
Developing a Multi-objective Decision Approach to
Select Source-Code Improving Transformations �

Ladan Tahvildari and Kostas Kontogiannis
Dept. of Electrical and Computer Eng.

University of Waterloo
Waterloo, Ontario
Canada, N2L 3G1

�ltahvild,kostas�@swen.uwaterloo.ca

Abstract

Our previous work on improving the quality of object-
oriented legacy systems through re-engineering proposed a
software transformation framework based on soft-goal inter-
dependency graphs [11]. We considered a class of transfor-
mations where a program is transformed into another pro-
gram in the same language (source-to-source transforma-
tions) and that the two programs may differ in specific qual-
ities such as performance and maintainability. This paper
defines a decision making process that determines a list of
source-code improving transformations among several ap-
plicable transformations. The decision-making process is
developed on a multi-objective decision analysis technique.
This type of technique is necessary as there are a number
of different, and sometimes conflicting, criterion among non-
functional requirements. For the migrant system, the pro-
posed approach uses heuristic estimates to guide the discov-
ery process.

1 Introduction

As it is known, most non-functional requirements involve
multiple and conflicting objectives which relate to various al-
ternative design decisions [4]. The task of adequately model-
ing and analyzing such problems has been the subject of the
multi-attribute utility theory [5]. However, accurately and
confidently describing preference in the context of multiple
objectives using a scalar criterion can be difficult. In order
to avoid this potential difficulty, we can search for the set
so-called non-dominated solutions [9] which represent the
multiple-objective approach to problem solving.

A transformation � is said to be non-dominated among a
set of transformations if there is no other transformations in

�This work was funded by the IBM Canada Ltd. Laboratory, Center for
Advanced Studies in Toronto.

the set that is at least as “good” as � with respect to all the
non-functional objectives and is strictly “better” than � with
respect to at least one of the non-functional objectives, where
“good” and “better” are defined in terms of an impact-valued
criterion associated with each of the multiple non-functional
objectives under consideration. Thus, instead of seeking a
single optimal solution, one seeks the set of non-dominated
solutions. Determination of the most preferred alternative
from the set of non-dominated alternatives may depends on
the nature of the target systems.

This paper is organized as follows. Section 2 summa-
rizes the concept of Soft-Goal Interdependency Graphs and
presents a model for a SIG representation. While Section 3
discusses a soft-goal evaluation algorithm based on a set of
heuristic functions, Section 4 discusses a proposed multi-
objective decision approach whose objective is to identify the
set of all non-dominated solution graphs, using sets of vector
impact-valued heuristics estimates. them on some case stud-
ies. Finally, Section 5 provides the conclusion and outlines
directions for further research.

2 Soft-Goal Interdependency Graphs

The re-engineering of object-oriented legacy systems re-
quires a comprehensive framework to relate software trans-
formations with specific requirements for the new target mi-
grant system. We refer to this approach as “Quality-Driven
Object-Oriented Re-engineering” [10, 12] which exploits the
synergy between non-functional requirements, software ar-
chitecture, and reverse engineering, and adopts the NFR
framework proposed in [4]. The NFR Framework introduces
the concept of soft-goals whose level of success is evaluated
by the success of other soft sub-goals. The soft-goal inter-
dependency graphs (SIGs) have been proposed for support-
ing the systematic, goal oriented process of architectural de-
sign [4]. The leafs of the soft-goal interdependency graph
represent transformations which fulfill or contribute posi-

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

High Maintainability

High Control
Quality

Modularity
High

Cohesion
High

High Module
Reuse

High Structure Quality

High Source Code Quality High Documentation Quality

Structure

BUILDRELATIONABSTRACTION MOVEMENT EXTENSION ENCAPSULATION

High

Low Data CouplingLow I/O Complexity

Encaps.
High

+

-

_

++

++
+ _ +

++ +++

-

++
+

-

++

Consistency
Flow

Control
High

WRAPPER

++
--

+

+

+

Low
Control

Flow
Coupling Data Consistency

Legend

: NFR Soft-Goal

: Operationalization

: Contribution Link

Figure 1. Relating Source-Code Improving Transformations to Maintainability Soft-Goal Graph.

tively/negatively to soft-goals above them. Figure 1 shows
portions of the soft-goal interdependency graph for the main-
tainability non-functional requirement as presented in [11].

As shown in Figure 1, AND and OR contribution opera-
tors relate a group of offsprings to a parent. To keep track
of the information regarding these two contribution opera-
tors, we will build an adjacency matrix, namely Soft-Goal
Adjacency Matrix, which will be elaborated in Section 2.1.
MAKE and BREAK provide sufficient support, MAKE being
positive and BREAK being negative. MAKE is defined as :
if the offspring is satisficed, then the parent is satisficeable.
BREAK is defined as : if the offspring is satisficed, then the
parent is deniable. HELP and HURT provide partial support,
HELP being positive, and HURT being negative. HURT is
defined as : if the offspring is denied, then the parent is sat-
isficeable. HELP is defined as : if the offspring is denied
then the parent is deniable. To keep track of the information
regarding these contribution operators, we will build an inci-
dence matrix, namely Transformation Impact Matrix, which
will be elaborated in Section 2.2.

2.1 Soft-Goal Adjacency Matrix (SAM)

Let �� and �� be vertices of a SIG. If �� and �� are joined
by an arc � with any of ��� or �� contribution operator,
then �� and �� are said to be adjacent with the defined rule.
If the arc � is directed from �� to ��, then the arc � is said to
be incident from �� and incident to ��.

Let � to be a SIG in digraph form with � vertices or soft-
goal nodes, � � ���� ��� 			� ���. The simplest graph rep-
resentation scheme uses an � � � matrix SAM (Soft-Goal
Adjacency Matrix) of �’s, �’s, and �’s given by :

�� ��� �

��
�

�� when ������� �����
�� when ������ �����
�� otherwise

that is, the ���
�th element of the matrix is not equal to � only
if �� �� �� is an edge in � with a contribution operator.
Clearly, the number of entries which is not equal to zero in
the SAM is equal to the number of edges in a soft-goal inter-
dependency graph. One advantage of using an adjacency ma-
trix is that it is easy to determine the sets of edges with their
contribution operators emanating from a given vertex. Each
non-zero entry in the �th row corresponds to an edge with
its contribution operator that emanates from vertex ��. Con-
versely, each non-zero entry in the �th column corresponds
to an edge incident on vertex ��. We have developed an algo-
rithm to generate an adjacency matrix for � soft-goals. We
call it Generate Adjacency Matrix (GAM).

2.2 Transformation Impact Matrix (TIM)

As shown in Figure 1, there are two types of nodes in
a SIG, namely NFR soft-goal nodes and transformation op-
erationalization nodes. In practice, a transformation node
is considered for the purpose of implementing a subset of
the NFR soft-goals. Thus, each NFR soft-goal is associated
with a set of transformations that have been associated to it
according to what features of the source code a transforma-
tion affects, and according to the associating of these features
with the specific allocating a soft-goal node is representing.
The NFR soft-goal allocation is not necessarily one-to-one –
that is, a single soft-goal may be associated to more than one
transformation.

Let �� be a soft-goal node and �� a transformation or op-
erationalization node. If �� and �� are joined by an arc �
with any of ����, ���� , ���� , or ����� contri-
bution operator, then �� and �� are said to be adjacent with
the defined rule. The arc � which is directed from �� to �� is
said to be incident from �� and incident to ��. Let
 be a set
nodes,
 � ���� ��� 			� ���, representing soft-goals and � is
a of set operationalization nodes, � � ���� ��� 			� ���, repre-
senting transformations. The simplest impact representation

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

scheme uses an � � � matrix TIM (Transformation Impact
Matrix) of ��’s, �’s, ��’s, �’s, and �’s given by :

��� ��� �

�����
����

� �� when ���� �����	
�
�� when ���� ����
�
 �
�� when ���� ������� �
� �� when ���� ��� ��
�	�
�� otherwise

that is, the ��� ��th element of the matrix is not equal to �
only if �� �� �� is an edge in � with a contribution oper-
ator. Now, it is needed to define another algorithm, namely
Generate Impact Matrix, to incorporate soft-goals, transfor-
mations, and their relationships based on our definition of
transformation impact matrix (TIM).

3 Soft-Goal Evaluation Procedure

In our re-engineering framework [12], we need to find
a list of potential transformations among several possible
ones [11] that can achieve the desired non-functional require-
ments. Given a SIG, one can determine whether each soft-
goal or interdependency is satisficed. This is done through
the assignment of a label. Using the notion of satisficeable
and deniable, a catalogue of label values for a soft-goal or
interdependency in the graph is presented for depicting the
desired objectives : i) satisficed (

�
) if it is satisficeable and

not deniable, ii) weakly satisficed (��) if it is representing
inclusive positive support for a parent, iii) denied (�) if it is
deniable but not satisficeable, iv) weakly denied (��) if it is
representing inclusive negative support for a parent, v) con-
flicting (�) if it is both satisficeable and deniable, vi) undeter-
mined (�) if it is neither satisficeable nor deniable.

Then, the Soft-Goal Evaluation (SGE) algorithm illus-
trated in Figure 2 consists of two basic steps. For each soft-
goal or interdependency in a SIG, the procedure first com-
putes the individual impact of each source-code improving
transformation which we call it Generate Individual Label
(GIL). Secondly, the individual impacts of all interdependen-
cies are combined into a single label which we call it Com-
bine Generated Labels (CGL). Details of the each step of the
procedure will be elaborated in the following sections.

3.1 Impact Analysis : Generate Individual Label
(GIL)

In the first step, we determine the “individual impact” of
an offspring’s contribution towards its parent. For AND and
OR contributions, we treat all of the offsprings as one group,
with a single “individual impact”, defines as follows :

� If ���������� AND ... AND ��������� SATISFICE
parent then

������������� � ����������������������

Algorithm ������������ ����������� �

Input :
�� : A set of classes in an object-oriented legacy system.
��� : A List of Desired Soft-Goals.
� �� : Transformation Impact Matrix.
��� : Soft-Goal Adjacency Matrix.

Output :
���: A set of Vector-Impact Cost for ��.

Variables:
�	��: Complexity Metrics Vector for class �.
�	
�: Cohesion Metrics Vector for class �.
�	� �: Coupling Metrics Vector for class �.

Method :

1. for each class � in �� do begin

2. if � is a deteriorated class based on
����	����	��� and �	�� then begin

3. for each applicable transformation �� do begin

4. find the satisfaction level for each���;

5. ��� ������ ������;

6. ��� ������ ������;

7. combine all satisfaction level as ���;

8. end-for

9. end-if

10. end-for

Figure 2. Soft-Goal Evaluation Algorithm.

� If ���������� OR ... OR ��������� SATISFICE par-
ent then

������������� � ��	�������������������

where the labels are ordered in increasing order as fol-
lows :

� � � � � � �

Now, we need to consider the individual impact for some
of the other contribution types. There are some rules for
propagation of labels from an offspring to its parent which
are depicted in Table 1. As shown in table, looking left-
to-right at the individual impacts for satisficed offspring (la-
beled

�
), there is a left-to-right progression through the label

catalogue. For individual impacts of denied offspring (la-
beled �), there is a right-to-left progression through the la-
bel catalogue. Also, it may be noted that Table 1 does not
have entries for other offspring, such as �� and ��. In a
nutshell, this step generates labels for a parent given the la-
bels of its offsprings. As we discuss below, the second step,
namely the Combine Generated Labels (CGL), amalgamates
such values in a single label. We will also discuss a possible
extension to retain such values as outputs of the CGL step,
and inputs to the GIL step.

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

Label of Contribution Successors
Label of an

Offspring BREAK HURT ? HELP MAKE

� �� �� � �� �
� � � � � �

� � � � � �� � �� � ��
�

Table 1. Individual Impact of an Offspring.

3.2 Objective Analysis : Combine Generated La-
bels (CGL)

Once all contributing labels have been generated for a
given parent, the second step of the evaluation procedure
combines them into a single label. The labels that contribute
to a parent are placed in a “bag” (a collection which allows
duplicate entries, unlike set). The possible label values in the
bag are �, ��, �, � , ��, and

�
. A bag is used because

duplicate labels are useful as for the instance, where several
positive supporting contributions indicated by several ��

labels may be combined into a
�

label.
The �� and �� labels in the bag are first combined

into one or more
�

, �, �. Typically, �� values alone in
a bag would result in

�
or � , and �� values alone would

result in� or � . Moreover, � labels depend on the nature of
the target system. A mixture of �� and �� values would
typically resulting

�
, � or �. The resulting set of labels is

then combined into a single one, by choosing the minimal
label of the bag, with a label ordering :

� � � � � � �

In this way, we could consider modifying the evaluation
procedure so that values such as �� and �� could appear
as outputs of this step (CGL) instead of being eliminated.
If this is the case, this step (CGL) would use the following
ordering :

� � � � �� � �� � � � �

4 Multi-Objective Decision Approach

After applying the evaluation procedure, we have a list of
potential transformations with their impact cost on each de-
sired soft-goal. In this step, we need to select a sequence of
transformations among several possible ones [11], that may
yield the desired properties for the migrant system. Such a
problem can be formulated as a search in the space of alter-
native transformations. Most of the efforts in this research
directions concentrated on the definition of transformations
and their implementation [1, 2, 3, 7, 8]. To the best of our
knowledge, there is not much effort on the automatic detec-
tion of the situation where a sequence of these source-code

improving transformations can apply in an object-oriented
legacy system.

Let � � �� ���� ����� to be a directed graph, � ��� to
be the set of nodes in � that are transformations, and ����
be the set of ���� in �. Thus, ���� � � ��� � � ���. For
each arc 	 � �
��
��, node
� is referred to as the head of
	 and
� as the tail of 	. Furthermore, each node
� in the
graph is labeled with a vector of impact values :

��
�� � ��
������
��� ���� �
������
��� (1)

where �
������
�� � � � �� �� ���� � relates to the im-
pact of associated transformations on the corresponding non-
functional requirement �. �
������
� is defined as ����

�	
	���

which needs to be minimized by maximizing ��
���� and
minimizing���� as will be elaborated further.

Any transformation in the QDR Framework [12] performs
operations such as : i) comprehending/understanding source
code for the application of transformation that can be done
by using investigation functions, ii) adding and/or deleting
source code entities, and iii) modifying source code entities.
By these considerations, the ���� for applying a transforma-
tion �� in QDR Framework [12] can be measured as follows :

�������� � � �� ������ �� ��	
��������� �

� �� ��
��
 ���
 �
��
�
� ���
��

� �� ��
��
 ���
 �
��
�
� �
�
�
��

� �� ��
��
 ���
 �
��
�
� ������
� (2)

In order to measure the ��
���� for a potential transfor-
mation to be applied, a summary of proposed metrics needs
to be evaluated both before and after applying the transfor-
mations. Let �� � �
��
�� ����

�, �
� 	� ��, be a
vector of metrics showing different features of the source
code before applying a candidate transformation and �
 �
�
�

��

�

�� ����

�

�, �
�

� 	� ��, be a vector of metrics show-
ing the same features of the source code after applying the
transformation, then for maximizing ��
���� we need to
find the difference which is calculated as follows :

��

��� � �� � ��� �
�

�

�� � �

For the metrics that their decreasing values provide more
benefit, we need to consider �

��

instead of
�. Then
��
���� can be defined as :

��
�����
� � �

�

�

�

�
�
�
��
��

� ����

�

�
�
�

�

�

��

Then, the search problem can be represented by a unique
node in � called start node � � � ��� and � � � ��� a
set of goal nodes. We consider this search problem to be an
instance of the class of multi-objective search problems [5].
We can therefore formulate the selection of source-code im-
proving transformations as a multi-objective graph search al-
gorithm. Such a multi-objective graph search approach iden-
tifies the set of all non-dominated solution graphs in SIGs for
selecting the source-code improving transformations. This

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

algorithm can be considered as an adaptation of �� algo-
rithm [6]. The description of the proposed algorithm is de-
picted in Figures 3.

5 Conclusion

This paper presents a multi-objective decision approach
to identify the set of all non-dominated solution graphs in
SIGs for selecting the source-code improving transforma-
tions. Three types of heuristics information are used in the
approach : 1) a node evaluation heuristic (GIL), 2) a node
selection heuristic (STP), and 3) a solution based graph se-
lection heuristics (CGL). This multi-objective decision ap-
proach can be used to prevent loss of maintainability of a
legacy system or restore it through re-engineering.

A possible direction for future research concerns the qual-
ification of trade-offs weights to direct the multi-objective
search. This results in a parametric multi-objective formula-
tion that should be much more tractable than strictly multi-
objective form described in this paper.

References

[1] P. Antonini, G. Canfora, and A. Cimitile. Re-engineering
legacy systems to meet quality requirements : An experience
report. In Proceedings of the IEEE ICSM, pages 146–153,
Sept. 1994.

[2] I. Baxter and C. Pidgeon. Software change through design
maintenance. In Proceedings of the IEEE ICSM, pages 250–
259, Oct. 1997.

[3] G. Canfora, A. R. Fasolino, and M. Tortorella. Towards reengi-
neering in reuse reengineering processes. In Proceedings of
the ICSM, pages 147–156, Nov. 1998.

[4] L. K. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-
Functional Requirements in Software Engineering. Kluwer
Publishing, 2000.

[5] R. L. Keeney and H. Raiffa. Decision with Multiple Objectives.
John Wiley and Sons, 1976.

[6] N. J. Nilsson. Principles of Artificial Intelligence. Tiago Pub-
lishing Company, 1980.

[7] C. W. Pidgeon. Analysing Decision Making in Software De-
sign. PhD thesis, University of Californian at Irvine, 1990.

[8] H. M. Sneed. Transforming procedural program structures to
object-oriented class structures for the purpose of populating
a common software repository. In Proceedings of the IEEE
International Conference on Software Maintenance, page 286,
Oct. 2002.

[9] R. E. Steuer. Multiple Criteria Optimization : Theory, Compu-
tation, and Application. John Wiley and Sons, 1986.

[10] L. Tahvildari. Quality-Driven Object-Oriented Re-
engineering Framework. PhD thesis, Department of E&CE,
University of Waterloo, Canada, 2003.

[11] L. Tahvildari and K. Kontogiannis. A software transformation
framework for quality-driven object-oriented re-engineering.
In Proceedings of the IEEE ICSM, pages 596–605, Oct. 2002.

[12] L. Tahvildari, K. Kontogiannis, and J. Mylopoulos. Quality-
driven software re-engineering. Journal of Systems and Soft-
ware, Special Issue on : Software Architecture - Engineering
Quality Attributes, 66(3):225–239, June 2003.

Algorithm ��� ���� ��� ������������ � �	���	� �

Input :
��� : A finite directed graph with transformations as nodes.
�� : A finite set of goal paths in the graph.
�� : A set of classes in an object-oriented legacy system.
��� : A List of Desired Soft-Goals.
� �	 : Transformation Impact Matrix.
��	 : Soft-Goal Adjacency Matrix.

Output :
���: A set of all non-dominated solution graphs.

Method :

�� Initialize ���� to a set contains start node from ���;

�� ������������ �	���	�
���;

�� while �
�� �� ��	
���� ���
��� � �� �
����) do begin

�� if �� �
 then

�� set ��	
���� ��
	� to �; append solution path
impacts to ��	
���� ���
��� ;append
�� to
	
��	 sets; append solution paths to ��	
���� ;

	� else Choose a node � from �� based on ���; remove �
from ���� ; append � to �	����;

� Update accrued impacts 	
��	 based on �;

�� if � � �� , then

�� Append � to ��	
���� ��
	�; append ������� to
��	
���� ���
���; remove any dominated mem-
bers of ��	
���� ���
���; Go to Step 19.

�
� Generate the successors of �;

��� if � has no successors then Go to Step 19;

��� else for all successors�� � �, do begin

��� if �� is a newly generated node, then

��� Establish a back-pointer from �� to �; set ����� �
	
��	���� ��; compute node selection values, � ����, us-
ing �����; compute heuristic function values at �� , �����;
append �� to ���� ;

��� else while �� ��
 do begin

�	� Append �������
� to 	
��	���� ��; update ��� based on

�����; if �� �� �����, then begin delete associated path with
�� from 	
��	���� ��; if �� � �	���� then add �� to
���� ;

�
� end-while

��� end-for-all

��� Increment ��������� counter by 1;

�
� end-while

Figure 3. Selection Transformation Path Algo-
rithm.

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

	footer1:

