evolution patterns in large software systems to be
distinguished and analyzed. Reflexion models have been
successfully used for the re-engineering of large industrial
software systems.

Kazman presents an approach for capturing and assess-
ing architectures for evolution and reuse [9]. The Dali
workbench for architectural extraction supports flexible ex-
traction and fusion of architectural information. This tool
enables various types of relevant information to be modeled
and provides a means to extract architectural views for re-
engineering, analysis, and for comparing architectures.

As part of an ongoing project with researchers from
the IBM Center for Advanced Studies, the University
of Toronto, and the University of Victoria, Kontogiannis
presents in [10] several metrics that describe various soft-
ware features. These metrics are computed and added as an-
notations to an AST (Abstract Syntax Tree) extracted with
REFINE !,

3. Architectural Design Recovery

Two types of architecture are particularly beneficial to
humans trying to understand a software systems: a con-
ceptual architecture and a concrete architecture. The con-
ceptual architecture shows how developers think about a
system; it shows relationships between subsystems that are
‘meaningful’ to developers. In contrast, the concrete archi-
tecture of a system shows the relationships that exist in the
implemented system. While the conceptual architecture is
easier to understand because it contains only essential rela-
tions, the concrete architecture is necessary when making
decisions requiring implementation-specific knowledge [1].

An architecture recovery system extracts facts from a
system implementation, then combines these facts into
higher level abstractions. The extracted facts may be in
many forms. Researchers have extracted information about
function calls, data accesses, and file operations to help re-
construct views of an architecture.

To begin our analysis of a software system, we obtain an

IRefine is a trademark of Reasoning Systems Corp.

11

abstraction of the source code. Several program representa-
tion schemes have been proposed in the relevant literature.
We have chosen as a program representation scheme, the
program’s annotated Abstract Syntax Tree (AST) using the
commercial tool REFINE as our primary development en-
vironment.

4. Software Evolution Analysis
4.1. Evolution Categories

We have classified evolution into three main categories:
a) interface evolution which relates to source code changes
that affect the interfaces between functions, modules, or
subsystems, b) implementation evolution which relates to
source code changes that affect the control flow and data
flow properties of a given code fragment, and ¢) structural
evolution which relates to changes that affect the structure
of the system but do not necessarily affect its functionality,
control flow, or data flow properties.

4.2. Measuring Interface Evolution

Interface evolution is measured by analyzing the corre-
sponding program features from one version to another. An
overall distance between versions is computed. This dis-
tance between versions j and k for module M is calculated
by

E;::zerface(M) = Z;wi(Fij(M) — Fir(M))

where w; is the weight for feature i and F;;{M) is the value
for feature i on version j for module M. For example, if
F;;(M) is the number of parameters passed by reference
for module M in version j, then the evolution distance is
based on the weighted difference between the number of
parameters passed by reference for this module and in an-
other version of the system (i.e. version k). The weights
were based on previous experience in measuring metric dis-
tances [10].

4.3. Measuring Implementation Evolution

Implementation evolution is also measured by comput-
ing the weighted sum

E;;nplementation(M) — E.QH.(F.J(M) _ F'k(M))

where w; is the weight for feature i and F;; (M) is the value
for feature i on module M on version j.

4.4. Measuring Structural Evolution

Structural evolution is measured by computing the
weighted sum of the number of additions, deletions, and
modifications of functions and libraries between two ver-
sions of the software system. In particular,

B3¢ (8) = waerDjk(S) + Winaljx(S) + WmodCijk(S)

where Djr(S) is the number of deletions (func-
tions/libraries) between version j and version k for sub-
system S and I;z(S) is the number of insertions (func-
tions/libraries) from version j to &, and C;x(S) the num-
ber of modified (split or merged) functions and libraries be-
tween versions j and k.

4.5. Metrics Analysis

In addition to the the above features for measuring
evolution, we also create a vector of orthogonal metrics for
each function, module or subsystem in each version [10].
The difference between two versions for a source code
entity E is then computed as the Euclidean distance
between the metrics vectors for the entity E in versions
i and j. We use four metrics that are sensitive to several
different control flow and data flow program features. If s
is a source code fragment, then the following metric values
are computed for each function, module, and subsystem:
i) S.COMPLEXITY(s) = FAN_OUT(s)® where
FAN_OUT(s) is the number of individual function
calls made within s, ii) D COMPLEXITY (s)
GLOBALS(s)/(FANOUT(s) + 1) where
GLOBALS(s) is the number of individual declara-
tions of global variables used or updated within s,
iii) MCCABE(s) = e — n + 2 where e is the number
if edges in the control flow graph, and n is the number
of nodes in the graph [12], vi) HALSTEAD’s software
science [6] is based on four metrics which can be computed
through an AST (the number of distinct operators; the
number of distinct operands; the total number of operator
occurrences; and the total number of operand occurrences).

A complete list of all metrics used in each of our two
studies is shown in Table 1.

4.6. Software Evolution and Maintainability

Another aspect of this study deals with the impact of
software evolution on the maintainability of systems which
has become one of the most important aspects of software
systems. Many models have been defined and implemented
to quantify maintainability based on software metrics. Here
we present three models that we use to compute maintain-
ability indices.

12

Metric Description]
Distance Euclidean distance among elements
Jaccard Jaccard distance among elements
Fan-In Number of called functions
Fan-Out Number of individual function calls
McCabe McCabe cyclomatic complexity
D-Flow Number of used and updated global variables
Num-Stm Total source code statement
Num-Ops Total operator count
Num-uops Unique operator count
Num-Opnds Total operand count
Num-uopnds Unique operand count
Comments Number of comments
LOC Total source input lines
LnCh Changed lines
Effort Halstead’s program effort

Table 1. List of Metrics Analyzed.

1. A three-metric model based on Fan-Out, data com-
plexity, and McCabe cyclomatic complexity. Further
explanation of this index can be found in [15].

Software Maintainability Index 1 = 125.951 - 3.975
Fan-Out - 0.999 « D-Com - 1.142 «+ McCabe

2. A single metric model based on Halstead’s efforts [6].
Further details can be found in [16].
Software Maintainability Index 2 = 125 - 10 x log(ave-E)

3. A four-metric model based on Halstead’s effort [6],
McCabe’s V(G'), LOC, and CMT. More information
can be found in [3].

Software Maintainability Index 3 = 171 - 3.42 x In(ave-E) -
0.23 x avg-V(G') - 16.2 * In(avg-LOC) + 0.99 * avg-CMT

5. Experimental Studies

In this section, we present the evolution of two public do-
main legacy systems: the Apache Web server and the Unix
shell Bash.

5.1. Bash

Bash is GNU’s "Bourne Again SHell” from the Free
Software Foundation that is an sh-compatible command
language interpreter. The reason we choose Bash as a sub-
ject of our study was that the source code of four different
versions was available and it was sufficiently complex, yet
small enough to manage for research.The versions we have
chosen to examine include 1.14.7, 2.01, 2.02, and the most
recent version 2.03. Table 2 gives some statistics for these
four versions.

We found that the conceptual and concrete architectures
were consistent between all four versions. Our description
of Bash is based largely on the descriptions of the general

[Version LOC Source Files | Header Files | LOC/ile |
1.14.7 40,661 40 47 467
2.01 46,179 48 49 476
2.02 47,762 47 51 487
2.03 48,516 47 54 480

Table 2. Basic Statistics of Bash.

functionality of shells, as well as on the structure of the
source code. This corresponds most closely to the Pipeline
Architecture, as defined by Shaw and Garlan [5] and is illus-
trated in Figure 1, where the bold arrows represent control
and data flow from one stage to the next. The solid arrows
show procedure calls among the pipeline stages as well as
to the utility and interface modules. As Figure 1 shows,
Bash'’s architecture can be described as follows: i) it reads
its input from a file (Shell Scripts), or from a string (Invok-
ing Bash), or from the user’s terminal, then breaks the input
into words and operators, ii) it parses the tokens into sim-
ple and compound commands, iii) it performs the various
shell expansions, breaking the expanded tokens into lists of
filenames, commands and arguments, and finally iv) it ex-
ecutes the command. All these stages of the pipeline are
done through an interface and by accessing various utilities.

Parser E Execution

Input

S
|

Interface

Utility

Figure 1. Architecture of Bash.

5.2. Apache Web Server

Apache ? is a free and publicly available Web server and
is currently in use on over 50% of all Internet web sites.
Apache is developed and maintained by the Apache Group
and other volunteers, located in various parts of the world.
The system is available for a number of operating systems.
There were several reasons why we chose Apache as a sub-
ject of our study. We could easily obtain source code for five
different versions and we felt that Apache was even more in-
teresting than Bash. In the interest of technical content, we
also wanted to use a system that was sufficiently complex,
had undergone significant revision, yet was not unmanage-
ably large.

2 As a side note, since Apache originally contained a series of patches
applied to the NCSA code - the result was then referred to as "a patchy
server”, the source of Apache’s present name.

13

The versions we have chosen to examine include 1.1.1,
1.2.4,1.2.6, 1.3.4, and the most recent version 1.3.6. Ta-
ble 3 gives some introductory statistics for these five ver-
sions. :

[Version [LOC | SourceFiles | Header Files | LOC/file
1.1.1 28,692 48 17 440
1.2.4 31,878 42 19 523
1.2.6 39,966 54 20 619
1.3.4 79,819 102 56 505
1.3.6 75,523 81 40 616

Table 3. Basic Statistics of Apache.

We discovered a consistent conceptual architecture of
Apache over all five versions. This is based largely on
descriptions of the API, as well as on the structure of the
source code. This corresponds most closely to the Develop-
ment View of Architecture, as defined by Kruchten [11] and
is illustrated in Figure 2. In the diagram, the dotted arrows
represent uses of modules by the core subsystem. The solid
arrows show procedure calls among the core subsystems as
well as to the operating system.

Modules

K4

X,
v

Core

Request [->] Handler [<-| Config

NI T T
Al - - _———_ Y Y
[L1
1
N
os Resource Logging
Support Allocation

Operating System

Figure 2. Architecture of Apache.

6. Apache Web Server Architectural Evolution

In this section we present an analysis of the concrete ar-
chitecture of Apache as it has evolved over three major re-
leases. For our analysis, we used REFINE [10], PBS [7],
and Rigi [13]. Our aim was to understand its architectural
evolution and then correlate the results with source code
features that have the most impact per evolution category
(interface, implementation and structure).

In early versions (e.g., 1.1.1 in our study), the Apache
Web Server was released as a set of source code files with
no directory structure, that is, all files for the entire Apache
system were located in one directory. A partial file nam-
ing convention allowed for some initial clustering of source
code files and libraries. For example module files were pre-
fixed with mod._ and the system core files were prefixed
with http_ . However, not all functions followed a nam-
ing pattern making any analysis based solely on naming
conventions inaccurate. The early Apache architecture fea-
tures two main co-operating subsystems (Apache Modules,
Apache Core). This is illustrated in Figure 3. The purpose
of the core subsystem is to provide a programming platform
that allows an HTTP request to be fulfilled in a flexible way.
The purpose of the modules subsystem is to use platform
functionality to implement the request handling expected of
a modern Web Server.

Apache
Modules

Figure 3. Concrete Architecture of First Gen-
eration of Apache.

Our evolution analysis concluded that Apache was aug-
mented in versions 1.2.4 and 1.2.6 with an abstraction of
OS functionality. Moreover, a set of routines for customiz-
ing standard ANSI C libraries were added. More impor-
tantly, in these versions a directory structure was beginning
to emerge. A key point is that all modules were placed in
their own subdirectory. There were also two other direc-
tories: one for regular expression processing functions and
another for utility shell scripts. The architecture for versions
1.2.4t0 1.2.6 is illustrated in Figure 4.

At the third generation of Apache, such as in releases
1.3.4 and 1.3.6, a set of macros were added to provide
“cluster” functionality offered by the API and specific sub-
systems such as the core. In these versions a robust direc-
tory structure was now in place. The architecture for ver-
sions 1.3.4 to 1.3.6 features four cooperating subsystems
and is illustrated in Figure 5. The Platform subsystem pro-
vides a base set of helper functionality and extends the stan-

14

Apache
Modules
Apache
Core
I O Abstraction |
&
) _ Pratforms__|

Figure 4. Concrete Architecture of the Second
Generation of Apache.

dard library by providing an interface for the core subsys-
tem and an interface for the API. The OS Abstraction sub-
system hides the underlying differences between operating
systems and implements functionality that is absent on cer-
tain operating systems. The other two subsystems have sim-
ilar functionality to that of previous versions.

Apache
Modules

Apache

!

Platform]

Core

os
Abstraction

Figure 5. Concrete Architecture of the Third
Generation of Apache.

Once we had an analysis of the concrete architecture over
five major releases (1.1.1 - 1.3.6) of the system we could
examine how the architectural evolution patterns relate to
changes at the source code level.

7. Apache Web Server Source Code Evolution

From our analysis of the source code as described in
Sections 4 and 5, we discovered a set of program features
where the distances measured across pairs of versions show
a high correlation with distances obtained using architec-

| Version | AST Size | Code Size |

1.1.1 8.5 MB 28.6 KLOC
1.2.4 14.4MB | 31.8 KLOC
1.2.6 146 MB | 39.9KLOC
1.3.4 21.2MB | 79.8 KLOC
1.3.6 20.1MB | 75.5 KLOC

Table 4. Size of AST for Five Versions of the
Apache Web Server.

tural features (interface changes, implementation changes,
structural changes). These features include Fan-in, Fan-
out, Number of Statements, Data usage, and McCabe cy-
clomatic complexity. Our analysis was on the evolution of
subsystems concerned with the operating system abstrac-
tion and different platform utilities. Over the course of evo-
lution, the structure of the modules remained unchanged, al-
though the number of modules increased. Although the con-
ceptual architecture remained consistent throughout each
version, an inspection of the source code and the use of
reverse engineering techniques indicated that the concrete
architecture underwent a gradual change. As we described
earlier, the program’s AST has been chosen as an abstract
representation scheme for this study. Table 4 gives the size
of AST for five different versions of Apache. This is the first
aspect of evolution that we encountered after beginning our
analysis.

After building the AST for each version, evolution, and
the effects that source code changes had on system charac-
teristics, was measured based on three primary categories as
described previously. Table 5 illustrates the major evolution
patterns for Apache.

8. Interpretation of Results

The objective of this study was to identify those source
code features that highly correlate with evolution patterns
as manifested per evolution category (interface, implemen-
tation, structure) at the architecture level. We aimed for
the identification of low-level primitives within a particu-
lar group that were highly correlated with features that de-
scribed evolution at the architecture level.

Our analysis showed a number of low-level features that
provide an accurate indication of the impact that changes
have at the architectural level. Our empirical studies showed
that the selected features exhibit low correlation with each
other, thus each metric adds useful information. The source

code features identified include: global variables used or

defined (interface evolution), function calls (interface and
implementation evolution), defined/used parameters passed
by reference and by value (interface evolution), control flow
graph (implementation evolution), local data usage (imple-

[File Name Subsys Name | Versions | Types of Evolution |
alloc.c Core 1.24&1.2.6 Implntn, Interface
1.26&1.3.4 Interface, Structural
buff.c Core 1.1.1&1.2.4 Interface
1.24&1.2.6 Implementation
1.26&1.3.4 Interface, Structural
http_config.c Core 1.1.1&1.2.4 Structural
1.24&1.2.6 Interface
1.2.6 & 1.3.4 | Implntn, Interface, Str
http_core.c Core 1.1.1&1.2.4 Structural, Interface
: 1.24&1.2.6 Implementation
1.26&1.3.4 Interface, Structural
http.main.c Core 1.1.1&1.2.4 Structural, Impintn
1.24&1.2.6 Structural
1.26&1.3.4 Interface, Structural
hitp_protocol.c Core 1.1.1&1.2.4 Structural, Implntn
1.24&1.2.6 Structural, Implntn
1.26&1.3.4 Structural, Implintn
mod_access.c Modules 1.26&1.3.4 Implementation
mod_alias.c Modules 1.26&1.3.4 Interface
mod_cermn.meta.c Modules 1.26&1.3.4 Interface
mod_cgi.c Modules 1.1.1&1.2.4 Interface
mod_dir.c Modules 1.2.6&1.3.4 Interface
mod_include.c Modules 1.1.1&1.2.4 Impintn, Structural
1.244&1.2.6 Structural
mod.info.c Modules 1.26&1.3.4 Interface, Structural
mod _negotiation.c Modules 1.1.1&1.2.4 Implntn, Structural
1.26&134 Structural
mod_rewrite Modules 1.244&1.2.6 Structural
1.26&1.3.4 Interface
mod_status.c Modules 1.1.1&1.24 Interface
1.26&1.34 Implntn, Structural
util.c Core 1.1.1&1.2.4 Implntn, Structural
1.26&1.34 Structural
util_md5.c Core 1.26&1.3.4 Interface
util_script.c Core 1.3.4&1.3.6 Interface

15

Table 5. Major Apache Web Server Evolution
Patterns.

mentation and structure evolution).

Table 8 provides a detailed list of evolution distances
computed. A comparison between the entries in Table 5
and Table 8 shows that Fan-Out and Fan-In indicate Inter-
face changes in evolution. McCabe cyclomatic complexity
and Halstead’s metrics (we included only Halstead’s pro-
gram effort here) indicate Implementation changes in evo-
lution. Finally, we observed Structural changes based on
the Distance and Jaccard values. On the other hand, the
numbers confirm what we saw on visual inspection. Us-
ing the following three selected examples, we are able to
show our findings. A comparison between Table 8 and
Table S for http_config.c between versions 1.1.1 and 1.2.4
shows a high value for the Distance metric that confirms
the Structural changes in evolution. We also found a high
value for McCabe complexity between versions 1.2.6 and
1.3.4 in mod_access.c which indicates the implementation
changes in evolution. High values for Fan-In and Fan-Out

Feature Correlation | Correlation | Correlation
Altered using M1 using M2 using M3
Overall Distance -0.12 —0.04 -0.07
Fan-In 0.11 0.05 0.08
Fan-Out X 0.06 -0.03
McCabe X 0.04 X
D-Flow X 0.05 0.04
of Stm. 0.13 X 0.07
LOC 0.47 X X
of Comment. 0.31 0.29 X

Table 6. Selected Source Code Features Cor-
related With Maintainability.

in mod_info.c between versions 1.2.6 and 1.3.4 are a good
indication of interface changes in architecture. A summary
of this discussion can be found in Table 7 for Apache. We
obtained similar results for the Bash case study as well.

Related Source
Code Feature
Fan-In
Fan-Out
McCabe
Halstead
Comments
Distance
Jaccard

Evolution Category

Interface

Implementation

Structural

Table 7. Evolution Category vs. Related

Source Code Feature.

Finally, we correlated the distances obtained using the all
identified source code features for both case studies (Bash &
Apache) and the distances obtained using architectural level
features indicate a high correlation (0.65 for Bash across
four versions and 0.837 for Apache across five versions).
This result indicates that the source code features we have
considered provide a measure of change at the architecture
level. The conclusion that can be drawn from the other ta-
bles is that the evolution categories can be interpreted based
on the values of metrics computed from the source code.

As a final experiment, we measured how maintainability
was affected by evolution. Maintainability was measured
using the three models discussed in the sections above.
Our results indicate a low correlation between the selected
source code feature changes and maintainability. This re-
sult is illustrated in Table 6. The “X” in each entry of the
Table 6 indicates that the correlation using a maintainability
index (column) for a feature altered (base metric located in
the same row) is not considered. As we described in Sec-
tion 4.6, the three models depend explicitly upon some of
the metrics which we listed. So we did not include the

16

correlations for those metrics because the corresponding
maintainability index is computed using the feature altered.
Since this has biased the correlation results, we omit these
entries.

The conclusion that can be drawn from these low corre-
lations is that maintainability is a complex notion that can
not be quantified accurately by just looking at how individ-
ual source code features have been altered from one version
to another.

9. Conclusion

In this paper we discussed a technique for measuring
software evolution. The primary focus of this work was on
the identification of a set of source code features that can be
used for the understanding of evolution patterns in a large
software system. We have classified evolution patterns in
three main categories; interface evolution, implementation
evolution, and structure evolution. Our experimental results
stem from the analysis of several versions of two large sys-
tems, namely the Apache Web server and the Unix shell
Bash. Our findings indicated that interface evolution is best
characterized both at the source code and architectural level
by the Fan-In and Fan-Out per function or module. The
implementation evolution is best characterized by the Mc-
Cabe cyclomatic complexity measure, the Halstead effort
metric, and the number of comments metric. Finally, struc-
tural evolution is best characterized by the overall distance
metric, calculated as the weighted sum of the number of
deletions, insertions and modifications of functions/libraries
per module (file) between two different versions. Finally
we assessed the hypothesis that maintainability can be pre-
dicted by examining how individual source code features
are altered from one version to another. Our experiments
indicated that maintainability due to evolution is a complex
quantity that can not be predicted by individual source code
features. Currently, we are working on the assessment of
our methodology and the proposed evolution patterns using
other legacy systems in co-operation of the IBM Toronto
Laboratory, Center for Advanced Studies.

10. Acknowledgments

We would like to thank Prashant Patil of the University
of Waterloo for his help in installing and using REFINE
and Rigi. We would also like to thank Professor Richard
Holt, also of the University of Waterloo for his feedback on
a preliminary version of this paper.

References

[1] L.Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison Wesley, 1998.

[2]

(3]

(4]
(5]
(6]
(71

(8

9

[File Name | Ver No. [Distance | Jaccard | Fan-In [Fan-Out | McCabe | Comments | Effort |
alloc.c 1.24&1.26 27.84 0.05 —51 9 —0.04 2 3771292
1.26&1.3.4 172.66 0.3 —-23.41 149.16 0.12 95 1839352
buff.c 11.1&1.2.4 15.81 0.15 —-25 15 -0.42 7 263245
1.24&1.2.6 45.64 0.21 21 21 -0.3 24 1108760
1.26&1.34 115.66 0.45 147 101 -1.1 45 -~26107
http_config.c 1.1.1&1.2.4 431.76 0.2 —196 5 0.41 17 1334032
1.24&1.2.6 20.21 0.04 2 5 —-0.06 3 136799
1.26&1.34 234.1 0.33 81 70 -0.05 34 673318
http_core.c 111&1.24 105.41 0.2 —65 31 0.13 4 805059
1.24&1.26 31.52 0.02 -102 -10 0.03 3 4023333
1.26&1.3.4 322.22 0.38 —~191 130 0.51 47 3201147
http_main.c 1.1.1&1.24 192.63 0.21 —78 11 0.17 36 1019391
1.24&1.2.6 112.31 0.13 —144 -19 0.1 63 774695
1.26&1.3.4 339.77 0.52 19.26 121.4 0.24 253 1454764
http_protocol.c 1.1.1&1.2.4 512.33 0.33 -314.7 —0.94 0.66 55 2412540
1.24&1.26 213.53 0.14 —289 -14 -0.07 30 1537560
1.26&1.3.4 324.96 0.25 -161 25 0.24 21 881969
mod.access.c 1.26&1.3.4 22.67 0.13 —87 -7 1.63 9 292238
mod_alias.c 1.26&1.34 33.95 0.29 4 24.66 -0.02 3 83449
mod_cern.meta.c 1.26&1.3.4 24.06 0.5 11 18 —-0.34 4 63237
mod_cgi.c 1.1.1&1.2.4 99.96 0.7 25 28 —2.55 5 388213
mod.dir.c 1.2.6&1.3.4 83.85 0.88 134 98 —0.859 —14 —1677215
mod_include.c 1.1.1&1.24 116.43 0.32 —27.51 33.15 3.02 18 4447567
1.24&1.2.6 878.06 0.06 —258 —-21 0.62 24 1631413
mod_info.c 1.26&1.3.4 191.32 0.5 11 11 -3.31 6 109057
mod_nogotiation.c | 1.1.1&1.2.4 115.12 0.39 —28 45.64 0.78 87 1602544
1.26&1.3.4 116.14 0.14 -0.51 7 0.26 63 1479001
mod_rewrite.c 1.2.4&1.2.6 | 2024.36 0.07 —-538 —129 0.31 75 4323709
1.26&1.3.4 565.49 0.3 132.74 86.60 -0.25 44 1552086
1.3.4&1.3.6 51.41 0.04 —65 10 -0.06 2 562233
mod _status.c 1.1.1&1.2.4 9.57 0.25 5 7 -2.36 5 23244
1.26&1.3.4 | 1973.17 0.33 —301 —61 3.77 5 738303
util.c 1.1.1&1.24 58.68 0.21 -10.65 54 7.46 19 497504
1.24&1.2.6 15.02 0.04 —-10 7 —-0.157 5 222769
1.26&1.3.4 | 121.85 0.31 62 98 0.13 42 1128237
util_mdS.c 1.26&1.3.4 13.43 0.39 21 14 0.04 0 3500
util_script.c 1.26&1.3.4 60.95 0.33 43.53 34.53 ~0.96 23 185551

Table 8. Notable Changes in Features Across Versions.

Linux as a Case
ICSE 99,

I. Bowman, R. Holt, and N. Brewster.
Study: lIts Extracted Software Architecture.
May 1999.

D. Coleman, B. Lowther, and P. Oman. The application of
software maintainability models in industrial software sys-
tems. The Journal of Systems and Software, 29:3-16, 1995.
P. Finnigan et al. The software bookshelf. IBM Systems
Journal, 36(4):564-593, November 1997.

D. Garlan and M. Shaw. An Introduction to Software Archi-

tecture. World Scientific Publishing Co., 1993.

M. Halstead. Elements of Software Science. Elsevier North-
Holland Inc., 1977.

R. Hol. Bookshelf : Overview
and Construction. Available at http://www-

turing.cs.toronto.edu/pbs/papers/bsbuild.html, 1997.
R. Holt and J. Pak. GASE: Visualizing Software Evolution-

in-the-Large. WCRE 96: Working Conference on Reverse
Engineering, November 1996.

R. Kazman and J. Carriére. View Extraction and View Fu-
sion in Architectural Understanding. 5th International Con-
ference on Software Reuse, June 2-5, 1998.

Software

(10]

(1]
[12]

(13]

[14]

[15]

[16]

17

K. Kontogiannis. Evaluation experiments on the detection
of programming patterns using software metrics. JEEE Pro-
ceedings of WCRE97, pages 44-54, 1997.

P. Kruchten. The 4+1 views model of architecture. IEEE
Software, pages 42-50, November 1995.

T. McCabe. A complexity measure. IEEE Transactions on
Software Engineering, 2(4):308-320, 1976.

H. Muller, M. Orgun, S. Tilley, and J. Uhl. A reverse en-
gineering approach to subsystem identification. Software
Maintenance and Practice, 5:181-204, 1993.

G. Murphy and D. Notkin. Reengineering with reflexion
models: A case study. Computer, 30(8):29-36, 1997.

S. Muthanna. Assessing Maintainability of Industrial Soft-
ware Systems Using Design Level Metrics. Master’s Thesis,
Department of Systems Design Engineering, University of
Waterloo, 1997.

P. Oman and J. Hagemeister. Constructing and testing of
polynomials predicting software maintainability. The Jour-
nal of Systems and Software, 24:251-266, 1994.

