
A Graph Pattern Matching Approach to Software Architecture Recovery �

Kamran Sartipi1 Kostas Kontogiannis2

University of Waterloo
Dept. of Computer Science1 and,

Dept. of Electrical & Computer Engineering2

Waterloo, ON. N2L 3G1, Canada
fksartipi, kostasg@swen.uwaterloo.ca

Abstract

This paper presents a technique for recovering the high
level design of legacy software systems based on pattern
matching and user defined architectural patterns. Architec-
tural patterns are represented using a description language
that is mapped to an attributed relational graph and al-
lows to specify the legacy system components and their data
and control flow interactions. Such pattern descriptions are
viewed as queries that are applied against an entity-relation
graph that represents information extracted from the source
code of the software system. A multi-phase branch and
bound search algorithm with a forward checking mecha-
nism controls the matching process of the two graphs by
which, the query is satisfied and its variables are instanti-
ated. An association based scoring mechanism is used to
rank the alternative results generated by the matching pro-
cess. Experimental results of applying the technique on the
Xfig system are also presented.

1 Introduction

The inherent complexity of large legacy software sys-
tems has been regarded as a major issue for the maintenance
and evolution of these systems. Due to prolonged mainte-
nance, the architectural design of a legacy system constantly
deviates from its original design. In this context, archi-
tectural recovery has been considered as the front-line for
many software analysis and reengineering activities. Dif-
ferent approaches view the software architecture recovery
as a clustering problem [8], constraint satisfaction problem
(CSP) [20], graph partitioning problem [4], and visualiza-
tion and composition problem [11, 6]. We view the architec-
tural recovery as an approximate graph matching problem.

�This work was funded by IBM Canada Ltd. Laboratory - Center for
Advanced Studies (Toronto) and the National Research Council of Canada.

In this approach, an Architectural Query Language (AQL)
provides means for representing high level descriptions of
the software system usually referred to as the conceptual ar-
chitecture of the system. An inexact graph matching engine
provides an optimal matching between the graph that origi-
nates from the AQL query, and the graph that represents the
data and control flow properties of the software system ob-
tained from parsing the source code. In this context, the pat-
tern matching can be viewed as a process that determines an
optimal sequence of graph edit operations (insertion, dele-
tion, relabeling) among nodes and edges of the two graphs,
so that a given query (i.e., architectural description) can be
satisfied by information obtained from the source code of
the software system.

In real world applications such as: image processing,
pattern recognition, circuit layout design, computer network
routing, traffic control, and software reverse engineering, an
interesting problem is to decompose a large input graph into
regions (partitions) with particular topological properties
and region inter-connections which conform with a generic
pattern. In such applications, the user defines a generic pat-
tern and the desired topological property of the regions. The
pattern matching engine then tries to find a sub-graph of
the input graph that closely (not exactly) matches with the
generic pattern (i.e., inexact graph matching [18]).

The proposed graph matching process consists of two
major phases: i) restricting the search space of the graph
matching by pre-processing the entire input graph and pro-
ducing a database of graph regions, each loosely satisfy-
ing a desired property; and ii) applying a graph matching
algorithm that approximately matches an architectural pat-
tern, represented as a query, against the database of graph
regions.

2 Related work

The following approaches to software architectural re-
covery use search techniques to recover a defined pattern
in a software system. The Murphy’s reflexion model al-
lows the user to test a high level conceptual model of the
system against the existing high level relations between the
system’s modules [12]. Kazman evaluates the architectural
complexity of a system by searching for architectural pat-
terns [7]. Some clustering techniques also provide mod-
ularization of a software system based on file interactions
and partitioning methods [8]. In contrast to these works, we
generate an abstract pattern graph as a query whose proper-
ties can be arbitrary changed, and then an approximation of
this pattern is found in the software system graph.

A number of researchers have investigated the applica-
tion of graph matching in different problem domains. Mess-
mer compares an input graph with a collection of proto-
type graphs by decomposing the prototypes into primitive
graphs which are stored in a database, and comparing them
against the primitives of the input graph [9]. Eshera and
Fu decompose the matching graphs into simple trees to be
matched [5]. Shapiro and Haralick define structural descrip-
tion with weighted nodes and edges to evaluate cost for in-
exact matching [18]. Bunke and Allermann use graph edit
operations and generate a state space to be searched for a
minimum path [3]. In our approach, we generate a database
of graph regions and incrementally match a pattern graph
against this database, which is close to the approaches pro-
posed by Messmer and Eshera.

The technique in this paper also relates to our previous
work on developing a software architecture recovery frame-
work. In [16], we presented an Architectural Query Lan-
guage (AQL) for describing the high-level abstraction of a
software system in terms of abstract modules and intercon-
nections, whose module variables are to be instantiated by
a search engine. We also applied data mining techniques on
the reverse engineering domain. In [17], we presented the
software architecture recovery as a Valued Constraint Sat-
isfaction (VCSP) problem using the AQL queries, where
the module properties and the links between modules are
viewed as constraints among the module variables to be sat-
isfied. In the current paper, the AQL query is presented
as an abstract pattern graph which is expanded into a pat-
tern graph and then inexactly matched against a database of
graph regions extracted from the software system.

3 A framework for architectural recovery

The proposed framework for software architecture re-
covery consists of three phases (Figure 1):

In the first phase (conversion), the software system is
parsed and the source code entities (i.e., file, function, vari-

mG

(2)

Architecture

&
entities

un-grouped
Distributing

Relocating

(DISTRIBUTION)

(3)

GA

(1)

Generating
database of

graph-regions

(CONVERSION)

(PATTERN MATCHING)

entities among
Matching

the constrained form

Generating

Matched
graph

Domain & Document
(QUERY GENERATION)

G

of AQL query

graph pattern

regions against
blocks of entities

S(G)

Software
system

AQL query

Figure 1. The graph pattern matching frame-
work for software architecture recovery.

able, and type)1 and their relationships (i.e., call, define, set,
update, and declare), are extracted. The extracted low-level
relations are aggregated into more abstract relations (i.e.,
call and use-resource) to generate the source model graph
G (Figure 2). Based on data mining techniques, graph G

is partitioned into a collection of highly connected regions,
which serve as the source model database for the matching
engine. The application of data mining technique in parti-
tioning process has been discussed in [17].

In the second phase (analysis), based on: maintainer’s
knowledge of domain, system document inspection, and/or
source model analysis, an abstract pattern of the system ar-
chitecture is formulated in the form of an AQL query. The
AQL query is expanded into a pattern graph Gp which is
approximately matched against the source model graph G.
In other words, the pattern matching algorithm results in
a graph Gm which, after some insertion, deletion, and re-
labeling operations, is isomorphic or similar to the pattern
graph Gp. This phase presents the contributions of the cur-
rent paper.

In the third phase (distribution), a number of unresolved
source model entities can be distributed among the blocks of
the recovered architecture, or the entities in the blocks can
be selectively moved between the blocks based on: over-
all closeness between the entities, or user inspection. This
phase represents the user involvement in the recovery pro-
cess.

4 An abstract query language

In this section, we briefly describe a formalism for spec-
ifying a conceptual architecture denoted as Architectural
Query Language (AQL), which represents an architectural
graph-pattern using abstract blocks and abstract links2 in an
AQL query. The AQL includes directives for the search en-

1We consider function, type, and variable as atomic entities and file as
composite entity, however, we refer to each of them as an “entity”.

2An abstract block and an abstract link correspond to a group of nodes
and a group of edges in G, respectively.

gine (inexact graph matching) to allow the user interaction
and control of the architecture recovery process.

Some of the AQL features include: i) gradually in-
creasing the number of abstract blocks and abstract links
to allow partial matching; ii) applying hierarchical pattern
matching with different granularity for entities, i.e., system
level analysis on a collection of files and subsystem level
analysis on a collection of functions, types, and variables;
iii) defining fixed system entities as seeds to be included
in the final result; iv) merging two or more abstract blocks
of the AQL query into one block in order to reduce the
complexity of a part of the pattern; and v) manipulating the
result of matching process in order to meet the architectural
recovery objectives. A part of an AQL query, consisting
of an abstract subsystem S1 (of files) and abstract links
between S1 and other subsystems, is shown below:

BEGIN-AQL
SUBSYSTEM: S1

MAIN-SEEDS: file e edit, e update, e flip
IMPORTS:

RESOURCES: rsrc ?IR,
rsrc ?R1(1 .. 10) S2,
rsrc ?R2(7 .. 20) S4

EXPORTS:
RESOURCES: rsrc ?ER,

rsrc ?R3(1 .. 15) S2,
rsrc ?R4(1 .. 5) S3

CONTAINS:
FILES: file $CL(3 .. 10),

file e edit, e update, e flip
RELOCATES: YES:

file e allign, u scale TO: S3
END-BLOCK
.
END AQL

The notations ?IR and ?ER in the import and export parts
denote two unidentified numbers of links between the cur-
rent block and any other block in the query, where, their
interactions have not been constrained by the AQL query.
Therefore, ?IR and ?ER are not matched by the matching
algorithm, however, their instantiation of links are shown in
the result of the analysis (i.e., GA) to be used for further
adjustment of the architectural pattern. “?Ru(x..y)” repre-
sents a constrained abstract link ?Ru of type use-resource
with x and y as the minimum and maximum quantities for
expanding ?Ru. “$CL(x..y)” (as contains file) represents an
abstract block containing the nodes of type file with speci-
fied min/max threshold numbers for block expansion.

The above AQL fragment is interpreted as: a subsystem
named S1 that definitely contains files e edit.c, e update.c
and e flip.c (main seeds), imports minimum one and max-

imum ten resources (?R1) from subsystem S2. A similar
interpretation holds for the EXPORTS and CONTAINS sec-
tions of the query. The abstract graph corresponding to the
complete form of the above AQL query will be presented in
section 8 (experiments).

5 Architectural graph pattern generation

In the pattern based architectural recovery, patterns are
formed based on: i) mapping the source code to a reference
architecture to find core system entities for each block of the
reference architecture; ii) available system architecture doc-
ument or consulting with the system developers; iii) analyz-
ing the association property among the system files using a
component graph [14]; or iv) clustering technique [15]. The
objective in any of these methods is to extract a small group
of system entities which represent the core functionality of
a block in the system architecture.

The groups of core entities in the abstract blocks are
identified as main-seeds for subsystems (or modules) in the
AQL query. The core entities determine the initial minimum
sizes of the abstract nodes and their interactions. However,
the minimum and maximum sizes are determined in an iter-
ative pattern matching process based on the user’s desire or
the result of a previous run of the matching process in order
to restructure the system based on high cohesion and low
coupling property. In a typical scenario, the user defines the
architectural pattern of a system using an AQL query, and
tries to restructure the system by constraining the pattern
and approximately matching it against the software system.
An example of pattern recovery is presented in section 8.

6 Graph based system representation

Attributed Relational Graphs (ARG) are frequently used
in representing a real world system of objects and relation-
ships. Moreover, they provide a valuable modeling abstrac-
tion for graph matching problems [9, 5, 18, 3]. We use at-
tributed relational graphs for representing entities and rela-
tionships in a software system.

6.1 Graph definitions

In this section, we summarize the underlying concepts
of the attributed relational graph used in our work.

Definition 1: Let L be the set of symbolic labels ob-
tained from an alphabet L, A be the set of attribute values
obtained from an alphabetA, and k be an integer. We define
L � Ak as the set of all possible label-attributes3 for nodes
and edges. An ARG is defined as a two-tuple G = (N;R),

3For simplicity we refer to the term label-attribute as attribute.

Source model graph G = (N, R)

Node / Edge attributes:

2

1g(n , n) = (use-V, 81, 6)2

1917

23

22

21

20 18

13

8

10

14

9

75

4

f(n) = ("/u/.../foo", F, 38, 6)

16

12
6

11

15

1
2

3

1, 2, ... : n1, n2, ...

 Node of type: F / T / V

Edge of type:

call-F / use-T / use-V

Figure 2. An ARG G of a software system.

where N = fn1; n2; :::; nng is the set of attributed vertices
(nodes) and R = fr1; r2; :::; rmg is the set of directed at-
tributed edges. Two labeling functions f : N ! L � Ak

and g : N � N ! Ak return the node and edge attributes,
respectively:

f = f(ni; a) j 1 � i � n; a 2 L �Akg, and
g = f(ni; nj; e) j 1 � i; j � n; e 2 Akg.

Where, (ni; a) 2 f represents node ni with a as its at-
tribute, and (ni; nj; e) 2 g represents a directed edge from
node ni to node nj with e as its attribute.

Figure 2 represents the ARG of a software system with
23 nodes where each node or edge has the following at-
tributes:
Label: a string denoting a unique name for each entity in the
software system, i.e., a full path name (edges do not have la-
bels);
Type: a specifier that classifies the nodes of a graph into
different categories (file, func, aggregate-type, and global-
variable)4, or classifies the edges into categories (call-F,
use-T, and use-V);
Location: two integers for file number and line number in
file.

The node and edge labeling functions f and g return the
attributes of nodes and edges, for example:
f(n2) = (“/u/.../foo”, F; 38; 6) indicates that node n2
with label “/u/.../foo” is a function (type F) which has been
defined in line 38 of the source file 6; and g((n2; n1)) =
(use-V, 81, 6) indicates that the function “foo” references a
global variable, represented as node n1 in line 86 of file 6,
whose attributes are returned by f(n1).

Definition 2: Association in a group of graph nodes is
a property “A” where two or more source nodes share one

4In this paper we refer to aggregate-type and global-variable as type
and var, respectively.

N = {1, 7, 10, 2, 13, 11, 16, 15, 12, 6}

(b-2) Region after applying Apriori.

A = [3, 3, 3, 3, 3, 3, 3, 3, 3, 2]1A = [4, 4, 4, 4, 4, 4, 4, 2, 2, 2]
N = {5, 6, 4, 9, 3, 14, 18, 20, 22, 23}5

r

5

1
r

G

r

1

20

14
9

12

15

1

7

2

13

16

11

10

6

1

2

22 18

23

6

5

4 3

6

14

93

4

5

18

20

22

23
10

1

16

7

5
r

G

(a-1) Region with main-node 55
r

G (a-2) Region with main-node 1

(b-1) Region after applying Apriori.

r
G

13

6

12 15 11

Figure 3. (a) Two regions of graph G in Figure
2 selected using the association property. (b)
The Apriori algorithm is used to reveal the
associated groups with maximum degrees.

or more sink nodes (through direct graph edges). In this
sense, the group of source and sink nodes are denoted as
an associated group. The association degree between the
nodes of an associated group is the number of sink nodes,
and the association support is the number of source nodes
in that group. In Figure 3(b-1), the group of nodes 5, 6, 4,
9, 3, 14, 18 are associated with association degree 4 (i.e., 4
sink nodes) and associated support 3 (i.e., 3 source nodes);
and the group of nodes 5, 20, 18, 22, 23 are associated with
degree and support 2 and 3, respectively.

Revealing all the associated groups in a large graph is
computationally expensive. We use the Apriori algorithm
[2], originally presented in the data mining domain, to
extract the groups of nodes with maximum association de-
grees. A more detailed discussion on the application of the
data mining on reverse engineering can be found in [16, 10].

Definition 3: A region Gr
j = (N r

j ; R
r
j) of a graph G =

(N;R) is a subgraph of G (i.e., N r
j � N and Rr

j � R)
that corresponds to a node nj in that region (i.e., nj 2 N r

j).
In a region Gr

j each node ni 6= nj satisfies the association
property “A” with respect to node nj. We call nj the main-
node of region Gr

j .

In general, different regions of a graph have a number
of shared nodes. Figure 3(a-1) represents region Gr

5 of the
source model graph G that satisfies the association properly
“A”, i.e., each node is a member of an associated group
with respect to node 5. However, it is not clear what is the

highest association degree of each node in G5

r with regard
to node 5, since each node can be a member of different
associated groups having a different association degree (re-
garding node 5) in each group. The Apriori algorithm is
used to extract all the associated groups in a region, and
allows us to determine the maximum association degree of
each node with respect to the main-node of that region. Fig-
ures 3(b-1) and (b-2) illustrate the application of the Apriori
algorithm on the regions in Figures 3(a-1) and (a-2), respec-
tively. The nodes of a region are ranked according to: i) the
maximum association degree with the region’s main-node;
and ii) the constraint of collecting equal number of source
and sink nodes.

The region database of a graph G = (N;R), denoted
as S(G), is a collection of all regions Gr

j of G, along with
their ranking in graph G based on the average of maximum
association degrees of nodes in each region. In ranking the
regions Gr

5
and Gr

1
(Figure 3) based on their average of

maximum association degrees, Gr
5 has a higher rank than

Gr
1. We call a sub-graph of a region a sub-region.

Definition 4: A pattern graph Gp = (Np; Rp) is
generated from an AQL query by expanding the abstract
blocks and links. Below, a fragment of a simple AQL
query with two modules M1 and M2 (referred to as abstract
blocks ab5 and ab1, named after their main-seeds n5 and
n1) and one abstract link al1 is shown:

MODULE: M1

MAIN-SEED: func n5

EXPORTS:
FUNCTIONS: func al1(1::2) M2

CONTAINS:
FUNCTIONS: func $CF(2::4)

END-BLOCK

MODULE: M2

MAIN-SEED: func n1

IMPORTS:
FUNCTIONS: func al1(1::2) M1

CONTAINS:
FUNCTIONS: func $CF(2::3)

END-BLOCK

The graph representation of this AQL query and its ex-
pansion to pattern graph Gp are illustrated in Figure 4. In
this example, we only consider the blocks with only one
node type F (i.e., function). However, the discussion is
valid for an AQL query with multiple node types (i.e., func-
tion, type, and variable).

In general, an AQL query can generate many pattern
graphs based on the integer range (min, max) associated
with each abstract block and abstract link. We are interested
in the maximal pattern graph using the maximum values of

n1

1xb

p p p
(b) Expanded pattern graph G = (N, R)

node of type: F call-F

m
5G

n2,3
n2,1

n2,2

1al (1..2)

5ab (2..4) 1ab (2..3)

M1 M2n

F
call-F

F

Main-node of region

Matched sub-region

4

5

Expanded block

(a) Graph representation of AQL query.

9

65

Figure 4. The expansion of an AQL query.

the ranges.
In this example, we consider that the abstract block ab5

has already been expanded into xb5 and matched with re-
gion Gr

5
, and the result is represented as the matched sub-

region Gm
5

in the first phase of the matching process.
The generation of the maximal pattern graph Gp pro-

ceeds as follows:

� For the current abstract block (e.g., ab1): i) an ex-
panded block xb1 is generated with maximum number
of nodes (i.e., 3 nodes of type function for ab1), and;
ii) edges with label call-F connect every node in xb1
to every other node in xb1.

� For each abstract link (e.g., alk(p; q)), q groups of
edges are generated, each group connect every node
from the source “matched sub-region” to one node in
the sink “expanded block”, or vice versa. Initially, the
first q nodes are selected as the sink nodes, however
during the matching process the sink node of a group
of edges that are not matched yet can be changed to
another node without any cost. We denote this opera-
tion as “edge-sink-change”. For example, the abstract
link al1(1::2) represents two groups of edges with la-
bel call-F between every nodes inGm

5 and the first two
nodes in xb1.

The rational for such a pattern graph is to search for
cohesive sub-regions that demonstrate maximal association
among their own entities in terms of functions that call each
other and functions that all use the same group of variables

and data types. Since the chance of finding such groups of
entities in a software system is slim, we allow inexact match
between the pattern and candidate sub-regions to find the
closest sub-regions to this pattern.

6.2 Graph distance

In this section, we outline the concepts pertaining to the
distance between two attributed relational graphs.

Definition 5: The distance between two ARGs G1 and
G2 (shown as dist(G1; G2)) is defined as the minimum
cost of a sequence of changes or graph edit operations that
must be performed on one graph (e.g., G1) in order to pro-
duce the other graph (i.e., G2). These changes are usually
in the form of node or edge deletion, insertion, or relabeling
[5].

In this context, we perform the graph edit operations on
a “selected region and its edges to the matched sub-regions”
to match it with the “current expanded block and its edges
to the matched sub-regions”, where, we refer to “edges to
the matched sub-regions” as glue edges. Since we do not
match the labels of the nodes between the regions and ex-
panded blocks, hence, no relabeling is performed. We can
always select a candidate region with equal or more nodes
than the current expanded block, hence, we can also avoid
node insertion. For the rest of the cases, a certain cost is as-
sociated with each graph edit operation that corresponds to
matching one node from the selected region with one node
from the expanded block. The costs for edge insertion, edge
deletion, and node deletion, denoted as cei, ced, and cnd, are
as follows:

� edge insertion cost (cei): i) for inter-region edges
(coutei), if the insertion of edges to the current node does
not violate the specified minimum number of edges be-
tween the resulting sub-regions then the cost is 1 for
the first edge insertion between the sub-regions and
zero for the rest of the edge insertions5. Otherwise,
if the minimum number of edges is violated the cost
is top cost; ii) for intra-region edges (cinei), the cost is
proportional to the inverse of the association degree
between the corresponding nodes of the inserted edge
(limited to cost 1 for each insertion).

� edge deletion cost (ced): i) for inter-region edges
(couted), the cost is zero if there is no abstract link
between the corresponding abstract blocks (i.e., the
deleted edge is not part of the pattern); and the cost is
top cost if there are edges between the corresponding

5That is, if there is no edges (with desired direction) between the cur-
rent node in the current region and any other nodes in the related matched
sub-region, then the cost is 1, otherwise, if there exist one or more edges
between them, then the cost is zero.

abstract blocks6 (i.e., the existing edge has violated the
maximum number of edges between the sub-regions);
ii) for intra-region edges (cined), this cost does not ap-
ply since there is no edge in a region whose matching
edge inside the current expanded blocks does not exist
(blocks are maximally expanded).

� node deletion cost (cnd): we assume that the main-
seeds and seeds in the AQL query are already excluded
from the nodes of the current region. The current node
nd is deleted from the current region only if it is the
same as a node nk in a previously matched sub-region
and nk has matched inter-region link(s). In this case,
node nd is deleted with top cost. When the matching
process is finished, all remaining nodes of the current
region that have not been matched will be deleted with
zero cost.

In the case of incoming inter-region edges into the cur-
rent expanded block, if the number of already matched
sink nodes plus the number of yet unmatched potential sink
nodes, is equal or greater than the minimum number of
corresponding incoming abstract links, then the minimum
range condition has not been violated yet. This criterion is
the basis for the forward checking mechanism to limit the
search space. An example of cost calculation is presented
in the next section.

6.3 Multi-stage state space representation

As it was shown before, a pattern graph Gp consists of
a number of smaller patterns, i.e., the expanded blocks, to
be matched against the regions of the input graph G. This
characteristic allows us to manage the complexity of the
matching process of a large input graph against a region-
wise pattern graph. In this form, the whole matching pro-
cess can be divided into incremental sub-matchings, each
taking care of an expanded block, and incrementally gen-
erating an approximate matching between the pattern graph
and the source graph.

In order to implement an incremental matching, a multi-
stage search-space is generated during the matching pro-
cess. Each stage Si corresponds to a phase i (i : 1; 2; 3; :::)
of the matching process, in which a sub-region of Gr

j is
matched against the expanded block xbj.

Each stage Si is a decision tree whose nodes represent
the states of the matching process. In each state, the cost of
graph edit operations for matching a candidate node from
the region Gr

j with a node from the expanded block xbj is
evaluated. The decision tree consists of: i) a root node that
matches with the main-node of the region; ii) a number of

6Note that the edge-sink-change (see definition 4) must be checked to
adjust the current expanded block so that edge deletion is performed only
if there is no other option.

internal nodes at different levels of the tree containing the
partial matching of the nodes from the region and expanded
block; and iii) leaf nodes at the lowest level of the tree, con-
taining the full matching.

At each level of the tree, every remaining node (i.e., not
matched yet) of the region is checked against only one of
the remaining nodes of the expanded block xbj. This is be-
cause in xbj, all unmatched nodes with incoming edges are
the same and all unmatched nodes without incoming edges
are also the same. This topological property of xbj elimi-
nates the need for checking all the remaining nodes of xbj.
Therefore, for each node matching we choose a proper node
(with or without incoming edges) from the expanded block.
If such a node does not exist then the graph edit operations
with associated costs are applied.

The first v levels of the tree (1 < v � u, u is size of
the expanded block) may be allocated to matching v user
selected nodes of the region (called seeds). In this case,
at each level only a seed node is matched. The states of
each stage contain a fixed part corresponding to the matched
sub-region nodes that are accumulated from the stages S1 to
Si�1.

Figures 6 represents the second stage7 of the search
space corresponding to the matching process shown in Fig-
ure 5.

7 Inexact pattern matching

In exact matching, one is concerned about finding a
subgraph of graph G1 that is isomorphic with another
graph G2, whereas, in inexact matching we are interested
in identifying the optimal sequence of graph edit operations
that can be applied on one graph in order to make parts of
the two graphs isomorphic [18, 5, 3]. In most real applica-
tions due to the effect of noise, distortion, sampling error,
or lack of a known or fixed pattern, the exact matching is
not possible. In such situations, finding a subgraph of the
input graph that is similar enough to a given pattern graph
is interested.

Problem definition:
Given an AQL query aql, an input graph G = (N;R), a
region property “A”, and a graph distance threshold dt,
find a subgraph of G (called Gm) that inexactly matches
with the expansion of aql query (called Gp), so that
dist(Gp; Gm) � dt.

Algorithm:
The inexact matching process is performed in three steps:

Step 1:
In an off-line process, the input graph G = (N;R) is

7Because of space limitation, the first stage is not discussed here.

decomposed into n = jN j regions (each corresponding to
a main-node nj) based on the association property “A”.
In each region Gr

j , the nodes are ordered based on their
association degrees with the main-node nj . This node
ordering causes the matching algorithm to first test the
highly associated nodes. The regions of the graph G are
also ranked and stored in the region database S(G).

Step 2:
The AQL query aql is generated using the techniques
discussed in section 5. The query consists of l abstract
blocks, each corresponding to one or more regions of S(G),
along with the size ranges for abstract blocks and abstract
links. An example was discussed in definition 4. The AQL
query is expanded into partial pattern graph Gpi at each
phase i of the matching process.

Step 3:
The whole matching process is divided into l phases, where
l is the number of abstract blocks (i.e., Modules or Subsys-
tems) in aql. At each phase i (i � l), the search algorithm
generates a new stage Si (search tree) of the multi-stage
search space and tries to find a path from the root of the tree
to one of its leaves that produces a partial matching with lo-
cally minimum graph distance between two subgraphs Gpi

and Gmi , so that dist(Gpi ; Gmi) � dt. Where, Gpi and
Gmi are partial pattern graph and partial matched graph at
phase i, respectively, and dt is the top cost.

The generation of the whole search space in each stage is
a combinatorial problem with exponential complexity (with
respect to the number of the graph nodes). Therefore, for
large graphs only a small portion of the search space must
be generated which leads us to an optimal solution. We use
the branch and bound search algorithm which expands the
tree from a node with the minimum matching cost. In order
to further limit the size of the search space, a forward check-
ing mechanism is used that prunes the search tree based on
early checking of the minimum range constraint (related to
the cost of inter-region edge insertion coutei discussed in sec-
tion 6.2).

In order to explain the pattern matching process, we con-
sider the input graph G in Figure 2 which has been decom-
posed into region database S(G) including the regions Gr

5

and Gr
1
. Based on the guidelines discussed in section 5,

the user defines the AQL query aql for a part of the graph
G, where the regions Gr

5 and Gr
1 have been assigned to the

abstract blocks ab5 and ab1, respectively (Figure 4).
The pattern matching algorithm has two phases. In the

first phase, the algorithm generates the partial pattern graph
Gp1 (i.e., expanded block xb5) and matches it against the
region Gr

5 of the source graph. The result of the matching
process, Gm

5
, is illustrated in Figure 4.

m
G5 G1

m

G1
r

Match

n2,1 n2,3

n2,2

m
G5

m
G5

G1
r

m
G

Inter-region edge (Glue edge)
Intra-region edge

xb
1

State 5: complete match,

State 4: complete match,

State 2: partial match.

different imported nodes.

two identical imported nodes.

Node deleted
Node

Main-node of region

6

1xb

5

4 9

6

1

13

10

16

12

15

11

7

294

6

and its glue edges, against and its glue edges.

5

(a) Matching

1

(b) Steps of matchin g process.

2

2

5

5

5

4

6

9

4

6

9

4

6

9

(3) 13

1

(2) 10

1

(1)

2

Figure 5. Matching a subgraph of input graph
G (Fig. 2) against pattern graph Gp (Fig. 4).

In the second phase, Figure 5(a), the algorithm incre-
mentally matches “region Gr

1 and its glue edges to Gm
5 ”

against “expanded block xb1 and its glue edges to Gm
5 ”.

The graph at the right part of Figure 5(a) illustrates the in-
teraction between the current region Gr

1
and the matched

sub-region Gm
5

based on the existing edges in the source
model graph G. In this phase, the user also decide to as-
sign node 2 from region Gr

1 as a fixed node to appear in the
result of the matching. The steps of the matching process
and their correspondences with the state space are shown in
Figure 5(b).

The search algorithm generates the second stage of the
multi-stage state space (search space), shown in Figure 6.
In this search space, each node (state) contains a fixed part
(shown as black rectangles) related to the matched sub-
region Gm

5
and a changing part related to matching the

nodes between Gr
1

and xb1.

The cost of graph edit operations up to a particular state
(node) plus an underestimate cost of edit operations for the
future matches along that path to a leaf node is shown in-
side each node, and the node number is shown outside the
node. Since the cost of edit operations increases by match-
ing more nodes along a path, an underestimate cost for the

= 5

n = 22,3

n = 12,1

n = 4
1,4

n
n = 1

1,3

2,1
= 9

1,2

n = 6
1,1 G

m
5n1

Level

3

2

3

n = 15n = 102,2

n = 22,3

n = 12,1

n = 13

n = 12,1
n = 22,3

2,2 n = 112,2

n = 12,1
n = 22,3

n = 162,2

n = 12,1
n = 22,3

2,2

n = 12,1
n = 22,3n = 22,3

n = 72,2

n = 12,1

n = 62,2

n = 1
n = 22,3

2,1

n = 122,2

n = 1
n = 22,3

2,1

Node 6 deleted

2

1

0.0

4 5 6 7 8 9 10

2.66 1.66 4.0 3.03.01.66 4.33

0.66

Figure 6. Second stage of multi-stage state
space.

future node matching is used to allow the branch and bound
algorithm proceed towards a solution and expand the paths
with optimal cost. The underestimate cost, denoted as cu,
is the minimum cost of matching a node and is equal to the
cost of an intra-region edge insertion cinei with maximum
association value in the corresponding region. In this exam-
ple, the underestimate cost cu = 1

3
, where 3 is the maxi-

mum association degree in the current region, i.e., Gr
1.

The node matching in Figure 6 is shown as nx;y = k,
where nx;y and k are the nodes of xb1 and Gr

1, respectively.
At level 2 of the tree, the algorithm uses “edge-sink-change”
to match the seed-node 2 of Gr

1
against a proper node of the

expanded block xb1 that lacks any inter-region edge (i.e.,
n2;3). Therefore, the search tree is pruned to exclude the
matching of the remaining nodes of Gr

1.
At the end of the matching process, the branch and bound

algorithm finds the leaf nodes 4 and 5 with minimum graph
edit costs which generate the matched graphs shown in parts
2 and 3 of Figures 5(b) with dist(Gp; Gm) = 1:66. The
costs inside the nodes have been calculated based on the
cost of graph edit operations discussed in section 6.2. How-
ever, the matching at state 4 is not a valid solution, since
node 6 has been considered twice as an imported node to the
component Gm

1 . Such situations are checked by the search
algorithm in selecting the proper non-leaf node to expand
the tree. Finally, the complete match at part 3 of Figures
5(b) is a valid solution of this matching process example.

The graph edit costs corresponding to some of the states
in Figure 6 are shown below:

C1 = 0:0
C2 = C1 + cu + cinei = 0:0 + 1

3
+ 1

3
= 0:66

C3 = C2 + 4 � coutei + 3 � cinei = 0:66 + 1 + 3 � 1

3
= 2:66

C4 = C5 = C2+3�coutei +3�cinei = 0:66+0+3� 1

3
= 1:66

C6 = C2+3�coutei +3�cinei = 0:66+0+(1
3
+2�1) = 3:00

C7 = C2+4�coutei +4�cinei = 0:66+1+(2� 1
3
+2�1) = 4:33

C10 = C2 + cnd = 0:66 +1 =1

In C10, the cost of deleting node 6 from Gr
1

is top cost,
as defined for cnd in section 6.2, since node 6 is a matched-
linked node in Gm

5 .
The inexact matching algorithm also handles the issues

regarding to: i) resolving shared nodes in the matched sub-
regions by means of a consistency checking algorithm after
each phase, and ii) backtracking from one stage of the multi-
stage search space to the previous stage, if the current stage
can not produce a matching solution8.

8 Experiments

In this section, the experimental results of the proposed
architectural recovery technique are presented by analyzing
the graphics editor Xfig.3.2.3 using the developed prototype
tool Alborz [13]. Our experimentation platform consists of
a Sun Ultra 10 (440MHZ, 256M memory, 512M swap disk).
In this framework, the user and tool cooperate in perform-
ing hierarchical and incremental recovery/restructuring at
the system and subsystem levels as follows:

� System level analysis: at this level the entity relation-
ships are of the form “file use resource”, where “use”
indicates any kinds of references that a function inside
the file performs to the resource, and a resource is a
function, an aggregate type, or a global variable. In
this analysis, the whole system of files is decomposed
into a number of subsystems of files that interact via
import/export of resources.

� Subsystem level analysis: at this level the entity re-
lationships are of the forms “func call-F func”,
“func use-T type”, and “func use-V var”. In
this analysis, a subsystem from the system level analy-
sis above is decomposed into a number of modules of
functions, types and variables, where the modules in-
teract via import/export of functions, types, and vari-
ables.

In a typical scenario, the user first generates an AQL
query for a partial architectural pattern of the system and
performs pattern matching. Then iterates this process by
increasing (and enhancing) the AQL query and performing
pattern matching to cover a major part of the system. At this
point, the user may shift to the distribution phase (section 3)
and perform some repair operations such as: i) distributing
some of the unresolved entities among their closest blocks;
ii) generating user-defined concrete blocks in order to ac-
commodate the rest of the un-resolved entities into blocks;
and iii) relocating entities among the blocks to adjust the
block and link sizes.

8Because of space limitation, the mechanisms for sharing-node resolu-
tion and backtracking are not discussed here.

8.1 System analysis of Xfig

The Xfig system is an interactive drawing tool which
runs under X Windows [1]. Xfig consists of 75 KLOC of
source code written in C, distributed into 100 source files,
75 include files, 1662 functions, 1356 global variables, and
37 aggregate types. It takes 15 minutes to parse Xfig using
a parser written in Refine C, and to construct an annotated
AST in the Refine’s database. The Apriori algorithm re-
quires approximately 10 minutes to build the region spaces
for system-level analysis.

The Xfig system lacks any documentation on the
structure or implementation, however, a consistent naming
convention is used throughout the system files [19]. This
naming convention includes: d � files relate to drawing
shapes; e � files relate to editing shapes; f � files have
file-related procedures; u � files are utilities for drawing
or editing shapes; and w � files have X11 window calls in
them to do all of the window-related functions.

Pattern generation
Figure 7(a) demonstrates the initial architectural pattern
graph for a part of the Xfig system consisting of four sub-
systems. The subsystems S1 to S4 represent the editing,
utility, windowing, and file subsystems of Xfig, respectively.
The links represent the number of actual imported/exported
functions between subsystems. The files in Figure 7(a)
have been obtained by analyzing the component association
graph [14] of Xfig to find the most important file(s) in each
subsystem, as the core of the subsystem. Other alternatives
have been discussed in section 5.

The graph representation of the AQL query, derived
from the initial pattern graph, is shown in Figure 7(b). The
core files (as main-seeds) in each subsystem of part (a) are
used to assign the graph regions for each abstract block of
the AQL query. In the query, two abstract links ?R1 and
?R3 connect S1 and S2 in order to provide more interaction
between the editing subsystem and utility subsystem as
suggested by the above description for Xfig files. We also
restrict the interaction between the editing subsystem and
windowing subsystem using the abstract link ?R4.

Knowledge incorporation
As mentioned above, the Xfig system files have been logi-
cally classified into subsystems based on naming conven-
tions. Among other subsystems, two logical subsystems
”editing shapes” and ”utility” are highly related. A typical
clustering algorithm may gather the files in each subsystem
that only satisfy the cohesion property for each subsystem.
However, the result has no correspondence with the main-
tainer’s knowledge about the level of interaction between
these systems.

Using the pattern-based architectural recovery technique

u_drag
u_elastic

e_scale

e_edit
e_update
e_flip

f_readold

f_util
f_read

Actual import/export functions

Abstract links

?R3(1..15)

?R2(7..20)

?R5(10..20)

?R1(1..10)

(3..10)

(3..10)(4..10)

(3..10) S1 S2

S4S3

?
R

4(
1.

.5
)

(a) architectural pattern

1

10 2

7

S4

1

2

w_print
w_file
w_library

w_export

92 funcs

121 funcs 127 funcs

72 funcs

S3

S1 S2

(b) AQL query representation

Figure 7. The initial architectural pattern of a
part of Xfig system (section 5).

proposed in this paper, the maintainer can incorporate
the knowledge about the system domain and document
into the process of re-modularization. In the case of Xfig
system, the maintainer can define an abstract group of links
between these two subsystems to be instantiated with a
large number of single links. The pattern matching engine
then tries to gather the files in these two subsystems, so
that each subsystem is both cohesive and highly related to
other subsystem, hence satisfying the requirements from
the system’s document.

Pattern matching
Figure 8 illustrates the result of matching the AQL query
with the Xfig source model graph. For this query, all the
node and link constraints that we defined in the AQL query
have been satisfied and four concrete subsystems have been
generated. The interaction between S1 and S2 has been in-
creased and the interaction between S1 and S3 has been re-
stricted. The links in Figure 8 that are not shown in Figure
7(b), correspond to ?IR and ?ER in the AQL query (section
4). These links are used to enhance the abstract graph of the
system to run another matching. For example, in the next
AQL query we may want to add abstract links (S1, S4) and
(S2, S4) to control the interactions between the correspond-
ing subsystems. This is because in the concrete architecture

significant interaction (>10)

insignificant interaction (<10)

R1(5): ?R1(x..y) instantiated with 5 links

R1(5)

7

R3(15)

2R5(16)

R4(5)

10

8

168 funcs
9 files

8 files
252 funcs285 funcs

10 files

9 files
168 funcs

R2(20)
3

S3 S4

S2S1

22

Figure 8. The concrete architecture (matched
graph) of Xfig, resulted from matching the
abstract graph (AQL query) with the source
model graph.

of Figure 8 significant interactions are shown between S4
and each of S1 and S2 which have not been specified as part
of the pattern in the AQL query.

Figure 9 illustrates the detailed result of the pattern
matching for subsystem S1 that abstractly shown in Figure
8. The top part of Figure 9 indicates the violated abstract
link constraints which can be used to locate the critical links
to be instantiated, in order to enhance the AQL query.

The contents and links of individual subsys-
tems can be viewed by clicking on the menu list:
Top...S1...S2...S3...S4...Rest. The subsystem S1 contains
10 files with main-seeds that are labeled with “**”. Each
file is accompanied with the number of its functions (e.g.,
file e edit.c has 111 functions), and a closeness value to
other files in that subsystem (e.g., 0.84). The closeness
value is computed as the average association values and is
used for entity distribution and relocation. The group links
in import/export parts can also be viewed as individual
links with detailed information about each function with a
hypertext link to the source code.

In subsystem S1, 60% of the files are related to editing
Xfig shapes and 40% of the files are related to utility files
for editing Xfig shapes, hence, producing a cohesive sub-
system.

Other experiments that relate to the Precision and Re-
call characteristics of the matching engine indicate that the
matching engine can achieve a 50% Recall for a 85% Pre-
cision, and a 75% Recall for a 68% Precision. The above
Precision and Recall have been measured by analyzing the
CLIPS system and comparing the obtained results by the
query against the architectural manuals of the system.

Figure 9. The result of architectural recovery
of the Xfig system using AQL query.

9 Conclusion

In this paper we presented a framework for software
architecture recovery based on an inexact graph matching
technique. The high-level design of a system is defined us-
ing a graph pattern language denoted as architectural query
language. Based on the association property among the
system entities, the software system is also presented as
a collection of graph regions which are then stored in a
database. The inexact graph matching engine uses a multi-
phased branch and bound search with backtracking and for-
ward checking. This search engine uses the graph distances
derived from graph edit operations and the association prop-
erties in order to extract a subgraph of the system graph
which matches with the user-defined pattern. We imple-
mented a tool for the architectural analysis at system-level
and module-level with features to meet the needs of the typ-
ical architectural recovery tasks. The experiments indicate

that the proposed technique provides useful results to the
maintainer and that it is scalable. On going work relates
to the formal analysis of the matching process with respect
to its time and space complexity. This work has been per-
formed within the framework of a project funded by of the
Consortium for Software Engineering Research, the Insti-
tute for Robotics and Intelligent Systems, and in cooper-
ation with IBM Toronto Laboratory, Center for Advanced
Studies.

References

[1] Xfig User Manual, Web site, URL =
http://www.xfig.org/userman/.

[2] R. Agrawal and R. Srikant. Fast algorithm for mining
association rules. In Proceedings of the 20th Interna-
tional Conference on Very Large Databases, Santiago,
Chile, 1994.

[3] H. Bunke and G. Allermann. Inexact graph matching
for structural pattern recognition. Pattern Recognition
Letters, 1(4):245–253, 1983.

[4] R. Chanchlani. Software architecture recovery and de-
sign using partitioning. Master’s thesis, University of
Waterloo, 1998.

[5] M. A. Eshera and K.-S. Fu. A graph distance
measure for image analysis. IEEE Transactions on
Systems Man and Cybernetics, SMC-14(3):398–408,
May/June 1984.

[6] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogian-
nis, et al. The software bookshelf. IBM Systems Jour-
nal, 36(4):564–593, November 1997.

[7] R. Kazman and M. Burth. Assessing architectural
complexity. In CSMR, pages 104–112, 1998.

[8] S. Mancoridis, B. Mitchell, C. Rorres, Y. Chen, and
E. Gansner. Using automatic clustering to produce
high-level system organizations of source code. In
Proceedings of IWPC’98, pages 45–53, Ischia, Italy,
1998.

[9] B. T. Messmer and H. Bunke. A new algorithm for
error-tolerant subgraph isomorphism detection. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 20(5):493–503, May 1998.

[10] R. J. Miller and A. Gujarathi. Mining for program
structure. International Journal on Software Engi-
neering and Knowledge Engineering, 9(5):499–517,
1999.

[11] H. A. Muller, M. Orgun, et al. A reverse-engineering
approach to subsystem structure identification. Soft-
ware Maintenance: Research and Practice, 5:181–
204, 1993.

[12] G. C. Murphy, D. Notkin, and K. Sullivan. Software
reflexion model: Bridging the gap between source and
higher-level models. In In proceedings of the 3rd ACM
SIGSOFT SFSE, pages 18–28, October 1995.

[13] K. Sartipi. Alborz: A query-based tool for software
architecture recovery. In Proceedings of the IEEE
International Workshop on Program Comprehension
(IWPC’01), pages 115–116, Toronto, Canada, May
2001.

[14] K. Sartipi. A software evaluation model using com-
ponent association views. In Proceedings of the IEEE
International Workshop on Program Comprehension
(IWPC’01), pages 259–268, Toronto, Canada, May
2001.

[15] K. Sartipi and K. Kontogiannis. Component cluster-
ing based on maximal association. In Proceedings of
the IEEE Working Conference on Reverse Engineer-
ing (WCRE’01, Stuttgart, Germany, October 2001. (to
appear).

[16] K. Sartipi, K. Kontogiannis, and F. Mavaddat. Archi-
tectural design recovery using data mining techniques.
In Proceedings of IEEE CSMR 2000, pages 129–139,
Zurich, Switzerland, Feb 29 - March 3 2000.

[17] K. Sartipi, K. Kontogiannis, and F. Mavaddat. A pat-
tern matching framework for software architecture re-
covery and restructuring. In Proceedings of IEEE
IWPC 2000, pages 37–47, Limerick, Ireland, June 10-
11 2000.

[18] L. G. Shapiro and R. M.Haralick. Structural descrip-
tions and inexact matching. IEEE Transactions on
Pattern Analysis and Matching Intelligence, PAMI-
3(5):504–519, September 1981.

[19] B. V. Smith. Xfig architecture, September 2000. Per-
sonal e-mail correspondence with author.

[20] S. G. Woods, A. Quilici, and Q. Yang. Constraint-
Based Design recovery for Software Reengineering:
Theory and Experiments. Kluwer Academic Publish-
ers, 1998.

