
Transforming Legacy Web Applications to the MVC Architecture

 Yu Ping Kostas Kontogiannis Terence C. Lau

Dept. of Electrical &
Computer Engineering
University of Waterloo
Waterloo, ON. Canada

yping@swen.uwaterloo.ca

Dept. of Electronics &
Computer Engineering

Technical University of Crete
731 00 Chania, Greece
kkontog@softnet.tuc.gr

IBM®
Centre for Advanced Studies

IBM Canada Laboratory
Toronto, ON. Canada

lautc@ca.ibm.com

Abstract

With the rapid changes that occur in the area of Web
technologies, the porting and adaptation of existing Web
applications into new platforms that take advantage of
modern technologies has become an issue of increasing
importance. This paper presents a reengineering
framework whose target system is an architecture based
on the Model-View-Controller (MVC) design pattern and
enabled for the Java™ 2 Platform, Enterprise Edition
(J2EE). The proposed framework is mainly concerned
with the decomposition of a legacy Web application by
identifying software components to be transformed into
Java objects such as JavaBeans, JavaServer Pages (JSP),
and Java Servlet.

1. Introduction

Just a few years ago, Web applications were mainly
composed of a few simple and static HTML pages, which
were used to share the information over the Internet.
Today, however, many organizations manage their
business activities by using Web-based systems, whether
in business-to-business (B2B) or business-to-consumer
(B2C) contexts. Traditionally, these so-called legacy Web
systems were developed by utilizing obsolete
architectures and technologies. In most cases, legacy Web
applications cannot be simply discarded because they
often encapsulate a great deal of business knowledge
accumulated over the years, and constitute a significant
investment for the organization that operates them. For
this reason, the need to migrate existing legacy Web
systems towards modern Web technologies has become
an important objective.

Modern Web systems refer to the software systems
that are designed by multi-tier architectures and supported
by open standards and new technologies. Particularly,
J2EE is now one of the most widely accepted and

prevalent technologies for design, development, and
deployment of Web-enabled applications in enterprise
environments [6].

In this paper, we present a transformation framework
that aims at adopting existing Web systems into enterprise
Java environments based on the MVC design pattern.
Specifically, the database access functionality is extracted
from source programs, and then encapsulated in
JavaBeans objects. Consequently, the JSP pages
translated from the legacy presentation components can
reference these newly created JavaBeans objects.
Moreover, we develop a transformation process for
refactoring a JSP-based Web site to a controller-centric
architecture by extracting the linkage information from
the JSP application analysis. As a result, the target
migrant system would be more scalable, portable, and
maintainable than the original one [1,16,28,29].

The remainder of this paper is organized as follows.
Section 2 provides pointers to the related work. Section 3
outlines the migration framework, including migration
methodology and architectures, while experimental results
and case studies are discussed in Section 4 and Section 5.
Finally, Section 6 offers conclusions and directions for
the future research.

2. Related Work and Discussion

Several works on migration of legacy applications into
new Web-based platforms have been proposed in the
literature.

Aversano et. al. [18] present a tool to migrate COBOL
systems into Web applications based on the
methodologies described in MORPH project [19]. The
tool decomposes the original system into its user interface
and server (application and database). The user interface
has been migrated into a Web browser using Active
Server Pages® and VBScript®, while the server is wrapped

This work was funded by IBM Canada Ltd. through IBM
Centre for Advanced Studies and by the Natural Sciences and
Engineering Research Council of Canada.

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

by dynamic load libraries written in Microfocus Object
COBOL.

Bodhuin et. al. [25] present a strategy to incrementally
migrate the COBOL program decompose into new
architecture based on Model-View-Controller (MVC)
design pattern. The system decomposition process
includes static analysis, restructuring, and slicing
techniques. A toolkit [2] is developed to translate the view
into JSP pages, and the model and controller are wrapped
into the Web environments.

The main difference with our work is that the source
program in [2,18,25] is not a Web-based system where
the user interface has to be re-implemented from
character-based screen to the HTML-oriented Web page.
On the contrary, our source system is the existing Web
application. Thus, the target system can reuse the same
Web page design as the original one, as well as most of
display elements from the source system, such as HTML
and JavaScript without changing them. Another
difference is that the database and business logic is kept
untouched by applying wrapping technique in [2,18,25],
whereas we encapsulate database access components
(SQL statements) into JavaBeans objects by conforming
to the data bean architecture.

Ricca et. al. [8] sketch several possible Web
application transforms with the aim of improving their
qualities. They have classified HTML transformations
into six categories: syntactic clean up, page restructuring,
style renovation and grouping, improving accessibility,
update to new standards, and design restructuring. A case
study has been provided based on transforming original
navigation structure into HTML frames by utilizing the
DMS® Software Reengineering Toolkit™, an integrated
tools infrastructure for automating customized source
program analysis and modification of large scale software
systems [22].

In another paper [7], Ricca and Tonella propose a
migration process aimed at restructuring static Web sites
into dynamic ones using the software clustering
technique, where a common template is extracted from
the HTML pages in the same cluster, and the variable
information is isolated from the template and then moved
into a database. They introduce a re-engineering tool, so
called ReWeb, which is able to perform source code
analysis and graph representation on Web sites.

These works in [7,8] focus on the analysis and the
representation of static Web sites in which the Web pages
are not generated by the server-side scripting language.
By contrast, our approach includes the analysis of
dynamic and behavioral aspects of Web applications. We
share with [7] the idea of using the clustering technique to
restructure the Web sites in our proposed transformation
framework. However, we aim to refactore the Web sites
by adopting a controller-centric architecture instead of the
frame-based one described in [7].

The work most related to ours is [12]. In this work,
Cordy et. al. describe the Whole Website Understanding
Project (WWSUP), a long-term project with design-level
understanding of Web applications by analyzing their
source codes. One subproject is to transform Perl to Java
platforms, which consists of three major tasks: Perl to
JSP/Java, Perl modules to EJB, and translation of any
modules imported by the Perl modules. However, there
are very few documentations or publications available to
discuss this project in detail.

There have been also some considerable activities and
prototype tools on the migration of IBM Net.Data [9,10]
systems to enterprise Java platforms. Several tools have
been developed by using Java technologies to support the
migration works, especially concerning the SQL
statement transformation [13,14,21,23,24,26].

Most of the existing IBM Net.Data migration tools
focus on the database components transformation and
ignore the presentation logic conversion. Moreover, they
try to generate the JavaBeans objects based on analyzing
or parsing the SQL statement itself. They only accept the
static or prepared dynamic SQL statements, of which the
column names are explicitly specified, but not the non-
prepared dynamic SQL statements or any statements of
which the column names are implicitly specified [28].
With this restriction, there is no way to extract the output
parameters (column names) from such SQL statements,
and thus the tools will fail to generate the JavaBeans
objects due to insufficient information.

Finally, there has been extensive research work
conducted on programming language translation, such as
C to RPG [3] or PL/IX to C++ [17], Pascal to C, and
Cobol to OO-Cobol to name a few. Compared with those
works that translate monolithic systems, our source
system being translated is much more complex. Web
applications involve several intertwined languages
dealing with different aspects of the system. This makes
the parsing process difficult. In addition, our target system
is represented in several languages stacked one on top of
the other. It requires not only the literal translation of the
underlying languages, but also the stratification of the
functionalities represented in legacy Web applications.

3. Architectural Patterns for Java Enterprise
Applications

In addition to the translation of the source code from
one language to another, the software migration process
should also allow for improving the quality characteristics
of the migrant system. For this work we focus on design
principles for the migrant system that relate to
improvements on the portability and customizability of
the new application as these are supported by the open
Java standards and technologies that are introduced as
part of the reengineering process. By applying these open
architectures, the target migrant system would be more

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Controller

View

Model

Figure 1: Model-View-Controller Architecture

scalable and maintainable than the original system.
The following subsections present in detail the issues
pertaining to the merits of such open architectures.

3.1 Model View Controller (MVC)

The MVC [11] design pattern is a widely used
architectural pattern in J2EE applications. It separates the
data persistence, user interface, and application control.
To this end, an application is decoupled into three core
components: the model, the view, and the controller
(Figure 1).

The model contains the core functionality of
application components, such as database access and
transaction management. It encapsulates the state of the
applications and conducts associated transformation on
that state. Typically, the model has no specific knowledge
of either the view or the controller.

The view provides the presentation of the state
represented by the model. It manages the visual display of
the applications. Particularly, there is no processing logic
within the view; it is simply responsible for retrieving
objects (in the model) that may have been previously
created by the controller. The view should be notified
when the state changes in the model. In addition, it has no
knowledge about the controller.
 The controller is in charge of user interaction with the
model. It manages the request processing and the creation
of any objects (in the model) used by the view. Moreover,
it forwards the user request to the view depending on the
user's actions.

In our proposed reengineering approach, the new
system will adopt the MVC architecture in an enterprise
Java environment. As a result, the source application is
refactored into JavaBeans (Model), JavaServer Pages
(View), and Java Servlet (Controller).

3.2 Data Bean Compliant Architecture

Data beans are JavaBeans objects that are mainly used
to provide a logical collection of data in JSP pages. They
are not a set of well-defined Java classes, but rather, an
architectural construct.

JSP
Pages

Data
Bean

Data
Base

Data
Access
Bean

Query
Command

Bean

Set input parameters

Invoke Query Command

Set output parametersGet output parameters

JDBCActivate

Figure 2: Data Beans Architecture

In the proposed migration framework, we define a data
bean architecture that consists of three types of JavaBeans
objects: query command bean, data access bean, and data
bean (Figure 2). The transformation program generates
these three Java objects for each SQL statement extracted
from the source application.

The query command bean is the actual execution of
the SQL statement extracted from the source program. It
is an implementation of JDBC™. It also performs a
certain set of actions, such as setting input parameters to
the SQL statement, constructing a complete SQL
statement, and mapping the result set data returned from
the SQL statement to a data access bean (setting output
parameters).

The data access bean is a serializable Java object,
which mainly contains a set of getter and setter methods.
It carries a set of data from a query command bean to a
data bean.

The data bean is an object wrapper to encapsulate the
invocation of a query command bean in a JSP page. It
also performs a certain set of actions, such as setting the
input parameters to the query command bean, and
populating the data access bean (getting the output
parameters) so that JSP pages can then use the data bean
to display the data that it contains.

By utilizing the data bean architecture, the target JSP
pages eventually remove the SQL statements from the
display logic. Additionally, using data bean wrapper
significantly reduces the Java codes included in the JSP
pages, since the Java implementation of the data access is
encapsulated inside the data beans.

3.3 Controller-centric Architecture

The controller-centric architecture, as illustrated in
Figure 3, is an architectural approach based on the Model-
View-Controller (MVC) design pattern. In this approach,
a controller is built on the top of a Web system to perform
the central management for the client request processing
and Web page forwarding. More specifically, the front-

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Controller Web Pages

Web Pages

Web Pages

Request Response

Page Control
Flow

Figure 3: Controller-centric Architecture

end controller provides a single entry point for
intercepting HTTP requests coming from end users. It
takes control of the page flow that is originally managed
by individual Web pages. In other words, each Web page
is not directly linked to another page. Instead, it is
connected to its associated controller, and the controller
then forwards the request to the target page. The page
control flow is often stored either in a flat file or a
database, which can be accessed by the controller in order
to select corresponding Web pages to forward the request
to [29].

To this end, the page management becomes a simpler
and easier task. For example, when Page A is changed to
Page B, all the links to Page A are broken until these links
are updated. On a traditional Web site, as illustrated in
Part 1 of Figure 4, link references are maintained by
individual Web pages, where we need to search all the
pages (Page X to Z) that have link references to Page A
and updating these links to Page B. However, on a
controller-centric Web site, as shown in Part 2 of Figure
4, we do not need to find and modify all the pages (Page
X to Z) that have link references to the old page (Page A).
Instead, we only need to update the page control flow
information maintained by the controller, and change the
corresponding link reference to the new page (Page B).

Comparing to Part 1, Part 2 significantly simplifies the
page modification process as well as eliminate the broken
link or the missing link, practically in a large scale Web
site. In addition to providing the central control for the
page flow, adapting Web sites to the controller-centric
architecture allows us to remove potential duplication
codes from Web pages. This can be achieved by including
common services, such as page access authentication, to
the controller.

4. Transformation Framework

The proposed framework is twofold. First, it
establishes a stage-wise methodology concerning the

Page A Page B

Page X Page Y Page Z

Page A Page B

Page X Page Y Page Z

Controller

Part 1: Link modifications in a
traditional Web site

Part 2: Link modifications in a
controller -centric Web site

Figure 4: Page Management

Data Base
Access

Presentation
Logic

JavaBeans

JSP
Skeletons

JSPs
Control
Flow

MVC

Encapsulate

Translate

Generate

Attach
Analyze

Implement

1

2

3

Figure 5: Transformation Methodology

implementation of the migration works. Second, it defines
the architecture of the transformation program according
to the transformation methodology. In this section, we
describe the framework in detail.

4.1 Transformation Methodology

To ensure that the transformation process is organized
in a systematic way, a methodology for migration of Web
legacy applications to enterprise Java environments is
formulated, as depicted in Figure 5. The activities
described in the transformation methodology are
performed in a sequential manner and the whole process
is divided into three implementation phases.

Phase 1. Separating database access (model) from
presentation logic (view):

The display components in a Web legacy application
commonly include SQL statements to implement database
access. Therefore, the first phase focuses on the extraction
and analysis of SQL statements in the legacy program. In
this respect SQL statement functionality is encapsulated

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

into the JavaBeans objects by conforming to the data-
bean-compliant architecture, and thus to isolate the model
from the view.

Phase 2. Making the transition to JSP pages:
A Web legacy application commonly uses proprietary

constructs to customize display pages. JSP pages are used
by a J2EE application to handle the presentation logic.
Hence, in the second phase, the display elements of the
legacy program need to be replaced by JSP pages with a
combination of JavaBeans objects generated from Phase
1.

Phase 3. Adopting a controller-centric architecture:
The objective is for the migrant system to be adapted

to modern and customizable architectural patterns such as
the MVC. In this context, the third phase focuses on the
analysis of application control flow, which is presented as
a collection of HTML files, generated JSP pages, and
JavaBeans objects. Control flow can be extracted from the
migrant system in the first two phases, and eventually
provide a roadmap for the generation of controller
components.

4.2 Transformation Architecture

The transformation methodology outlined in the
previous section consists of three subprocesses, database
access encapsulation (Phase 1), presentation logic
conversion (Phase 2), and JSP pages refactoring (Phase
3). Each subprocess is supported by a common
transformation model that is composed of five different
layers, which are based on reengineering activities. As
Figure 6 shows, the proposed model includes the source
system layer, the software analysis layer, the information
extraction layer, the new code generation layer, and the
target system layer, from the top to the lowest level,
respectively.

The source system layer, from which each
transformation process starts, represents the software
applications that are going to be reengineered. The
software analysis layer focuses on representing the
source of the system being analyzed at an appropriate
level of abstraction, such as in the form of an Abstract
Syntax Tree (AST). The information extraction layer
aims at the extraction of associated facts by a series of
analysis steps applied to the source code representation
generated at the software analysis layer. The new code
generation layer supports the automatic generation of the
new applications. The target system layer, where each
transformation process ends, represents the newly created
platforms based on the migration approach. This layered
design approach has resulted in the overall transformation

Source System

Software Analysis

Information Extraction

New Code Generation

Target System

Database
Access
Encapsulation

Presentation
Logic
Conversion

JSP
Pages
Refactoring

Figure 6: Transformation Layer

architectures shown in Figure 7 and discussed in the
following sections.

4.2.1 Database Access Encapsulation and
Presentation Logic Conversion Architectures

The database access encapsulation and the presentation
logic conversion focus on the different aspects of the
migration process. Both transformations, however, start
the migration tasks by selecting the same legacy Web
application at the source system layer, and use the same
tool to analyze the source system at the software analysis
layer. Then they can be performed independently after the
generation of the source code representation, and
independently of the choice of the target language.
Therefore, we combine the database access encapsulation
and presentation logic conversion together into a single
architecture in order to simplify the actual implementation
of the transformation works (shown in the left part of
Figure 7).

In the software analysis layer, the Language Analyzer
reads the source codes provided by the source system
layer and recognizes its structure according to the source
language grammar. It consists of two subsystems: a
lexical analyzer that breaks the input string into tokens,
and a language parser that discovers the hierarchical
structure of the program.

The output of the analyzer is an Abstract Syntax Tree
(AST), which stores the intermediate representation of the
input program [27]. The Language Analyzer also
provides an Application Program Interface (API) for the
AST. The SQL Information Extractor and the Display
Information Extractor use this API to access the
information from the AST.

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Source
Code

SQL
Information

Extractor

JavaBeans
Generator

JSP
Generator

JavaBeans
Objects

JSP
Pages

Language
Analyzer

Display
Information

Extractor

Source
System

Software
Analysis

Information
Extraction

New Code
Generation

Target
System

Specification

Register

Presentation Logic
Transformation

Database Access
Transformation

JSP
Applications

JSP
Refactorer

Control
Integrator

New JSP
Applications

Java
Servlet

JSP
Proprocessor

Link
Information

Extractor

JSP
Repository

JSP Pages
Refactorying

Figure 7: Transformation Architecture

There are two extraction components in the
information extraction layer: the SQL Information
Extractor, which is part of the database access
encapsulation process, and the Display Information
Extractor, which is part of the presentation logic
conversion process. The SQL Information Extractor
traverses the AST generated from the source program in
the software analysis layer, and collects the essential
information, such as SQL statements, input parameters,
and output parameters. As a result, it produces an SQL
properties file that stores the SQL statements, and a
parameter container file that contains the input and output
parameters, as well as other SQL information in an XML
format. The Display Information Extractor extracts and
analyzes the display elements represented in the AST of
the source program, and sends the results to the JSP
Generator for the conversion and construction of
complete JSP pages. Both extractors are independent
processes, but they can share the information by storing
their intermediate results in the Register.

The new code generation layer contains two
generators, the JavaBeans Generator included in the
database access encapsulation process, and the JSP
Generator included in the presentation logic conversion
process. The JavaBeans Generator is a tool that can
automatically generate the JavaBeans objects (run-time
Java code) for the actual execution of the SQL statement.
It takes the SQL properties file and the parameter
container file provided by the SQL Information
Extractor as input, and consequently creates three
JavaBeans objects according to the data-bean-compliant
architecture: data bean, data access bean and query
command bean. The JSP Generator converts display
elements provided by the Display Information
Extractor to corresponding JSP elements. In addition, the
JSP Generator composes the new JSP pages with other
generated components, such as included JSP pages and
JavaBeans objects. Both generators make the translation

process according to the predefined conversion
Specification.

4.2.2 JSP Pages Refactoring Architecture

The database access encapsulation and presentation
logic conversion phases aim to separate the SQL
statements from the display pages in the legacy Web
application and consequently generate the model and
view components. As the third phase of our proposed
transformation methodology, the JSP pages refactoring
phase focuses on the reconstruction of JSP pages in order
to support the generation of controller components. As a
result, the target system will eventually adopt the MVC
architecture in an enterprise Java environment.

A Web site is a hyperlinked network environment,
which consists of hundreds of interconnected pages,
usually without a well engineered architecture [2,15].
Therefore, in addition to supporting the migration of
legacy Web applications to new platforms, the JSP pages
refactoring process can also serve as a generic approach
to restructuring an existing JSP-based Web site to a
controller-centric architecture.

The right part of Figure 7 depicts the JSP pages
refactoring architecture by conforming to our proposed
five-layer transformation model. The JSP applications
contained in the source system layer represent a collection
of HTML pages, JSP pages, and JavaBeans objects,
which are either generated from the first two phases, the
database access encapsulation and presentation logic
conversion, or provided by an existing JSP-based Web
site. At the software analysis layer, the JSP Preprocessor
analyzes the source of the JSP applications and identifies
all the information useful to the subsequent layers, such as
control statements and hyperlinks. The JSP Preprocessor
is designed as a lightweight JSP analyzer, instead of a
heavyweight parser-based one. Next, the Link
Information Extractor at the information extraction
layer starts to collect link information included in the JSP
and HTML pages by utilizing the pattern-matching
technique. The results of the link extraction can be
represented as an XML document. The Control
Integrator in the new code generation layer then clusters
the JSP and HTML pages according to the identified link
dependencies between them, and consequently generates
Java Servlet objects to implement the created page control
flow. Finally, the JSP Refactorer in the same layer
modifies the link information included in the current JSP
and HTML pages by conforming to the page control flow,
and thus the resulting JSP application adopts the
controller-centric architecture. Additionally, each
component stores its intermediate results and shares the
information in the JSP Repository over the entire
refactoring process.

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

5. Case Study

To demonstrate the effectiveness of the framework
advocated in this paper, we have developed a set of
reengineering tools written in Java programming
language, which implement all of three major
transformation processes presented in our proposed
migration architecture. We also had them tested for
migrating two Web systems, which are IBM WebSphere
Commerce applications, and a JSP-based Web site. The
detailed case studies and experimental results are
presented in this section.

5.1 IBM Net.Data to JSP Transformation

IBM WebSphere Commerce (formerly IBM
Net.Commerce®) is a platform for building e-commerce
Web sites and applications. Since the release of IBM
Net.Commerce Version 1.1 in 1996, there were several
major revisions and IBM Net.Commerce was later
renamed to IBM WebSphere Commerce Suite and IBM
WebSphere Commerce. The earlier versions (IBM
WebSphere Commerce V4 and IBM Net.Commerce)
were based on a proprietary scripting language (Net.Data)
and C++. Since IBM WebSphere Commerce V5, the
product is built on the Java programming model, and
supports open standards like EJB, JSP and XML
technologies. Thus, the need for porting existing e-
commerce applications for IBM customers to the newer
versions of IBM WebSphere Commerce has become an
important objective.

The application selected for examination is a “demo
mall” for demonstration purpose that is packaged with the
IBM WebSphere Commerce products. This demonstration
system provides a showcase of an online shopping mall
including user registration, address book, shopping cart
management, and other associated shopping actions. It
was originally written in Net.Data for the earlier versions
of IBM WebSphere Commerce. The application is to be
migrated for compliance with later versions of IBM
WebSphere Commerce (IBM WebSphere Commerce V5).

Migrating the demonstration mall application involves
two major tasks: Net.Data macro translation, and IBM
WebSphere Commerce integration. The Net.Data macro
translation is a fully automatic process by applying our
transformation tool. The tool takes Net.Data source
programs from the shopping mall application as input,
and then generates corresponding JSP pages and
JavaBeans objects. In order to test and display the
transformation results, we need to integrate the new codes
into the IBM WebSphere Commerce V5 platform. The
following works were implemented to fulfill the IBM
WebSphere Commerce integration:

Views (V4)
V5

Servlet C++
Command (V4)Wrapper

IBM WebSphere Commerce

JSP
JSP

JSP
JSP

JSP Data
Bean

Query
CommandQuery

CommandQuery
CommandQuery

Command
Query

Command
Bean

Data Access
Bean

JDBC

Generated Java Objects

Views (V4)
V5

Servlet C++
Command (V4)Wrapper

IBM WebSphere Commerce

JSP
JSP

JSP
JSP

JSP Data
Bean

Query
CommandQuery

CommandQuery
CommandQuery

Command
Query

Command
Bean

Data Access
Bean

JDBC

Generated Java Objects

Figure 8: WebSphere Commerce Integration

- A new request servlet class was created in order to
invoke the command objects that wrapped the C++
commands of IBM WebSphere Commerce V4.

- In IBM WebSphere Commerce V5, a new database
schema has been introduced to support more complex
business models. In order to use the SQL codes in
existing Net.Data macros, we created views, which were
based on the V4 schema, on top of V5 tables.

- The generated JavaBeans classes were compiled and
packed into a Java Archive (JAR) file. The JAR file can
be deployed to the server by placing it in the library
folder.

- The new JSP pages must be registered in the view-
related tables of an IBM WebSphere Commerce V5
database so that the request Servlet object can redirect the
client request to them. In addition, the JSP pages were
copied to the associated JSP folders in the server.

5.2 JSP-based Web Site Refactoring

The strategy and the architecture described in previous
sections have also been used in an experiment to
restructure a JSP-based Web site, which was originally
developed to publish photography information to the
Web. The Web site allows the user to browse and manage
photographs by the categories or the location. It is
implemented by using a free software, called PhotoDB,
which is mainly composed of JSP pages and HTML pages
[20].

We developed a reengineering tool used to support the
refactoring process, which consists of four major
implementation steps (Figure 9). The first step, the Page
Preprocess, in our approach is to perform preliminary
processing on a Web site in order to make Web pages
ready to be analyzed in the second step. In particular, this
step focuses on identifying the control block in Web
pages. The control block can be recognized as either
control statements such as IF-statement, WHILE-
statement, and SWITCH-statement, or custom tags that

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Page
Preprocess

Repository

Link
Extraction

Page Flow
XML

Visualization

Control
Integration

Link
Rewriting

Page
Controller

Page
Control

Flow

Link
Patterns

Web Pages

New Web
Pages

1 2

3

4

Figure 9: JSP Refactoring Implmentation

implement the control logic. Any links found in the
control blocks are conditional links according to the
categorization of the link type. Moreover, it discovers any
implicit link information that cannot be directly handled
by using the pattern matching technique in the following
steps, specifically, the links inside Java codes, VBScript
or JavaScript. Then it makes these implicit links to be
explicitly specified by using a pre-defined method.

The Link Information Extraction step aims to analyze
the preprocessed Web pages and to extract the embedded
link information by using the pattern-matching technique.
The lexical patterns, which are used to represent link
relations, are stored in the Link Pattern component, and
may be defined in different forms of expressions
according to the actual implementation of Web
programming language specifications. The Link
Information Extractor, the implementation program of the
Link Information Extraction step, will create an XML file
to include the discovered link objects for each Web page.
Then it will combine these newly generated XML file into
a single XML file to represent the page flow for the whole
Web site. As an extension of the Link Information
Extraction step, the page flow XML file can be translated
to an appropriate graphic language and thus the current
Web site structure can be displayed by using the
associated graph visualization tool, such as Dotty from
ATT Laboratory [5]. During the Control Integration step,
controller components of the new architecture is
generated, as well as a corresponding page control flow is
created according to the control structure. This can be
accomplished by applying certain software clustering
techniques based on the analysis of the page flow
identified in the Link Information Extraction step. A
server side program, such as Java Servlet, then
implements the functionalities of the controller
components. The newly created page control flow can be

Our approach (without a SQL Paser) vs. the Approach with a SQL Parser

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100

Line of Code (k)

E
x

ec
u

ti
o

n
 T

im
e

(s
)

With a SQL Parser Without a SQL Parser

Figure 10. Time Complexity Comparison

stored in either a flat file in an XML format or a database
system. The last step of the refactoring process is referred
to the rewriting of the original Web pages by conforming
to the generated control-centric architecture. This is
performed by modifying the link information included in
Web pages. As a result the destination of the link in a
source page is replaced by an associate controller
specified in the page control flow.

The above components store and share the results
produced over the refactoring process in the Repository.
In addition, the Repository contains the information
related to the file directory, the Web site, the custom tag
library, and other useful data, which are input from users
or generated by other tools. The Repository can be either
a database system or a set of collections of flat files.

5.3 Experimental Results

In this section we describe the result of our experiments
on the migration of legacy Web applications to J2EE
platforms. The tests were run on a PC with a 500Mhz
processor and 256Mb of RAM memory. We tested the
transformation application in the Eclipse V2.1 platform,
which is an open extensible Integrated Development
Environment (IDE). The Java JDK was version 1.4 and
the operation system was Windows XP.

Compared with the existing transformation tools in
[13,24], using the proposed tools gather the following
benefits:

Our
Approach

SQL Parser
Approach

Line of codes in the parser
specification

944 1448

Size of the source language
analyzer (Net.Data)

117KB 193KB

Table 1. Space Complexity Comparison

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

1. Reducing the time and space complexities of the
transformation program:

Our transformation tool does not include a SQL parser
to analyze the SQL statement extracted from the Net.Data
source file. As a result, an Abstract Syntax Tree based on
the structure of the SQL language is not generated during
the transformation phase. Instead, a lightweight language
source code representation is used. It makes the analysis
process much faster than the existing transformation
applications [13,24] that use a SQL parser when dealing
with very complex SQL statements (Figure 10). Another
advantage for not using a SQL parser is that it simplify
the generation of the Net.Data Analyzer and significantly
reduces the size of the Net.Data Parser Specification and
Net.Data Analyzer, which do not need to implement the
functionality to parse a SQL statement (Table 1).

2. Supporting presentation logic conversion and
dynamic SQL statements transformation:
 We extend and build upon existing Net.Data migration
tools and techniques. As a result, the proposed tool
includes a JSP translation program that can implement the
transformation of Net.Data macros to JSP pages. It also
supports generation of JavaBeans objects from either
static SQL statements or dynamic SQL statements. In
addition, The SQL Extractor provided in the proposed
tool can reduce the complexity of the source code of
JavaBeans objects by ignoring the column names (output
parameters) specified in the SQL statement but not
receiving values in the program. Moreover, the JavaBeans
Generator provided in the proposed supports the
automatic generation of data bean objects.

3. Supporting JSP pages refactoring:
 Most Web site reengineering strategies leave the Web
site structure untouched. The JSP Refactorer in the
proposed tool, can automatically or semi-automatically
implement the JSP-based Web site refactoring towards a
well-engineered architecture, the controller-centric
architecture. In this context, the tool extracts
dependencies between JSP pages, replaces the original
link information with symbolic link information, then
provides controllers that map the symbolic link
information to the actual link.

In conclusion, the prototype tool can successfully
transform the legacy Web applications to a Java
compliant one. Specifically, from the end user's point of
view, the resulting Web pages created by the new Java
platforms are exactly the same as the original ones in the
legacy environment. In addition, this case study illustrates
that the proposed framework can adapt to real life Web
sites. The whole migration process is algorithmic and
automated, except the JSP pages preprocessing and the
generation of JSP pages clusters, where the human
assistance is required to identify dynamic links and

possible JSP page groups. However, the proposed tool can
be further extended to support dynamic link analysis and
page clustering in the refactoring process. Moreover, the
evaluation result shows that the proposed tool has better
performance and capability than the existing
transformation tools. Finally, the structure of new Web
system has been simplified from the original one. The
structure comparison between the generated Web system
and the old one is not presented here because of the space
limitation.

6. Conclusion

The accelerated development of Web applications and
the fast growth of associated Web technologies have
resulted in a variety of maintenance concerns. One of the
major maintenance problems is the porting and adaptation
of existing Web applications into modern Web-based
technologies. In this paper, we have addressed this
problem by applying reengineering techniques, including
the source code analysis, the software component
extraction, and the Web application refactoring. We
proposed a framework for incrementally migrating legacy
Web systems to new platforms based on J2EE
technologies. Using this framework, a source application
was refactoried into JavaBeans format (Model),
JavaServer Pages format (View), and Java Servlet format
(Controller).

Future extensions of the work presented in this paper
may focus on the following directions: Firstly, we will
investigate the use of the wrapping technology and the
connector architecture in order to integrate any other
language environments imported by the existing legacy
Web system. Secondly, the usage of a software clustering
technique will be examined with the purpose of
identifying cohesive groups of Web pages. A particular
clustering algorithm needs to be developed in order to
provide the support for the control integration of the
migrant applications. Thirdly, we will investigate the
technique for automatic implementation of analyzing
dynamic Web components that can only be formed at run
time, such as HTML form filling, and database querying.
Finally, we will work on the generation and use of the
Enterprise JavaBeans (EJB) technology, especially entity
beans, for the back-end execution of SQL statements.

Acknowledgments
We would like to thank Ying Zou of Queen’s

University, Tack Tong and Bo Yi of IBM Canada
Laboratory, Jianguo Lu of the University of Windsor, Joe
Wigglesworth of IBM CAS, John Mylopoulos of the
University of Toronto, as well as all the anonymous
reviewers for their valuable suggestions, comments, and
insights.This paper intends to represent the views of the
authors rather than IBM.

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Trademarks
IBM, Net.Data, Net.Commerce and WebSphere are

trademarks of International Business Machines
Corporation. Java, all Java-based marks and logos are
trademarks or registered trademarks of Sun
Microsystems, Inc. Active Server Pages, and VBScript
are trademarks or registered trademarks of Microsoft
Corporation. DMS Software Reengineering Toolkit is a
registered trademark of Semantic Designs, Inc. Other
company, product, and service names may be trademarks
or service marks of others.

References
[1] Amanda W. Wu, Haibo Wang, and Dawn Wilkins,

“Performance Comparison of Alternative Solutions for
Web-To-Database Applications”, in Proceedings the
Southern Conference on Computing, the University of
Southern Mississippi, October 2000.

[2] Carmine Albanese, Thierry Bodhuin, Enrico
Guardabascio and Maria Tortorella, “A Toolkit for
Applying a Migration Strategy: a Case Study”, in
Proceedings of the 6th European Conference on Software
Maintenance and Reengineering , 2002.

[3] Christy Lu, “A C to RPG Program Transformation Tool”,
M.Sc Project, University of Waterloo, Department of
Electrical & Computer Engineering, 1998.

[4] Cornelia Boldyreff and Richard Kewish, “Reverse
Engineering to Achieve Maintainable WWW sites”, IEEE
2001.

[5] Dotty, AT&T, http://www.research.att.com/sw/tools
/graphviz/

[6] Eric Armstrong, Stephanie Bodoff, Debbie Carson, Ian
Evans, Maydene Fisher, Dale Green, Kim Haase, Eric
Jendrock, Monica Pawlan, and Beth Stearns, “The J2EE
1.4 Tutorial”, Sun Microsystems Inc., May 2003.

[7] Filippo Ricca and Paolo Tonella, “Using Clustering to
Support the Migration from Static to Dynamic Web
Pages”, in Proceedings of the 11th IEEE International
Workshop on Program Comprehension, page 207-216,
May 2003.

[8] Filippo Ricca, Paolo Tonella, Ira D. Baxter, “Web
Application Transformations Based on Rewrite Rules”,
Information and Software Technology, 44(13):811-825,
2002.

[9] IBM, “IBM Net.Data Administration and Programming
Guide”, Version 7, June 2001.

[10] IBM, “IBM Net.Data Reference”, Version 7, October
2001.

[11] Inderjeet Singh, Beth Stearns, Mark Johnson, and the
Enterprise Team, “Designing Enterprise Applications with
the J2EE Platform”, Second Edition, Sun Microsystems
Inc., 2002.

[12] James R. Cordy, Thomas R. Dean, Xinping Guo, Mykyta
Synytskyy, Scott Grant, “The Whole Website
Understanding Project”, http://www.cs.queensu.ca/~stl
/stg/.

[13] Jianguo Lu, “NetData4J: A NetData Parser Written in
Java”, October 2000. http://www.cs.Toronto.edu/~jglu
/netData4j/

[14] Jianguo Lu, John Mylopoulos, “Automated EJB Client
Code Generation Using Database Query Rewriting”, in

Proceedings of the 7th International Database
Engineering and Application Symposium, Hong Kong,
China, July 2003.

 [15] Jon Kleinberg and Steve Lawrence, “The Structure of the
Web”, Science, Vol 294, pp. 1849-1850, November 2001.

[16] Karl Avedal, Danny Ayers, Timothy Briggs, Carl
Burnham, Ari Halberstadt, Ray Haynes, Peter Henderson,
Mac Holden, Sing Li, Dan Malks, Tom Myers, Alexander
Nakhimovsky, Stephane Osmont, Grant Palmer, John
Timney, Sameer Tyagi, Geert Van Damme, Mark Wilcox,
Steve Wilkinson, Stefan Zeiger, and John Zukowski,
“Professional JSP”, Wrox Press Ltd., 2000.

[17] Kostas Kontogiannis, John Mylopoulos, Richard Gregori,
Greg Mori, “Tools for the transformation of PL/IX based
systems to C++ based systems”, Technical Report, IBM
Centre for Advanced Studies, August 1997.

[18] Leerina Aversano, Gerardo Canfora, Aniello Cimitile, and
Andrea De Lucia, “Migrating Legacy Systems to the
Web: an Experience Report”, IEEE 2001.

[19] Meldoy Moore, Lilia Moshkina, “Migrating Legacy User
Interfaces to the Internet: Shifting Dialogue Initiative”, in
Proceedings of the 7th Working Conference on Reverse
Engineering, Brisbane, Australia, December 2000.

[20] PhotoDB, http://www.magiccookie.com.
[21] Ramzan Khuwaja, Corrado Balducci, Vesselin Ivanov,

Manivannan Kubendranathan, Lisa Tong, Heidi Yan,
Adrian Warman, “Best Practices and Tools for Creating
IBM WebSphere Commerce Sites”, IBM Redpapers,
February 2003.

[22] Semantic Designs, Inc. DMS Software Reengineering
Toolkit. http://www.semdesigns.com/Products/DMS/
DMSToolk it.html

[23] Terence C. Lau, Jianguo Lu, Erik Hedges, Emily Xing,
“Migrating E-commerce Database Application to an
Enterprise Java Environment”, in Proceedings of
CASCON 2001, page 68-78, Toronto, Canada, November
2001.

[24] Terence C. Lau, Jianguo Lu, John Mylopoulos, Kostas
Kontogiannis, “The Migration of Multi-tier E-commerce
Applications to an Enterprise Java Environment”,
Information System Frontiers, 5:2, pp. 149-160, 2003.

[25] Thierry Bodhuin, Enrico Guardabascio and Maria
Tortorella, “Migrating COBOL Systems to the WEB by
using the MVC design pattern”, in Proceedings of the 9th
Working Conference on Reverse Engineering, 2002

[26] Vesselin Ivanov, “Moving to a Java object environment:
Best practices of WebSphere Commerce migration and
LOQS”, December 2002. http://cas.ibm.com/toronto
/publications/TR-74.188 /27/ivanov.pdf

[27] Ying Zou, Kostas Kontogiannis, “A Framework for
Migrating Procedural Code to Object-Oriented
Platforms”, in Proceedings of the 8th IEEE Asia-Pacific
Software Engineering Conference, pp. 408-418, Macau,
China, December 2001.

[28] Yu Ping, Jianguo Lu, Terence C. Lau, K. Kontogiannis,
Tack Tong, and Bo Yi, “Migration of Legacy Web
Applications to Enterprise Java Environments – Net.Data
to JSP Transformation”, in Proceedings of CASCON
2003, Toronto, Canada, October 2003.

[29] Yu Ping and K. Kontogiannis, “Refactoring Web Sites to
the Controller-centric Architecture”, in Proceedings of 8th
European Conference on Software Maintenance and
Reengineering, Tampere, Finland, March. 2004.

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

