
A Methodology for Developing Transformations
Using the Maintainability Soft-Goal Graph

�

Ladan Tahvildari and Kostas Kontogiannis
Dept. of Electrical and Computer Eng.

University of Waterloo
Waterloo, Ontario
Canada, N2L 3G1�

ltahvild,kostas � @swen.uwaterloo.ca

Abstract

Over the past few years, we are experiencing a surge
of evolution problems related to legacy object-oriented sys-
tems. Object orientation provides means for systems to be
well-designed to meet numerous non-functional quality re-
quirements. However, mismanagement of the maintenance
process and ill-planned modifications usually are ampli-
fied in an object-oriented context. The paper presents a
re-engineering framework that defines and categorizes a
collection of source code transformations that aim to in-
troduce design patterns in an ill-structured object-oriented
system due to excessive maintenance process. The frame-
work allows for five categories of transformations to be de-
fined and associated through soft-goal dependency graphs
for the target system. A case study that illustrates the use
of the framework for the restructuring and introducing of
design patterns to the GNU AVL Library is presented.

1 Introduction

The re-engineering of legacy systems has become a ma-
jor concern in today’s software industry. Traditionally,
most re-engineering efforts were focussed on systems writ-
ten in traditional programming languages such as Fortran,
COBOL, and C [1, 3, 20, 21, 27]. However, over the past
few years we observe an increasing demand for the re-
engineering of object-based systems. It is of no surprise
that it becomes more and more difficult to maintain these
object-oriented systems.

The re-engineering of object-oriented legacy systems
requires a comprehensive framework to relate software

�
This work was funded by the IBM Canada Ltd. Laboratory, Center for

Advanced Studies in Toronto; also by the Ontario Graduate Scholarship
(OGS) of Canada.

transformation activities with specific requirements for the
new target migrant system. We refer to this approach as
“Quality-Driven Object-Oriented Re-engineering” [29, 32,
33]. More specifically, the major theme of the proposed ap-
proach is to exploit the synergy between requirements anal-
ysis [34], software architecture [13], and reverse engineer-
ing [6]. Understanding the architecture of an existing sys-
tem aids in predicting the impact evolutionary changes may
have on specific quality characteristics of the system [28].
Requirements analysis techniques, in turn, suggest what
concepts are most useful in understanding how an existing
system functions and in what manner it can evolve.

In previous work reported in [31], we proposed a layered
software transformation re-engineering model for object-
oriented systems that is driven by maintainability non-
functional requirement for the target system, and is to be ap-
plied at the architectural level. In this paper, we are partic-
ularly interested to apply proper transformations on a target
system as means to restructure the object-oriented legacy
system so that the new migrant system conforms with spe-
cific design patterns and therefore possibly meets maintain-
ability enhancement. The transformational steps are de-
vised in a way that specific design decision are achieved.
Such target design decisions are encoded as a soft-goal
graph [7] and help guiding the of application of the trans-
formation process.

This paper is organized as follows. Section 2 presents
the conceptual model of the proposed transformations. Sec-
tions 3 discusses each transformation in details using de-
scriptive notation. Section 4 associate the defined transfor-
mations to the maintainability soft-goal graph while Sec-
tion 5 discusses how one can modify the soft-goal graph
further by adding complex design pattern transformations.
Section 6 discusses a case study using the proposed ap-
proach. Section 7 presents related work. Finally, Section 8
provides the conclusion.

2 Conceptual Model of the Transformations

It has been argued in the software engineering commu-
nity that the use of design patterns [5, 12, 15, 16] has a
positive effect on system qualities. The process of devising
and composing transformations that introduce such design
patterns in an ill-designed object-oriented system poses an
investigating challenge for the re-engineering of such sys-
tems. The process is both a top-down for higher level trans-
formations, and a bottom-up for the lower level design mo-
tifs. In this paper a transformation framework illustrated in
Figure 1 is proposed.

Primitive DPs

Transformations

Investigavtive

Functions

Complex DPs

Transformations

Supporting

Functions

Positioning

Transformations

**

<<Check>>

<<Check>>
<<Check>>

<<Check>>

1..6

1..* Contribute

Contain

*

*

Use

Figure 1. Meta-Model of the Transformations.

In defining a transformation, it is necessary to specify
sets of preconditions and consequently assertions should be
made about the program, such that a certain class exists
or a given name-space is not already in use. For this pur-
pose, we define a set of investigative functions to enable
these assertions to be made as shown in Figure 1. Inves-
tigative functions serve two related roles. First, they are
implemented as actual operations that can be applied to an
object-oriented program to extract some information about
the program. Second, they are used as predicates examin-
ing whether a specific transformation can be applied in a
specific source code context. Examples include : i) to test
whether a method is in a certain class, ii) to test whether
there is a given class in the program.

In describing a transformation, it may be necessary to
extract richer content from the program code than the infor-
mation provided by the investigative functions. For this pur-
pose, we define supporting functions as shown in Figure 1.
For example, we may wish to build an interface from a class
based on the signatures of its public methods. Supporting
functions can be used to perform this type of task. We asso-
ciate preconditions and postconditions that are implemented
by the investigative functions as discussed above. The de-
pendency relationship between these two classes is depicted
in Figure 1. Examples from this category of functions in-

clude : i) construct and return an empty class, ii) construct
and return an interface that reflects all the public methods
of a given class. Investigative and supporting functions are
proper functions without any functional side-effects on the
program behavior.

A positioning transformation as shown in Figure 1 aims
to introduce refactorings [22] to the original system towards
achieving the desired target requirement (e.g., enhance the
maintainability). Most of them are standard and would be
part of any refactoring suite [11, 22], such as addClass [11]
operation.

In developing a transformation related to a particular de-
sign pattern, we aim to reuse previously defined transfor-
mations. For example, a class may register another class
only via an interface (we call ABSTRACTION). These de-
sign motifs lead to primitive design pattern transformations
as shown in Figure 1. Each of them is specified by describ-
ing how can be applied and what their effects may be.

� Transformation Process. This is a concise, step-by-
step description on how to carry out and implement a
transformation. The proposed transformation process
is facilitated by the use of the framework illustrated in
Figure 1. First, the assertions that must hold in or-
der to be able to apply a transformation are presented.
They pertain to the examination of the source code fea-
tures that must be present for the transformation to be
applied [28]. In defining these assertions, we use in-
vestigative functions. Second, the step-by-step of the
implementation using supporting functions and posi-
tioning transformations are applied. Finally, specific
conditions that must hold after a transformation is ap-
plied are evaluated using investigative functions.

� Possible Effects on Soft-Goals. The goal is to formal-
ize and automate if possible the application of trans-
formations that affect the specific target quality for the
migrant system. This part associates each transforma-
tion to one or more soft-goals. In this paper, we con-
sider only maintainability due to space limitation.

Consequently, the primitive design pattern transforma-
tions can be combined to produce complex transformations
related to different design patterns as shown in Figure 1. We
propose three ways to compose these transformations. One
way is sequencing where transformations or refactorings are
applied in order one after the other. The second way is set
iteration where a transformation or refactoring is performed
iteratively on a set of program elements. The third way is
concurrency where a set of transformations are performed
concurrently.

3 Primitive Design Pattern Transformations

As mentioned above, primitive transformations are de-
sign motifs that occur frequently. In this way, we con-
sider them as lower level constructs in our framework. Each
transformation in this category is denoted by a transforma-
tion process description and a description of its possible ef-
fect on target requirements.

3.1 ABSTRACTION Transformation

This transformation aims to add an interface to a class.
This enables another class to take a more abstract view of
the first class by accessing it via the newly added interface.
It requires two parameters namely : i) the name of the class
to be abstracted (c), and ii) the name of the new interface to
be created (newInterface).

� Transformation Process : For the applicability of the
transformation, we need first to evaluate preconditions
in the source code using investigative functions as fol-
lows : 1) the class c exists and 2) no class or interface
with the name newInterface exists. Then, the trans-
formation entails the following steps : 1) an interface
to be created using abstractClass supporting function
that reflects the public methods of this class, 2) the ad-
dition of this interface to the program using positioning
transformations such as addInterface(newInterface),
and 3) the addition of an implements link from the class
to the newly created interface using a positioning trans-
formation. Finally, the following conditions must hold
after applying the transformation : 1) a new interface
called newInterface exits, 2) the class c and the new
interface have the same public interface, and 3) an im-
plements link exists from the class c to the interface
newInterface.

� Possible effect on soft-goals : High Control Flow
Consistency(

�
), High Cohesion(

���
), High Data

Consistency(
���

), Low I/O Complexity (�).

3.2 EXTENSION Transformation

This transformation aims to construct an abstract class
from an existing class and to create an extends relation-
ship between the two classes. It is related to ABSTRAC-
TION transformation but rather than building a completely
abstract interface from the class, it builds an abstract
class where only certain specified methods are declared
abstractly. This transformation requires three parameters
namely : i) the name of the existing class (oldClass), ii) the
name of the class to be created (newClass), and iii) the name
of the methods to be abstracted (abstractMethods).

� Transformation Process : For the applicability of the
transformation, we need first to evaluate preconditions
in the source code features using investigative func-
tions as follows : 1) no class or interface with the name
newClass may exist, 2) the oldClass must exist, and
3) any fields used by methods that are to be pulled
up must not be public. Then, the transformation re-
quires for its application the following steps : 1) to
create an empty class called newClass using the empty-
Class supporting transformation, 2) to insert the newly
created class into the inheritance hierarchy just above
the oldClass using the addClass positioning transfor-
mation, 3) to add for each method in abstractMethods
to this new class using addMethod positioning trans-
formation, and 4) to move any methods not in ab-
stractMethods from the oldClass to the newly created
class using the pullUpMethod positioning transforma-
tion. Finally, these conditions must hold after the ap-
plication of the transformation : 1) a new class called
newClass exists, 2) the oldClass and its new superclass
define precisely the same type, 3) all methods in old-
Class not in abstractMethods are moved to the super-
class, 4) any method in abstractMethods will have an
abstract method declared in the class called newClass,
and 5) any fields used by th moved methods are also
moved to the superclass.

� Possible effect on soft-goals : High Control Flow
Consistency(

�
), High Cohesion(

���
), High Module

Reuse (
���

), Low Data Coupling(�).

3.3 MOVEMENT Transformation

This transformation aims to move parts of an existing
class to a component class, and to set up a delegation rela-
tionship from the existing class to its component. This one
requires three parameters namely : i) the name of the ex-
isting class (oldClass), ii) the name of the new class to be
created (newClass), and iii) the name of the methods to be
moved (moveMethod.

� Transformation Process : For the applicability of the
transformation, we need to evaluate preconditions in
the source code features using investigative functions
as follows : 1) the oldClass must exist, 2) the name
of the newClass must not be used, and 3) the meth-
ods to be moved must belong to the oldClass, Then,
the transformation requires the following steps for its
implementation : 1) an empty class to first be added
to the program using addClass positioning transfor-
mation, 2) an exclusive component of this class to be
added to the oldClass, 3) each method to be moved
first to be “abstracted” using the abstractMethod sup-
porting function, 4) at this point, the moveMethods po-

sitioning transformation may be invoked to move the
method to the new class. Finally, these conditions must
hold after applying the transformation : 1) a new class
called newClass has been added to the program, 2) the
class oldClass has a field called “movement”, 3) all
methods or fields defined directly or indirectly in old-
Class that are used by a method in moveMethod are
now public, 4) the given methods have been moved to
the newClass, and 5) the oldClass delegates invoca-
tions of the moved methods to methods that exhibit the
same behavior in the newClass.

� Possible effect on soft-goals : High Modularity(
���

),
Low Control Flow Coupling(�), High Module
Reuse(

�
).

3.4 ENCAPSULATION Transformation

This transformation aims to be applied when one class
creates instances of another, and it is required to weaken the
association between the two classes by packaging the object
creation statements into dedicated methods. This transfor-
mation requires three parameters namely : i) name of the
class to be updated (creator), ii) name of the product class
(product), and iii) name of the new constructor method (cre-
ateProduct).

� Transformation Process : For the applicability of the
transformation, we need to evaluate preconditions in
the source code features using investigative functions
as follows : 1) the class creator exists and 2) the cre-
ator class defines no method called createProduct that
have the same signature as a constructor in the class
product. Then, the transformation requires the follow-
ing steps to be implemented : 1) for every constructor
in the product class, a new method called createProd-
uct is created using makeAbstract supporting function
which performs this construction and to be added to
the creator class using the supporting functions, 2) all
product objects created in the creator class are re-
placed with invocations of the appropriate createProd-
uct method using a positioning transformation to re-
place the given object creation expression e with an in-
vocation of the method createProduct using the same
argument list. Finally, these conditions must hold after
applying the transformation : 1) for every product ob-
ject creation expression in the creator class, a method
called creatorProduct that creates the same object is
added to the creator class, and 2) every product ob-
ject creation expression in the creator class that is not
contained in a method called createProduct is deleted.

� Possible effect on soft-goals : Low Control Flow
Coupling(

�
), High Data Consistency(�), High

Encapsulation(
���

), Low Data Coupling(
���

).

3.5 BUILDRELATION Transformation

This transformation is appropriate when one class (c1)
uses, or has knowledge of, another class (c2), and the rela-
tionship between the classes to operate in a more abstract
fashion via an interface is required. This transformation re-
quires four parameters namely : i) the name of the class to
be used (c2, ii) the name of the super class (c1), iii) the
name of the abstract interface to be used (usedInterface),
and iv) the name of methods (methodName.

� Transformation Process : For the applicability of
the transformation, we need to evaluate preconditions
in the source code features using investigative func-
tions as follows : 1) the interface usedInterface and
the classes c1 and c2 exist, 2) an implements link ex-
ists from the class c2 to the interface usedInterface,
3) any static methods in the c2 class are not referenced
through any of the object references to be updated, and
4) any public fields in the c2 class are not referenced
through any of the object references to be updated.
Then, the transformation requires the following steps
to be implemented : 1) to register each object refer-
ence in the class c1 that is of the type c2, 2) to exclude
any references that are contained in any method called
methodName, 3) to modify their existing types from
the class c2 to the usedInterface. Finally, these con-
ditions must hold after applying the transformation :
1) all references to the c2 class in the c1 class not in
methodName have been changed to refer instead to the
usedInterface and 2) the initial conjuncts of the pre-
condition simply ensure that referenced classes and in-
terface exist and have the proper relationship.

� Possible effect on soft-goals : High Control Flow
Consistency(

���
), Low Control Flow Coupling (

�
),

Low I/O Complexity (�).

3.6 WRAPPER Transformation

This transformation aims to “wrap” an existing receiver
class with another class, in such a way that all requests to
an object of the wrapper class are passed to the receiver
object it wraps, and similarly any results of such requests
are passed back by the wrapper. It requires two parameters
namely : i) the name of a single receiver class or a set of
receiver classes to be wrapped (client), ii) the name of an
interface that reflects how the receivers are used in the client
classes (interfaceName), and iii) the name of the wrapper
class (wrapperName).

� Transformation Process : For the applicability of the
transformation, we need to evaluate preconditions in
the source code features using investigative functions

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

	�		�	
	�	

�

�

�

������
���
������
���

�

�

�

������
���

High Maintainability

High Control
Quality

Modularity
High

Cohesion
High

High Module
Reuse

High Structure Quality

High Source Code Quality High Documentation Quality

Structure

BUILDRELATION ABSTRACTION MOVEMENT EXTENSION ENCAPSULATION

High

Low Data CouplingLow I/O Complexity

Encaps.
High

+

-

_

++

++
+ _ +

++ +++

-

++
+

-

++

Consistency
Flow

Control
High

WRAPPER

++
--

+

+

+

Low
Control

Flow
Coupling Data Consistency

Legend

: NFR Soft-Goal

: Operationalization

: Contribution Link

Figure 2. Relating Primitive Design Patterns Transformations to Maintainability Soft-Goal Graph.

as follows : 1) the given interface must exist and 2) the
name for the new wrapper class is not in use. Then, the
transformation requires the following steps to be im-
plemented : 1) the wrapper class is created and added
to the program and 2) the wrapper class is used to
wrap each of the receiver classes and, consequently,
any clients that use these receiver classes are updated
to wrap each construction of a receiver class with an in-
stance of the wrapper class. Finally, the following con-
ditions must hold after applying the transformation :
1) the wrapper class has been added to the program,
2) all object references to receiver classes in client have
been changed to wrapperName, and 3) all creations of
receiver of objects in the client have been updated.

� Possible effect on soft-goals : High Cohesion (
�

),
High Control Flow Consistency(

�
), Low Control Flow

Coupling (
�

), Low I/O Complexity (� �).

4 Modifications on Maintainability Graph

While the maintainability soft-goal graph as presented
in [32] provides specific interpretation of what the ini-
tial non-functional requirement (NFR) of “maintainability”
means, it does not yet provide means for guiding the trans-
formation process and actually achieving the desired qual-
ity. At some point, when the non-functional requirements
have been sufficiently refined, one must be able to identify
and associate actions for achieving these NFR (which are
treated as NFR softgoals) and then assess the specific so-
lutions for the target system. It is important to note that
there is a “gap” between NFR softgoals and development
techniques. This section associates primitive design pattern
transformations with the maintainability soft-goal graph as

shown in Figure 2. We call these associations operational-
izations of the NFR soft-goals [7]. Like other softgoals,
operationalizing softgoals makes a contribution, positive or
negative, towards parent softgoals in terms of relations such
as
�����

, ��� ,
�

,
���

, or � , ��� .
The proposed primitive design pattern transformations

provide a body of knowledge to modify soft-goal depen-
dency graph for maintainability as shown in Figure 2. For
example, let us consider the challenge of achieving “High
Cohesion” for a module in order to satisfy “High Maintain-
ability” as the top level target goal. One possible alterna-
tive is to use the ABSTRACTION primitive design patterns
transformation as shown in Figure 2. In this case, AB-
STRACTION is a development technique or operational-
ization that can be implemented. It is a candidate for the
task of meeting the high cohesion NFR as a positive posi-
tive contribution (

���
). This is contrasted with “High Co-

hesion”, which is still a software quality attribute, i.e., a
non-functional requirement. We say that the ABSTRAC-
TION transformation operationalizes high cohesion. We
also say that the high cohesion NFR is operationalized
by ABSTRACTION transformation. Operationalizing soft-
goals are drawn as filled circles and are just another type of
soft-goal graph nodes.

5 Complex Design Pattern Transformations

In this section, we discuss how design patterns in the
GoF book [12] can be defined as a composition of the prim-
itive design pattern transformations that were discussed in
Section 3. This further step also enable us to enhance the
maintainability soft-goal graph in such a way that we have
the target design decisions as leafs in the soft-goal graph
as shown in Figure 3. Within the limit space of this paper,

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

	
	
	

���
���
���

���
���
���

�

�

�

���
���
���

High Maintainability

High Control
Quality

Modularity
High

Cohesion
High

High Module
Reuse

High Structure Quality

High Source Code Quality High Documentation Quality

Structure

BUILDRELATION ABSTRACTION MOVEMENT EXTENSION ENCAPSULATION

High

Low Data CouplingLow I/O Complexity

Legend

Encaps.
High

: Operationalization

: NFR Soft-Goal

: Target

+

-

_

++

++

++

Control
Low

+ _ +
++ +++

+

-

++
+

-

Flow Coupling
++

Consistency
Flow

Control
High

: Design Target Link

: Contribution Link

DP Generator

Composite or
Prototype

Factory Method or
Abstract Factory
DP Generator DP Generator

Decorator or Proxy
Builder or Adaptor or State or

Strategy
DP Generator

Singleton
DP DP

GeneratorGenerator

Bridge

DP Generator

Chain of
Responsibility

WRAPPER

Template
Method DP
Generator

Memento
DP
Generator

Iterator
DPCommands

DP
Generator Generator

Data Consistency

--

+
+

+

Figure 3. Relating Complex Design Patterns Transformations to Maintainability Soft-Goal Graph.

we present only the creation of a subset of the GoF pat-
terns even though all of them are shown in Figure 3. Some
of the fundamental and commonly used GoF patterns that
we consider are the “Factory Method” from the Creational
Patterns category, the “Composite” from the Structural Pat-
terns category, and the “Iterator” from the Behavioral Pat-
terns category. These are sufficiently complex to illustrate
the use of the proposed transformation composition frame-
work.

The intend of the Factory Method pattern is to define
an interface for creating an object, but let subclasses de-
cide which class to instantiate [12]. The Factory Method
Design Pattern Generator lets a class defer its instantia-
tion to subclasses. The transformation consists of the fol-
lowing steps : 1) the application of the “ABSTRACTION”
primitive design pattern transformation to generate an inter-
face that reflects how the creator class uses the instances of
the product that it creates, 2) the application of the “EN-
CAPSULATION” primitive design pattern transformation
so that the construction of product objects can be encapsu-
lated inside dedicated, overridable methods in the creator
class, 3) the application of the “BUILDRELATION” prim-
itive design pattern transformation so that the creator class
can register the product class only via the interface created
in the previous step, and 4) the application of the “EXTEN-

SION” primitive design pattern transformation so that the
creator class can be inherited from an abstract class where
the construction methods are declared abstractly.

The intend of the Composite pattern is to enable a client
class to treat a single component object or a composition of
objects in a uniform fashion [12]. The result of the Com-
posite Design Pattern Generator transformation is that the
client class uses the component class through its interface. It
is also easy to extend the client so that it uses compositions
of components in place of the single component instances.
The transformation consists of the following steps : 1) the
application of the “ABSTRACTION” primitive design pat-
tern transformation on the component class in order to pro-
duce the component interface, and 2) the application of the
“BUILDRELATION” primitive design pattern transforma-
tion in order to abstract the client class from the component
class and use the component interface instead.

The intend of the Iterator pattern is to enable sequen-
tial access to the elements of an aggregate object without
exposing the underlying representation of the object [12].
The Iterator Design Pattern Generator allows for multiple
concurrent iterations over the aggregate object in a way that
the underlying structure of the aggregation is not exposed.
The transformation consists of the following steps : 1) the
application of the “MOVEMENT” primitive design pattern

transformation to copy the iteration methods and fields to
the new iteration class, which is parameterized with an in-
stance of the aggregate class and delegates any internally
generated, more iterator requests to this instance, 2) the ap-
plication of the “ABSTRACTION” primitive design pattern
transformation on the iterator class in order to produce an
iterator interface, and 3) the application of the “ENCAPSU-
LATION” primitive design pattern transformation to add an
construction method for the iterator to the aggregate class.

6 A Case Study : GNU AVL Library

In this section, we discuss the usage of the proposed
transformations towards the design and development of
a quality and requirements-driven software re-engineering
framework. We have applied this layered catalogue of trans-
formations on the GNU AVL Library which is a public do-
main library written in

�
for sparse arrays, AVL, Splay

Trees, and Binary Search Trees [14]. The library also in-
cludes code for implementing single and double linked lists.
The original system was organized around

�
structs and

an elaborate collection of macros for implementing tree
traversals, and simulating polymorphic behavior for insert-
ing, deleting and tree re-balancing operations. The library
consists of a set of core modules that implement basic con-
structs. These include lists and binary trees. Other, slightly
more complex constructs are built on top of the basic ones.
These includes sparse arrays and data caches. The system is
composed of ����� KLOC of

�
code, distributed in � source

files and � library files.

ubi_btRoot ubi_btNode

getroot()
getcount()
...

getLink(...)
getdata()
...

creates

0..1

Figure 4. A Part of Object Model of AVL.

For this experiment, we have started from an object-
oriented version of AVL Library [23] that was not struc-
tured and did not support design patterns for its implementa-
tion. Our objective is to transform this object-oriented sys-
tem to a new design that conforms with specific design pat-
terns and its maintainability characteristics are enhanced.
For this task, we have first considered Creational Patterns
as they are concerned with the class instantiation process.
They become more important as systems evolve to depend
more on object composition than class inheritance [30]. The
Factory Method Generator of this category defines an inter-
face for creating an object but lets subclasses decide which
class to instantiate. By selecting this design decision, we

need to apply the four primitive design pattern transfor-
mations namely : ABSTRACTION, ENCAPSULATION,
BUILDRELATION, and EXTENSION.

By analyzing the code and checking its features through
investigative functions, it is concluded that there are two
classes namely : ubi btRoot and ubi btNode that are of par-
ticular interest as shown in Figure 4 (because of space lim-
itation, we illustrate the use of the layered architecture of
transformations in a subset of the AVL library code). The
ABSTRACTION transformation can be used to add an in-
terface to ubi btNode. This enables ubi btRoot to take a
more abstract view of this class by accessing it via this
interface that is called ListNode. The effect of applying
this transformation is depicted in Figure 5. ListNode in-
terface has been added that provides an abstract view of the
ubi btNode class.

ubi_btRoot

getroot() creates

0..1

getLink(...)

ubi_btNode

getLink(...)

getdata()
...

Interface

ListNode

...
getdata()

...
getcount()

Figure 5. The Same Part of AVL After Applying
ABSTRACTION Transformation.

The contributions of this transformation towards main-
tainability are denoted as follows :
��� �	� ��� ��

����������������������� ��!"�����$#���#%�'&���(*)+� �-,%.

�/�+�0�1���+&�#*� ���2� ����,',%.
��� ��

����� �435�'3��1���$#*�6#7�'&���(*)�� ����,8.

9 ��!;:�< � ����=?>+��&�@��/��)��
�

,',A, � (1)

Now, we can apply the ENCAPSULATE transformation
as ubi btRoot creates instances of ubi btNode and it is re-
quired to weaken the binding between two classes by pack-
aging the object creation statements into dedicated methods.
For each constructor of the ubi btNode class, a method of
the same signature has been added to the ubi btRoot class
that returns the same object as the corresponding construc-
tor as shown in Figure 6. Also, all creations of ubi btNode
objects in the ubi btRoot class have been updated to invoke
these methods instead. The contributions of this transfor-
mation towards maintainability are denoted as follows :
��� �	� ��� ��

����������������������� ��!"�����$#���#%�'&���(*)+� �-,%.

�/�+�0�1���+&�#*� ���2� ����,7.
9 ��!"�������������6������!"�1��B�>��������$� ��,7.

�/�+�0C?��(83�>0#�B+��35��� ���2� ����,',%.

��� ��

����� �435�'3��1���$#*�6#7�'&���(*)�� ��,7.
9 ��!;:�< � ����=?>+��&�@��/��)��

�
,7.

9 ��!��435�'3+����B5>+���6���D� � ��,A,', � (2)

ubi_btNode

getdata()0..1

creates

...

getLink(...)

ListNode

ubi_btRoot

getLink(...)
getdata()

Interface

...

getroot()
getcount()
createubi_btNode()
:ubi_btNode

Replace all

new ubi_btNode();

createubi_btNode();

ubi_btNode

createubi_btNode(){

return new ubi_btNode(); }

with

Figure 6. The Same Part of AVL After Applying
ENCAPSULATION Transformation.

Then, we can apply the BUILDRELATION transfor-
mation as in the ubi btRoot class all references to the
ubi btNode class should have been replaced by references
to the ListNode interface as shown in Figure 7.

ubi_btNode

getdata()0..1

creates

...

getLink(...)

ListNode

ubi_btRoot

getLink(...)
getdata()

Interface

...

getroot()
getcount()
createubi_btNode()
:ubi_btNode

Replace all references

the interface ListNode

to the class ubi_btNode with

Figure 7. The Same Part of AVL After Applying
BUILDRELATION Transformation.

The contributions of this transformation towards main-
tainability are denoted as follows :

�����	� � � ��

���������������������1����!"�����$#��6#7�'&���(*)+� � � ��,7.

�����������+&�#������2� � ��,%.
9 ��!"�1������������������! ����B�>����6���D� ����,7.

������C ��(83�>0#�B���35�������2� � ��,A,7.
��� ��
 �/�+� �435�'3+�����$#���#%�'& ��(�)+� �?,7.

9 ��! : < � ����= >���& @�����)+�
���

,7.
9 ��! �43��'3+����B5>+�6�����$� ����,',', � (3)

The last step is the application of the EXTENSION
transformation to construct an abstract class which is called
abs ubi btRoot from ubi btRoot and creates an extends
relationships between these two classes. The original
ubi btRoot class simply inherits this class and provides def-
initions for the construction methods as shown in Figure 8.

ubi_btNode

getdata()
...

0..1

creates

...

getLink(...)

ListNode

ubi_btRoot

getLink(...)
getdata()

Abstract Class Interface

createubi_btNode()
:ubi_btNode

getroot()
getcount()
createubi_btNode()
:ubi_btNode

abs_ubi_btRoot

Figure 8. The Same Part of AVL After Applying
EXTENSION Transformation.

Finally, the contributions of this transformation towards
enhancing maintainability are denoted as follows :
�����	�

��� ��
 �/�+�0�������������6������!"�1���$#*�6#7�'&���(*)�� � � ����,7.

������������& #������2� � � ��,7.
9 ��! ��������������������! ����B5>+���6���D� � ��,%.

������C ��(83�>0#�B���35�������2� � ��,%.

����� � ���+B+��& � & B�# & � � ��,A,7.

��� ��
 �/�+� �435�'3+�����$#���#%�'& ��(�)+� �?,7.
9 ��! : < � ����= >���& @�����)+�

���
,7.

9 ��! �43��'3+����B5>+�6�����$� ��,',A, � (4)

This last equation can be further simplified. The first OR
denotes that after applying those four transformations, the
target code has positive impact on High Control Structure
Quality. However, the second OR denotes that after apply-
ing those transformations, High Structure Quality of code
has not been changed. The AND contribution between these
two sub-goals as shown in Figure guides the re-engineering
activity towards a system which may be more maintainable.

7 Related Work

Software quality has been recognized to be an impor-
tant topic since the early days of software engineering [24].
Over the past 30 years, a number of researchers and practi-
tioners alike have examined how systems can meet specific
software quality requirements [4, 17].

Complementary to the product-oriented approaches, the
NFR (Non-Functional Requirements) Framework [7] takes
a process-oriented approach to dealing with quality require-
ments. The NFR framework is one significant step in mak-
ing the relationships between quality requirements and de-
sign decisions explicit. The framework uses non-functional
requirements to drive design to support architectural design
level and to deal with the changes.

The recent interest on software architecture and design
patterns has refocused the attention on how these software
qualities can be achieved [18]. Klein and Barbacci have an-
alyzed the relationship between software architecture and
quality attributes [19, 2]. The Software Engineering In-
stitute’s (SEI’s) work in Attribute-Based Architecture Style
(ABAS) [19] was the first attempt to document the relation-
ship between architecture and quality attributes. By codify-
ing mechanisms, architects can identify the choices neces-
sary to achieve quality attribute goals.

The re-engineering of legacy systems has become a ma-
jor concern in today’s software industry. Traditionally,
most re-engineering efforts were focused on systems writ-
ten in traditional programming languages such as Fortran,
COBOL, and C [20, 27]. Unfortunately, none of them pro-
vides means for guiding the re-engineering process within
the context of achieving specific target qualities for the mi-
grant system. The problem of coping with qualities or non-
functional requirements during re-engineering has been ex-
perimentally tackled by developing a number of tools that
met particular quality requirements [3, 10, 23].

Our idea on transformations which improve the design of
the existing code builds upon the work of William Opdyke
on refactoring C++ programs [22] where a suite of low-
level refactorings that can be applied to a C++ program
is proposed. This work was also used as the basis for the
SmallTalk Refactoring [25]. Our work extends that prior
work by using refactorings (positioning transformations) as
a basis for developing a more sophisticated type of transfor-
mations that can introduce a design pattern and relate them
to non-functional requirements to guide re-engineering ac-
tivities.

Similarly, Eden [9] has developed a prototype tool called
the patterns wizard that aims to apply a design pattern to an
Eiffel program but it is not suitable for the re-engineering of
legacy code. This work is very similar to ours in that it takes
a meta-programming approach and organizes the transfor-
mations into four levels : design patterns (our complex

design pattern transformations), micro-pattern (our primi-
tive design pattern transformations), idioms (our position-
ing transformations), and the abstract syntax tree.

The works of Schulz [26] and Cinneide [8] are also
related to the work presented in this paper. Specifi-
cally, in [26] the refactoring operations [22] were merged
with the so-called design operators. However, in [8] the
author merge refactoring work with a library of mini-
transformations.

However, not much effort has been invested for system-
atically documenting quality attributes as a guide for the
software re-engineering process at the architectural level.
In this context, the proposed transformation framework al-
lows for specific quality requirements for the migrant sys-
tem to be modeled as a collection of soft-goal graphs. More-
over, it allows for the selection of transformations that need
be applied at the architectural (design) level during the re-
engineering process and towards achieving specific quality
requirements.

8 Conclusion

We have presented an application of the proposed soft-
ware transformation using maintainability soft-goal graph
to support object-oriented software re-engineering at the ar-
chitectural level. The framework enables for the transfor-
mations to be modeled in a language independent way. Also
it enables for the reuse and composition of existing transfor-
mations.

We believe that this framework is noteworthy for two
main reasons. First, it attempts to address a problem
that challenges the research community for several years,
namely the maintenance of object-oriented mission critical
systems. Second, it aims to devise a workbench in which re-
engineering activities do not occur in a vacuum, but can be
evaluated and fine-tuned in order to address specific quality
requirements for the new target system such as enhance-
ments in maintainability.

Our current work involves applying this methodology to
generate a broader variety of design patterns. Also, we work
on extensions of the framework that allow for the estimation
of the impact a transformation has on maintainability and
other non-functional requirements (e.g., performance) when
applied to a software system. We are also investigating al-
gorithmic processes as a constraint satisfaction problem that
can be used to automate the selection and application of the
transformations given specific re-engineering scenario.

For this work, we collaborate with the IBM Center for
Advanced Studies at the IBM Toronto Laboratory and Con-
sortium for Software Engineering Research.

References

[1] R. S. Arnold. Software Re-engineering. IEEE Computer
Society Press, 1993.

[2] M. Barbacci, R. Ellison, J. Stafford, C. Weinstock, and
W. Wood. Quality attribute workshops. Technical report
cmu/sei-2001-tr-010, Software Engineering Institute, May
2001.

[3] I. Baxter and C. Pidgeon. Software change through design
maintenance. In Proceedings of the IEEE International Con-
ference on Software Maintenance (ICSM), pages 250–259,
October 1997.

[4] B. Boehm et al. Characteristics of Software Quality. Else-
vier North-Holland Publishing Company, Inc., 1978.

[5] F. Buschmann et al. Pattern-Oriented Software Architec-
ture : A System of Patterns. John Wiley and Sons, 1999.

[6] E. J. Chikofsky and J. H. CrossII. Reverse engineering and
design recovery : A taxonomy. IEEE Software, pages 13–17,
January 1990.

[7] L. K. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-
Functional Requirements in Software Engineering. Kluwer
Publishing, 2000.

[8] M. O. Cinneide. Automated Application of Design Patterns :
A refactoring Approach. PhD thesis, Department of Com-
puter Science, Trinity College, Dublin, 2000.

[9] A. Eden, A. Yehudai, and J. Gil. Precise specification and
automatic application of design patterns. In Proceedings
of the IEEE Automated Software Engineering (ASE), pages
143–152, November 1997.

[10] P. Finnigan et al. The software bookshelf. IBM Systems
Journal, 36(4):564–593, November 1997.

[11] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[12] E. Gamma, R. Helm, R. Jahnson, and J. Vlissides. Design
Patterns : Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[13] D. Garlan and M. Shaw. An Introduction to Software Archi-
tecture. World Scientific Publishing Co., 1993.

[14] Gnu avl libraries, 1999. Also available at
http://www.interads.co.uk/˜crh/ubiqx.

[15] M. Grand. Pattrens in Java, volume 1. John Wiley & Sons,
1998.

[16] M. Grand. Pattrens in Java, volume 2. John Wiley & Sons,
1999.

[17] International organization for standardization (iso). In-
formation Technology, Software Product Evaluation,
Quality Characteristics and Guidelines for Their Use,
ISO/IEC 9126, 1996.

[18] R. Kazman, L. Bass, G. Abowd, and M. Webb. Saam: A
method for analyzing the properties of software architec-
tures. In Proceedings of the International Conference on
Software Engineering (ICSE), pages 81–90, May 1994.

[19] M. Klein, L. Bass, and R. Kazman. Attribute-based ar-
chitecture styles. Technical Report CMU/SEI-99-TR-022
ADA371802, Software Engineering Institute, Carnegie Mel-
lon University, Pittsburgh, PA, 1999.

[20] K. Kontogiannis, J. Martin, K. Wong, R. Gregory, H. Műller,
and J. Mylopoulos. Code migration through transforma-
tions : An experience report. In Proceedings of IBM CAS-
CON’98 Conference, pages 1–13, 1998.

[21] H. W. Miller. Re-engineering legacy software systems. Dig-
ital Press, 1998.

[22] W. Opdyke. Refactoring Object-Oriented Framework. PhD
thesis, University of Illinois, 1992.

[23] P. Patil. Migration of procedural systems to object-oriented
architectures. Master’s thesis, Department of Electrical and
Computer Engineering, University of Waterloo, 1999.

[24] R. S. Pressman. Software Engineering: A Practitioner’s
Approach. McGraw Hill, 2000.

[25] D. Roberts. Eliminating Analysis in Refactoring. PhD thesis,
University of Illinois at Urbana-Champaign, Department of
Computer Science, 1999.

[26] B. Schulz, T. Genssler, B. Mohr, and W. Zimmer. On the
computer aided introduction of design patterns into object-
oriented systems. In Proceedings of the

�������
TOOLS Con-

ference, 1998.
[27] H. Sneed and E. Nyary. Down-sizing large application pro-

grams. Journal of Software Maintenance: Research and
Practice, 6(5):105–116, 1994.

[28] L. Tahvildari, R. Gregory, and K. Kontogiannis. An ap-
proach for measuring software evolution using source code
features. In Proceedings of the IEEE Asia-Pacific Software
Engineering (APSEC), pages 10–17, Takamatsu, Japan, De-
cember 1999.

[29] L. Tahvildari and K. Kontogiannis. A workbench for qual-
ity based software re-engineering to object-oriented plat-
forms. In Proceedings of the ACM International Conference
in Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA) - Doctoral Symposium, pages 157–
158, Minneapolis, Minnesota, USA, October 2000.

[30] L. Tahvildari and K. Kontogiannis. On the role of design pat-
terns in quality-driven re-engineering. In Proceedings of the
IEEE �

���
European Conference on Software Maintenance

and Re-engineering (CSMR), pages 230–240, Hungary, Bu-
dapest, March 2002.

[31] L. Tahvildari and K. Kontogiannis. A software trans-
formation framework for quality-driven object-oriented re-
engineering. In Proceedings of the IEEE International Con-
ference on Software Maintenance (ICSM), Quebec, Mon-
treal, October 2002.

[32] L. Tahvildari, K. Kontogiannis, and J. Mylopoulos.
Requirements-driven software re-engineering. In Proceed-
ings of the IEEE 	 ��� International Working Conference on
Reverse Engineering (WCRE), pages 71–80, Stuttgart, Ger-
many, October 2001.

[33] L. Tahvildari, K. Kontogiannis, and J. Mylopoulos. Quality-
driven software re-engineering. The Journal of Systems and
Software, Special Issue on : Software Architecture - Engi-
neering Quality Attributes, to appear.

[34] R. Wieringe. Requirements Engineering: Frameworks for
Understanding. John Wiley & Sons, 1996.

