
An XML-based Framework for
Language Neutral Program Representation and Generic Analysis

Raihan Al-Ekram and Kostas Kontogiannis
Dept. of Electrical and Computer Engineering

University of Waterloo
Waterloo, Ontario, Canada

Email: {rekram | kostas}@swen.uwaterloo.ca

Abstract
XML applications are becoming increasingly

popular to define structured or semi-structured
constrained data in XML for special application areas.
In pursuit there is a growing momentum of activities
related to XML representation of source code in the
area of program comprehension and software re-
engineering. The source code and the artifacts
extracted from a program are necessarily structured
information that needs to be stored and exchanged
among different tools. This makes XML to be a natural
choice to be used as the external representation
formats for program representations. Most of the XML
representations proposed so far abstract the source
code at the AST level. These AST representations are
tightly coupled with the language grammar of the
source code and hence require development of
different tools for different programming languages to
perform the same type of analysis. Moreover AST
abstracts the program at a very fine level of
granularity and hence not suitable to be used directly
for higher-level sophisticated program analysis. As
such, we propose XML applications for language
neutral representation of programs at different levels
of abstractions and by combining them we present a
program representation framework in order to
facilitate the development of generic program analysis
tools.

1. Introduction
The Extensible Markup Language (XML) [20], a

World Wide Web Consortium (W3C) [21] standard,
has been widely accepted for storing and exchanging
structured and semi-structured documents. Many XML
sublanguages have been developed to define
constrained data in XML format for special application
areas, often by means of a Document Type Declaration
(DTD) or XML Schema [22] definition. For example

Mathematical Markup Language (MathML) [23] is
defined for electronic interchange of mathematical
symbols, equations and formulae or Voice Extensible
Markup Language (VoiceXML) [24] is developed for
voice markup and telephony call control to enable
access to the Web using spoken interaction. Such
markup languages are becoming increasingly popular
because XML is simple, easy to understand,
extensible, searchable, open standard, interoperable
and there is a wide range of tool support for creation,
manipulation and transformation of XML documents
automatically.

In pursuit there is a growing momentum of
activities related to XML representation of source code
in the area of program comprehension and software re-
engineering. Various XML applications namely
JavaML [8] [12], CppML [12], srcML [9], PLIXML
[10] and PascalML [10] have been proposed to
represent the source code written in different
programming languages. Some of them represent the
complete AST of the source code while the others
produce a partial AST representation by partially
marking up the source at the focal point of analysis.
Some of them are just syntax preserving, whereas the
others preserve non-syntactic lexical information as
well. But all of the AST representations are tightly
coupled with the language grammar of the source code
and hence require development of different tools for
different programming languages to perform the same
type of analysis. Moreover AST abstracts the program
at a very fine level of granularity and hence not
suitable to be used directly for higher-level
sophisticated program analysis. As such, in this paper
we propose XML applications for language neutral
representation of programs at different levels of
abstractions and by combining them we present a
program representation framework in order to facilitate
the development of generic program analysis tools.

The rest of the paper is organized as follows:
Section 2 provides background information on
different program representation formalisms at
different levels of granularity and related work in
representing them using XML. Section 3 presents
language neutral AST representations based on generic
language models. Section 4 discusses the proposed
XML applications to represent the higher the artifacts.
Section 5 presents the representation framework that
will facilitate the development of generic program
analysis tools. Section 6 describes a prototype
implementation of the framework. Finally Section 7
concludes the paper.

2. Background and Related Work
In this section we discuss different source code

representation formalisms and some higher-level
abstractions of source code that focus on different
aspects of a program. We also investigate the existing
XML based external formats for storing and
exchanging these program representations.

2.1 Program Representation Formalisms
While the source code is the original artifact of a

software system, it is written and stored in ASCII plain
text format and is not suitable to be used directly for
sophisticated program analysis. More structured and
abstract representations are needed to enable
algorithmic analysis and manipulation of programs. So
the source code needs to be represented at different
levels of granularity.

2.1.1 Syntax Trees
A Parse Tree [1] is a hierarchical graphical

representation of the derivations of the source code
from its grammar. The interior modes of the tree
represent the non-terminals and the leaves terminal
symbols of the grammar. An Abstract Syntax Tree
(AST) [1] is a more economical representation of the
source code while abstracting out the redundant
grammar productions from the parse tree. The source
sentence can be reconstructed from a Depth-first
inorder traversal of the tree nodes.

The syntax trees are the basic source code
representations at the finest level of granularity. These
data structures are used by compilers to analyze and
transform source code entities. They also serve as the
primary input for source code analysis and for
constructing other representations for higher-level
program analysis. The syntax trees are the abstraction
of the source code in terms of the language grammar
and hence are heavily dependent on the programming
language.

2.1.2 Intra-procedural Flow and Dependence
Graphs

The next higher-level abstractions of source code
are the flow and dependence graphs. These graph data
structures are abstractions in terms of control flow and
data flow of the program and can be represented in a
programming language independent way. The intra-
procedural graphs are for representing a single
subroutine, procedure or function within a program.

A Control Flow Graph (CFG) [2] provides a
normalized view of all possible flow of execution
paths of a program. A CFG is a rooted directed graph
showing the basic blocks in a program and the possible
immediate transfer of control from one basic block to
another. The CFG representation is extensively used
for data flow analysis, code optimization and testing.

A Program Dependence Graph (PDG) [3] is a
combined explicit representation of both control and
data dependences in a program. The PDG is also a
rooted directed graph that consists of nodes
representing the statements and predicate expressions
in the program and edges connecting them
representing the control and data dependences between
them. The control dependence edges are labeled either
True or the truth-value of the predicate and the data
dependence edges are labeled by the variable name
that causes possible flow of data values between the
nodes The PDG is used for code optimization,
parallelism detection, loop fusion, clone detection etc.
It is also used for performing slicing for maintenance
and re-engineering purpose.

2.1.3 Inter-Procedural Flow and Dependence
Graphs

Understanding the flow of information within a
single subroutine is not sufficient for optimization or
analysis of the complete system, which is comprised of
many procedures and files.

The System Dependence Graph (SDG) [4] is an
extension to PDG for programs with multiple
procedures. The SDG is constructed by connecting the
individual PDG of each procedure with some
additional edge types to correspond to procedure calls,
parameters passed and return values.

Call Graphs [5] [6] are program abstractions used in
traditional inter-procedural analysis. It’s a graphical
representation of the caller or callee relationships
among the procedures of a program, where the nodes
indicate the procedures and the arcs indicate the calls.
The nodes and arcs in a call graph may also contain
attribute labels (e.g. line number of the call or file
name of the procedure) to enhance the graph with
additional inormation. There can optionally be new

entities in the graph (e.g. abstract data types and their
usage relationships) in addition to the procedure calls.
An extention to call graph is the Program Summary
Graph (PSG) that takes into account the reference
parameters and global variables at the individual call
points.

From the basic graph higher level call graph can be
constructed to show relationships among files,
modules or architectural entities instead of procedures.
Other than inter-procedural data flow analysis for
optimization, call graphs are also used for design
recovery, architecture extraction or other reverse
engineering analysis.

2.2 Program Representations using XML
Simic and Tolnik [7] explore the prospects of

representing source code using XML in place of
classical palin text format. They demonstrate that an
XML grammar can improve the code structure,
formatting, querying possibilities and will allow
making orthogonal extensions to code for annotations,
revision control, access control and documentation.

There is a spectrum of levels of granularity at which
source code is represented. Among them the AST
representation provides the most detailed information
from the source code. Hence most of the XML
applications for source representation proposed so far
are based on the AST notation of a program.

2.2.1 Java Markup Language (JavaML)
Badros [8] proposes an XML application, namely

the Java Markup Language (JavaML), to represent
Java source code in terms of its AST in order to
facilitate tools to peroform software engineering
anlysis by leveraging the abundance of XML tools and
technologies. The JavaML is defined by an XML
DTD, where the elements represent the structure of the
AST and most of the source code information are
stored as attributes on the element tags.

JavaML is a complete syntactic represention of the
AST and hence the formatting and other lexical
information in the source code are not preserved. In
addition to representing the syntax of the source code,
JavaML stores few semantic information as well. For
example IDREF tags are used to refer to the
declaration of a variable from the locations where it is
used, which can be used for scope resolution or getting
the type of a variable easily.

2.2.2 Source Code Markup Language (srcML)
Collard et al. [9] describes a technique to convert

the C++ source code into an XML representation,
namely the Source Code Markup Language (scrML),

in order to use it for static extraction of facts. This is a
markup technique where the tags are superimposed on
the source code keeping the original code as it is. The
markups explicitly describe the internal structure of the
code preserving the comments and the formatting
information. The srcML is defined by an XML DTD
constructed from the C++ language grammar.

The srcML allows incomplete parsing of the source
code to generate a partial AST by using a multi-pass
multi-stage prasing technique with a partial grammar
specification. This enables controlling the parsing upto
the desired level of interest depending on the focus of
the analysis. This approach of parsing, marking up
only the selected constructs of interest while leaveing
others as it is, is known as island parsing.

2.2.3 XMLizer
McArthur et al. [10] presents the XMLizer tool to

transform source code of several programming
languages into their respective XML representations in
order to facilitate re-engineering and migration. The
PL/IX Markup Language (PLIXML), the Pascal
Markup Language (PascalML) and the Java Markup
Language (JavaML) are defined with their own DTDs
to represent PL/IX, Pascal and Java source code
respectively. XMLizer uses a multi-weight parser that
can generate ASTs of variable granularity by allowing
designated syntactic construct to remain unparsed. This
allows preserving certain lexical information, e.g.
comments, by attaching them to unparsed constructs.

2.2.4 Agile Parsing
Cordy [11] in his paper describes a method for

extending and generalizing the partial markup idea of
island or multi-weight parsing using the agile parsing
technique of the TXL [19]. This approach selectively
marks up only those AST nodes in the source that are
relevant to a particular analysis task. Using grammar
overrides and utilizing TXL’s ordered ambiguity
resolution a very precise form of constructs can be
specified for markup, without any modification in the
base grammar.

This parsing technique is programming language
independent and has been used with grammars for
Java, C++, COBOL, PL/I and RPG. There are no
DTDs defined for the markups, the non-terminal
symbols of the grammar of the languages are used as
the markup tags. As a result the markups are still
strongly coupled with the respective language
grammar.

2.2.5 Graph Exchange Language (GXL)
The Graph Exchange Language (GXL) [17] [18] is

an XML based language for describing graphs. It

evolved from unification of other existing graph
description languages. Unlike the other representations
discussed, GXL was not originally intended to
represent the source code. Hence there is no schema
defined in GXL to represent any software artifact.
Instead, it provides features to specify the schema for
the data as well as the data itself in the same format.
The higher lever program representation formalisms
being graphs in nature make GXL a good candidate for
their representation.

3. Modeling Programming Languages
Even though AST is the fundamental source code

representation formalism for building software analysis
tools, AST represenatations are strongly tied with the
corresponding language grammars. Which requires the
development of different tools to perform same type of
analysis for programs written in different programming
languages. To enable portability of the representations
and building generic tools the AST representations
should be decoupled from the laguage grammars.

Over a family of programming languages the key
concepts remain the same and they share many
common features. For example object-oriented
languages Java and C++ both have the notion of class,
method/function, inheritance etc. Hence it is possible
to develop a generic model of object-oriented
languages by studying the grammars and a) identifying
the commonalities and obtaining a generalization and
b) identifying the variabilities and aggregating them at

a higher level of abstraction. The AST representations
based on the generic model will be able to handle
constructs and represent source code from various
object-oriented languages in a uniform format. Tools
built on the generic format, e.g. a tool to extract object
model, will be able to analyze programs written in any
object-oriented language. The same argument holds for
the family of procedural languages and so on.

3.1 Generic Procedural Model
Zou and Kontogiannis [14] [15] [16] proposed a

generic model and an XML application, Procedural
Markup Language (ProcML), for representing the
procedural languages in XML. Their proposed model
is derived from programming languages like C,
Fortran, Pascal and COBOL.

In the first step the AST representation of individual
languages are modeled using UML. The classes in the
UML model encode the AST nodes, which are the
basic language constructs and the attributes gathered in
them. The class associations represent the attributes of
non-primitive language syntactic types.

The second step is to identify the functionally
equivalent constructs in different languages and
generalize them at a higher level of abstraction. For
example subroutine in Fortran and function in C
denote similar concepts that can be generalized as a
unique term procedure. Figure 1 presents a part of
their proposed generic model for procedural languages.

Figure 1: Generic Procedural Language Model

The UML diagram is a graphical representation of
the model. In third step, for storage and model
interchange, the UML models are encoded in XML
DTD definitions. This results in one DTD for each of
the languages – CML, FortranML and PascalML
corresponding to C, Fortran and Pascal language and
one for the generic model – ProcML. The produced
DTDs are effectively the models and the XML
representations of the ASTs are instances of them that
will be validated against the models.

The generation of XML files representing the ASTs
works as follows – a) XML ASTs for individual
languages are generated in conformance to their own
language model DTDs and b) XML ASTs for specific
language models are transformed to the generic model
using XSLT mapping programs.

3.2 Generic Object-Oriented Model
Mamas and Kontogiannis [12] [13] in their work

proposed an XML application Object-Oriented
Markup Language (OOML) as a generic model for
representing object-oriented programming languages.
OOML is derived by generalizing JavaML and
CppML, language models for Java and C++ languages
respectively. Table 1 lists some of the mappings from
JavaML and CppML entities to OOML entities.

Table 1: JavaML, CppML to OOML Mapping
JavaML CppML OOML
CompilationUnit Program Program
ImportDeclaration Include Include
ClassDeclaration Class Class
MethodDeclaration Function Method
FieldDeclaration Variable Variable-

Declaration
Block LexicalBlock-

Statement
Body

SwitchStatement
IfStatement

SwitchStatement
IfStatement

Conditional-
Statement

DoStatement
ForStatement
WhileStatement

DoStatement
ForStatement
WhileStatement

Loop

4. Modeling Higher Level Artifacts
While the AST level representations are useful for

some type of analysis, they are not usable for
sophisticated higher-level analysis. For example in
order to perform data flow analysis on a program the
CFG representation of the program is required or in
order to perform design recovery for a software system
the call graph from the source programs is required.
But the existing XML applications lack in defining

program representations for abstractions at a level
higher than the AST. The higher-level program
abstractions are the intra and inter procedural flow and
dependence graphs of a program. Among them the
most commonly used representations in program
analysis are CFG, PDG and Call Graph. As part of this
research we propose XML applications CFGML,
PDGML and CGML to represent these graph data
structures respectively.

For each of the higher-level representations we first
identified the basic elements that constitute the
representation and the relationships among these
elements. Based on it we developed a UML model for
each of the representations. In doing so we realized
that all these representations share some common
elements. The common elements are the basic building
block constructs of a program and the relationships
among them. These constructs are statements,
variables, data types, functions etc. and the
relationships are the uses/definitions/declaration of the
variables in the statements, declarations/calls to the
functions etc. We call these constructs and
relationships the Facts. The higher-level
representations use the Facts and define new constructs
and relationships, specific to the particular
representation, on top of them.

4.1 FactML
The first step is to develop a UML model for the

program Facts. The building block constructs of the
Facts are represented as classes and the relationships
among them are shown as associations or association
classes. This results in classes named Type, Variable,
Statement, and Function in the model. Each member of
the Variable class is associated with a member of the
Type class by its data type. A Variable and a Statement
are related with a declaration relationship that is a
simple association, whereas uses and definitions of a
Variable in a Statement is more complex and requires
an association class. There can be three different
relationships between a Statement of and a Function. A
Function is declared in a Statement, a Function
consists of many Statement and a Statement can call
one or more Function. Figure 2 presents the complete
UML model of the Facts.

In the second step the UML model is transformed
into an XML DTD declaration using following
production rules
� Classes are mapped as elements
� Attributes of the classes are mapped as

attributes in the elements
� Aggregations are mapped as sub-elements

separated by or (|)

� Inheritances are mapped as sub-elements
� Simple associations are shown by IDREFs
� Association classes are mapped as elements

showing the associations by IDREFs
� Elements with same tags originating from

same node are grouped as sub-elements under
one bigger element.

Figure 3 presents a part of the DTD derived from
the UML model. For classes Statement and Variable in
the UML model there is one element each in the DTD.
Collections of them are grouped under bigger elements
Statements and Variables. The optional IDREF
attribute function in the Statement element refers to a
Function element the statement is part of and the
IDREF declared in Variable refers to a Statement the
variable is declared in. The association class UseDef is
mapped to its own element and grouped under a single
UseDefs element.

-id
-program

Facts

-id
-lineno
-tag

Statement
-id
-name
-category

Type
-id
-name
-scope

Variable
-id
-name
-scope
-signature

Function

-id
-category

UseDef
-id
--

Call

Declaration Declaration

1 1 1

* * **0..1 0..1*

*1
* 0..1

* *
* *

Figure 2: UML Model for Facts

…
<!ELEMENT Statements (Statement*)>
<!ELEMENT Statement EMPTY>
<!ATTLIST Statement
 id ID #REQUIRED
 lineno CDATA #REQUIRED
 tag CDATA
 function IDREF>
<!ELEMENT Variables (Variable*)>
<!ELEMENT Variable EMPTY>
<!ATTLIST Variable
 id ID #REQUIRED
 name CDATA #REQUIRED
 scope (Local|Global|Param|Ext) “Local”
 declared IDREF
 type IDREF>
<!ELEMENT UseDefs (UseDef*)>
<!ELEMENT UseDef EMPTY>
<!ATTLIST UseDef
 id ID #REQUIRED
 category (Use|Def) “Use”
 statement IDREF #REQUIRED
 variable IDREF #REQUIRED>
…

Figure 3: DTD for Facts, FactML

4.2 CFGML
A CFG is a directed graph indicating the basic

blocks in a program and possible flows of control from
one basic block to another. A basic block contains a
sequence of consecutive program statements. The
UML model and hence the XML DTD presented in
Figure 4, describes these basic blocks and the flow of
control among them. Description of any basic building
block construct, e.g. Statement, is linked from the
FactML using XLink [27].

Figure 5 shows an example C program and Figure 6
shows the corresponding CFG of the program as an
instance of the CFGML. The FactML instance of the
program is assumed to be stored as Facts.xml
<!ELEMENT CFG (Blocks?, Flows?)>
<!ATTLIST CFG
 program CDATA
 scope CDATA>
<!ELEMENT Blocks (Block*)>
<!ELEMENT Block (Statement*)>
<!ATTLIST Block
 id ID #REQUIRED
 label CDATA #REQUIRED>
<!ELEMENT Statement EMPTY>
<!ATTLIST Statement
 id ID #REQUIRED
 xlink:type (simple) #FIXED “simple”
 xlink:href CDATA #REQUIRED>
<!ELEMENT Flows (Flow*)>
<!ELEMENT Flow EMPTY>
<!ATTLIST Flow
 id ID #REQUIRED
 from IDREF #REQUIRED
 to IDREF #REQUIRED>

Figure 4: DTD for CFG, CFGML
<1> main ()
<2> {
<3> int a = 0;
<4> if (a>3)
<5> a = a+3;
<6> a = 10;
 }

Figure 5: An Example C Program
<CFG>
 <Blocks>
 <Block id=1 label=1>
 <Statement id=2 xlink.href=”Facts.xml#3”/>
 <Statement id=3 xlink.href=”Facts.xml#4”/>
 </Block>
 <Block id=4 label=2>
 <Statement id=5 xlink.href=”Facts.xml#5”/>
 </Block>
 <Block id=6 label=3>
 <Statement id=7 xlink.href=”Facts.xml#6”/>
 </Block>
 </Blocks>
 <Flows>
 <Flow id=8 from=1 to=4 />
 <Flow id=9 from=1 to=6 />
 <Flow id=10 from=4 to=6 />
 </Flows>
</CFG>

Figure 6: CFGML instance of the C Program

Ex
te

rn
al

 T
oo

ls

CppML CMLJavaML PascalML

C++ CJava Pascal Fortran

FortranML

OOML

CFGML PDGML/SDGML CGML

FactML

Source Code

AST Level Representations

Higher Level Representations

Data Flow
Analysis

Program
Slicing

Architechtural
Recovery

ProcML

...

...

...

...

...

...

The Program Representation Framework

Generic Analysis Tools

Figure 7: System Architecture for the Program Representation Framework

4.3 PDGML and CGML
Similarly PDG and Call Graphs can be modeled in

UML and corresponding XML DTDs can be generated
from them.

5. The Representation Framework
In figure 7 we present the multi-layered framework

for language neutral representation of program
artifacts. We also demonstrate the usage of the
framework for building generic program analysis tools.
The framework follows a pipe and filter type
architectural style. The pipe components are the
different layers of abstractions of the program source
and the filter components are the representation
transformers and the analysis tools.

5.1 Abstraction Layers
There are three distinct layers corresponding to

three different levels of abstractions of source code in
the framework. Layer 0 is the original source text of
the program to be analyzed as it is.

Layer 1 is the first level of abstraction of the source
code in terms of the AST of the program. We choose
to adopt the AST representations proposed by Zou and
Mamas to fit in this layer. Since these representations
also include the generic representations for procedural
and object-oriented language family, they will provide
language neutral representations of the AST. This layer
consists of two sub-layers. Layer 1.1 are the ASTs
representations in programming language specific

markup languages, i.e. JavaML, CppML, CML,
PascalML and FortranML. Layer 1.2 are the AST
representations derived from the generic model of the
language family, i.e. ProcML and OOML.

Layer 2 is the next level of abstraction in terms of
the different intra-procedural and inter-procedural
graphs. This layer is also consists of two sub-layers.
Layer 2.1 represents the basic facts of a program in the
FactML format. Layer 2.2 is the representations for
intra-procedural and the inter-procedural dependence
and flow graphs of the program expressed as CFGML,
PDGML, SDGML and CGML.

5.2 Transformers
A set of transformer tools is required to convert the

representations from one level to the next higher level
of abstractions. Some of them are source code
transformers that are parsers of the source text in order
to emit corresponding AST in the language specific
XML format. There has to be one transformer for each
of the languages to be analyzed.

The rest of transformers are XML to XML
transformers. These transformers can be built using
XSLT stylesheets [25], XPath/XQuery [26] or DOM
[28] manipulation. There will be once transformer for
each of the following conversions
� JavaML, CppML to OOML
� CML, PascalML, FortranML to ProcML
� OOML, ProcML to FactML
� FactML to CFGML, PDGML, CGML

5.3 Analysis Tools
Various program analysis tools can be written on

top of the proposed framework. Since these tools will
work on language neutral representations of the
program, it is possible to develop of a single tool to
perform a particular type of analysis on a source
program written in any programming language. For
example a generic data flow analysis tool can be
written to work on the CFGML or a single slicing tool
can be written to use the PDGML to perform program
slicing on source code of any language.

All the representations in the proposed framework
are XML and hence can be easily transformed to any
other formats using XSLT or XQuery in order to
enable exporting of data to an external tool. If the
external tool also uses an XML representation for its
data then it is straightforward to import the data using
the same techniques. However if the external tool does
not use XML representations, additional mapping tools
are needed to map the external formats to the internal
XML representations.

6. A Prototype Implementation
We have developed a prototype toolset based on the

proposed framework. Our prototype works on the
JavaML-OOML representation of Mamas and Ret4J
[29] toolkit to generate JavaML-OOML instances of
Java programs. Minor modification is done to Ret4J to
include a lineNumber attribute in the generated XML.

6.1 Analysis Tools
As part of the toolset we have developed a fact

extractor that takes an OOML file as input and
generates a FactML file. The tool works on the DOM
tree of the OOML instance and makes XPath query to
extract information from it. We have developed a PDG
generator that works on both the OOML and FactML
files and generates a PDGML instance.

The toolset also consists a PDG slicer that slices a
PDGML instance and emits a reduced PDG based on
the algorithm given in [4]. The statements remaining in
the sliced PDG will comprise the program slice. The
slicer can perform the following kinds of slicing:
� Backward slicing for a given program point and

a variable use and the final use of a given
variable

� Backward decomposition slicing for the uses of
a given variable

� Forward slicing for a given a program point and
a variable use

� Forward decomposition slicing for the
definition of a given variable

6.2 Operational Statistics
In this section we evaluate the proposed framework

in terms of the sizes and the time required to generate
the representations by the prototype toolset. Five input
files of different sizes were used to measure the size
and time parameters. These files were chosen from a
variety of sources ranging from student course projects
to standard utility library. The prototype was
developed using the Java programming language (JDK
1.3) and all the experiments were run in a Sun
UltraSPARC III 440 MHz station with 512 MB of
RAM and running Solaris 8 Operating System.

Table 2 presents the size of the generated FactML
files and the time required to generate them by the fact
extractor tool. The size of the FactML is approximately
5 times the source code. Table 3 summarizes the
relationship between the size of a method and the size
of its corresponding PDGML and the time taken to
produce it. Even though the general tendency of the
size of the PDGML is to increase with the size of the
method, it may not be the case always. When there is a
low number of def-use chaining in the program, the
number of edges in the graph is low and it will result in
a smaller PDGML size. Finally Table 4 shows the
results of slicing based on the final uses of a given
variable. The size of the slice compared to the size of
the method shows the same property as the size of the
PDG. The time required to slice a PDG is quiet
reasonable and depends on the size of the source.

Table 2: Experimental Results for Fact Extraction

Program
Source

Size
(bytes)

FactML
Size

(bytes)

FactML
Time
(ms)

MyMath.Java 187 2,030 224
Voter.java 3,822 17,502 1,487
GUI.java 4,994 20,697 1,498

UnboundedLife.java 10,831 33,800 3,849
PDG.java 22,200 81,072 11,403

Table 3: Experimental Results for PDG Creation

Class:
Method

Size
(LOC)

PDGML
Size

(bytes)

PDGML
Time
(ms)

MyMath:factorial 13 2,466 154
UnboundedLife:restore 30 6,194 402

GUI.java 39 11,144 748
PDG:backwardSlice 40 12,166 711

Voter:fix 55 11,086 945

Table 4: Experimental Results for Slicing

Class:Method:Variable
Source

Size
(LOC)

Slice
Size

(LOC)

Slicing
Time
(ms)

MyMath:factorial:i 13 10 2
UnboundedLife:restore:x 30 13 3

GUI.java:labels 39 24 10
PDG: backwardSlice:list 40 31 26

Voter:fix:game 55 23 10

7. Conclusion
In this paper we presented a framework for

language neutral program representation. The
framework is based on a multi-layered abstraction of
source code artifacts represented using several XML
applications. The framework adopts the existing XML
applications for source code representation and defines
new applications to represent higher-level program
abstractions. The framework is extensible, new
representations and tools can be added to it to facilitate
different generic analysis tasks.

The obtained operational statistics from the
prototype toolset show that the tools operate fairly
accurately and with reasonable performance. The sizes
of the different intermediate representations and the
time required to generate them are reasonable. As a
conclusion, this paper provides the fundamental
mechanism to build generic tools that will perform
program analysis independently of the programming
language used to write the program.

8. References
[1] Alfred V. Aho and Jeffrey D. Ullman. Principles

of Compiler Design. Addison-Wesley Publishing
Company. April 1979.

[2] Francis E. Allen. Control flow analysis, ACM
SIGPLAN Notices, Volume 5 Issue 7. July 1970.

[3] Jeanne Ferrante, Karl J. Ottenstein and Joe D.
Warren. The Program Dependence Graph and Its
Use in Optimization. ACM Transactions on
Programming Languages and Systems. July 1987.

[4] Susan Horwitz, Thomas Reps and David Binkley.
Intreprocedural Slicing Using Dependence
Graphs. ACM TOPLAS, Volume 12 No 1.
January 1990.

[5] D. Callahan, A. Carle, M. W. Hall, K. Kennedy.
Constructing the Procedure Call Multigraph. IEEE
Transactions on Software Engineering, Volume 16
Issue 4. April 1990

[6] G. C. Murphy, D. Notkin and E. S. Lan. An
empirical study of static call graph extractors.
Proceedings of the 18th International Conference
on Software Engineering. March 1996.

[7] Hrvoje Simic and Marko Topolnik. Prospects of
Encoding Java Source Code in XML. Conference
of Telecommunications, 2003.

[8] Greg J. Badros. JavaML: A Markup Language for
Java Source Code. International World Wide Web
Conference, 2000.

[9] Michael L. Collard, Huzefa H. Kagdi and
Jonathan I. Maletic. An XML-based Lightweight
C++ Fact Extractor. International Workshop on
Program Comprehension, 2003.

[10] Gregory McArthur, John Mylopoulos and Siu Ng.
An Extensible Tool for Source Code
Representation Using XML. Working Conference
on Reverse Engineering, 2002.

[11] James R. Cordy. Generalized Selective XML
Markup of Source Code Using Agile Parsing.
International Workshop on Program
Comprehension. 2003

[12] Evan Mamas and Kostas Kontogiannis. Towards
Portable Source Code Representations using
XML. Working Conference on Reverse
Engineering, 2000.

[13] Evan Mamas. Design and Implementation of
Integrated Software Maintenance Environment.
MASc Thesis, Department of Electrical and
Computer Engineering, University of Waterloo.
2000.

[14] Ying Zou and Kostas Kontogiannis. A Framework
for Migrating Procedural Code to Object Oriented
Platforms. Asia Pacific Software Engineering
Conference, 2001.

[15] Ying Zou and Kostas Kontogiannis. Incremental
Transformation of Procedural Systems to Object
Oriented Platforms. Computer Software and
Applications Conference, 2003.

[16] Ying Zou. Techniques and Methodologies for the
Migration of Legacy Systems to Object Oriented
Platforms. PhD Thesis, Department of Electrical
and Computer Engineering, University of
Waterloo. 2003.

[17] Ric Holt, Andy Schürr, Susan Elliott Sim and
Andreas Winter. Graph Exchange Language.
http://www.gupro.de/GXL/

http://www.gupro.de/GXL/

[18] R. Holt, A. Winter and A. Schürr. GXL: Towards
a Standard Exchange Format. Working
Conference on Reverse Engineering, 2000.

[19] James R. Cordy, C. D. Halpern and E. Promislow.
TXL: A Rapid Prototyping System for
Programming Language Dialects. Computer
Languages, January 1991

[20] XML.ORG, www.xml.org

[21] World Wide Web Consortium, www.w3c.org

[22] XML Schema, www.w3.org/XML/Schema

[23] MathML, www.w3.org/Math

[24] VoiceXML, www.w3.org/TR/voicexml20

[25] The Extensible Stylesheet Language Family,
www.w3.org/Style/XSL

[26] XML Query, www.w3.org/XML/Query

[27] XML Linking, www.w3.org/XML/Linking

[28] Document Object Model, www.w3.org/DOM

[29] Reengineering Toolkit for Java,
www.alphaworks.ibm.com/tech/ret4j

http://www.xml.org/
http://www.w3c.org/

	Introduction
	Background and Related Work
	Program Representation Formalisms
	Syntax Trees
	Intra-procedural Flow and Dependence Graphs
	Inter-Procedural Flow and Dependence Graphs

	Program Representations using XML
	Java Markup Language (JavaML)
	Source Code Markup Language (srcML)
	XMLizer
	Agile Parsing
	Graph Exchange Language (GXL)

	Modeling Programming Languages
	Generic Procedural Model
	Generic Object-Oriented Model

	Modeling Higher Level Artifacts
	FactML
	CFGML
	PDGML and CGML

	The Representation Framework
	Abstraction Layers
	Transformers
	Analysis Tools

	A Prototype Implementation
	Analysis Tools
	Operational Statistics

	Conclusion
	References

