A Maintainability Model for Industrial Software Systems Using Design Level
Metrics

S. Muthanna!, K. Kontogiannis?, K. Ponnambalam?, B. Stacey?®

University of Waterloo
Dept. of Systems Design Engineering,!
Dept. of Electrical & Computer Engineering?
Waterloo ON. N2L 3Gl
Canada

Nortel®
SEAL Lab
Ottawa
Canada

Abstract

Software maintenance is a time consuming and expen-
sive phase of a software product’s life-cycle. This paper
investigates the use of software design metrics to statisti-
cally estimate the maintainability of large software systems,
and to identify error prone modules. A methodology for as-
sessing, evaluating and, selecting software metrics for pre-
dicting software maintainability is presented. In addition,
a linear prediction model based on a minimal set of design
level software metrics is proposed. The model is evaluated
by applying it to industrial software systems.

Keywords: Software maintenance, software metrics,
software quality.

1 Introduction

According to studies presented in the literature
[Schach96], [Sommer96], software maintenance accounts
for more than sixty percent of the costs in the software life
cycle. In many cases it is crucial to be able to identify the
components of a system that may exhibit low maintainabil-

*This work was funded by the Nortel - Seal Lab Ottawa, The Natural
Sciences and Engineering Research Council of Canada, and the Consor-
tium for Software Engineering Research. The authors would like also to
thank IBM Canada Ltd., Centre for Advanced Studies for its technical sup-
port. Inquiries for this paper can be sent to kostas@swen.uwaterloo.ca or
ponnu@vlsi.uwaterloo.ca

1095-1350/00 $10.00 ©® 2000 IEEE

ity and low software quality [Ponna96]. In the literature
[Sneed85] a number of features have been associated with
maintainability and software quality [Ponna96]. These in-
clude:

e Impact rate, defined as the percent change required in
the system to perform a maintenance task (corrective,
adaptive, perfective)

e Lffort, defined as the time spent for performing a main-
tenance task

e Error rate, defined as the percent change in the number
of errors introduced after a maintenance task,

o Subjective evaluation, defined as a weighted sum of
subjective values provided by the software engineers
involved with the system. The values often represent
key design and implementation characteristics of the
system such as cohesion, coupling, complexity, and
documentation.

The problem of predicting the maintainability of a soft-
ware system has been discussed extensively in the lit-
erature {Khosh99a], [Khosh99b], [Oman94], [Arnold93],
[Peercy81]. In most cases the estimate is based on a model
that is built by using measurements of the features above.
An analysis on how software quality and software metrics
are related is presented in [Ponna96]. The approach dis-
cussed in this paper is based on the statistical analysis of

different software metrics and the corresponding subjec-
tive maintainability estimate values, provided by program-
mers with in-depth knowledge of the subject systems. The
work presented in this paper focuses on design level metrics
that characterize the overall data and control flow between
modules in contrast to the code level metrics (i.e Halstead
type of metrics) discussed in other approaches [Oman94],
[Ganes99].)

Our approach consists of two major phases. The first
phase is to assess and select a minimal set of metrics which
exhibit desired properties such as, low correlation with one
another, do not depend on any subjective estimate provided
by the maintainers, and relate to different design proper-
ties of the system. The second phase focuses on the con-
struction of a linear model using polynomial regression.
The model has been developed by analyzing applications in
a wide spectrum of domains (compilers, real time speech
recognition systems, rule based pattern matching and in-
ference systems). However, other maintainability predic-
tion models specific to an application domain (i.e telephone
switching) can also be developed by following the method-
ology discussed in this paper. This paper is organized as fol-
lows; Section 2 discusses related work, section 3 discusses
a methodology for selecting, assessing and, developing the
prediction model. In section 4 we present experimental re-
sults and we validate the model. In section 5 we discuss the
limitations of the model and, in section 6 we discuss possi-
ble future work.

2 Related work

This section discusses a number of different models to
measure matntainability that have been proposed in the
literature. In [Berns84] a Maintainability Analysis Tool
(MAT) using FLECS (a structured Fortran preprocessor) for
the purpose of analyzing programs written in VAX-11 For-
tran (superset of Fortran 77) was proposed. MAT operates at
the syntactic level. A software component is analyzed in to-
kens and structures. Each structure can be associated with a
maintainability index. By aggregating the partial maintain-
ability indexes, MAT computes an overall maintainability
value.

In [Sneed85] a software quality assessment environment
SOFTING is proposed. SOFTING provides assessments
on eight design attributes, namely: modularity, general-
ity, portability, redundancy, integrity, complexity, time and
span-utilization. These design attributes are measured by
a number of different metrics. However, in many cases it
may be very difficult to quantify all these attributes for a
large industrial system.

A partial solution to the problems encountered in
[Sneed85], is presented in [Oman92], [Oman94] where a
maintainability assessment taxonomy to demonstrate the hi-

249

erarchical nature of maintainability attributes is proposed.
The taxonomy first divides maintainability into three fac-
tors: the management, the operational environment and
the target software system. Each of these three fac-
tors are then successively decomposed until a set of sim-
ple attributes are identified and defined via metrics. In
[McCall77], a model to measure maintainability based on
a combination of quality criteria such as simplicity, con-
ciseness, self-descriptiveness, and modularity is presented.
In ISO 9126 [Kitchenham90] four quality criteria are rec-
ommended for measuring maintainability. These include,
analyzability, changeability, stability, and testability. In
[Peercy81] a maintainability prediction model is proposed
based on six software attributes namely, modularity, de-
scriptiveness, consistency, simplicity, expandability, and,
instrumentation. In [Arnold93] a model for evaluating the
usefulness of re-engineering from the maintainability point
of view is proposed. Finally, in [Oman94] a maintainability
prediction model is proposed based on Halstead’s metrics.
This approach is based on polynomial regression analysis.
In this respect, the process is similar to the approach pre-
sented in this paper. However, it differs on the selection cri-
teria of the software metrics used to develop the prediction
model. In [Oman94] the authors focus on code level met-
rics, while we focus on module-level design related metrics.
Thus we aim on predicting maintainability on a higher level
of granularity, by examining the interface between modules,
global data flow, and control flow complexity.

Within this context a number of techniques for develop-
ing maintainability prediction models have been presented
in the literature. These techniques include:

e Hierarchical multidimensional assessment. In this
method, hierarchical structure of attributes of the
source code is developed for the purpose of measur-
ing software maintainability. The dimensions consid-
ered to construct the hierarchical structure are: con-
trol structure, information structure, typography, nam-
ing conventions and, commenting. These three dimen-
sions constitute the highest level in the hierarchy of
source code maintainability. Metrics defined for each
dimension of the hierarchical structure, can be further
combined to calculate maintainability up the hierarchy.

Aggregate complexity measure using entropy. In this
method, a software system can be divided into a set
of k functional modules where complexity for each
module can be measured by n metrics My, ..., M,.
The informational measure of dependence between
My, ..., M, is directly related to the complexity of the
system and can be approximated [VanEmden71] by us-
ing the entropy value of the 3" metric, ¢ = 1, ...n.

Principal components analysis. This statistical tech-
nique is used to reduce collinearity between indepen-

dent variables and reduce the number of components
used to construct regression models. The method for
measuring software maintainability by constructing re-
gression models will be discussed in the following
section. Principal component analysis orthogonalizes
the metrics into the new components, called principal
components. The components having the most infor-
mation are then selected to construct a maintainability
regression model.

Factor analysis. Given a set of n metrics, M
(My, ..., M},), with a mean value and a covariance ma-
trix, this statistical technique groups the metrics by ex-
plaining the covariance structure in such a way that the
metrics within the particular group are highly corre-
lated, but with relatively small correlations to metrics
in different groups. Each group of metrics represents a
single underlying factor. Using this technique a com-
plexity model for a set of n software components can
be derived [Munson90}.

Polynomial regression. Regression analysis is a sta-
tistical method for predicting values of one or more
dependent variables from a collection of independent
variables. In order to assess software maintainabil-
ity, one approach is to construct a polynomial equation
where the maintainability of a system is expressed as a
function of the associated metric attributes [Oman94)
[Khosh92]. The following section discusses the pro-
cess for building a maintainability model using this
type of polynomial regression and software metrics
that can be derived from the overall design properties
of the system.

Development of the Prediction Model

In this section, we discuss the process of developing
a maintainability prediction model using software design
metrics by applying polynomial regression techniques. The
model presented here has very reasonable constraints (dis-
cussed in detail in Section 5.), and thus it covers a wide
range of software systems. However, individual organiza-
tions may require a modification of the proposed model to
fit the characteristics of the software system at hand. The
rest of this section is intended to provide a structured way
for repeating the model generation process, and fine tuning
it if necessary. In this paper we focus on the use of design
metrics, but the same process can be performed by collect-
ing other type of software related metrics. The model devel-
opment process presented here has five major steps. These
steps are discussed in detail in the following sections.

250

3.1 Maetrics Selection

It has been argued that one can analyze a software sys-
tem from different viewpoints [Holt96] [Muller93]. The
first step on the maintainability analysis using metrics is
to identify a collection of metrics that reflect the charac-
teristics of the viewpoint with respect to which the system
is being analyzed and, discard metrics that provide redun-
dant information (i.e. provide the same information as other
metrics already in the selected set).

In this particular work we are interested on examining
the maintainability of the system from the design point of
view and therefore we focus on collecting design related
metrics. In [Kitchenham90] design metrics were classified
in two major categories: a) Product metrics derived from
design representations (e.g. Fan-in, Fan- out, cyclomatic
complexity); b) Process metrics derived from the activities
and tasks that make up the design process (e.g. effort and
time-scale metrics, fault and change metrics) [Khosh98].
Some of the product design metrics that are commonly used
in practice [Card88] [Yu93], [Schnei94] [Adamov87] are
listed below. These metrics formed the first rough collec-
tion of metrics to be considered for the prediction model.
A detailed description of these metrics can be found in
[Adamov87]. These metrics include:

. Albrecht metric (Function point metric)

. Benyon-Tinker’s software complexity metric

. Card and Agresti’s system complexity metric

. Chapin’s Q metric

. Data complexity metric (D-complexity)

Data flow

. Henry and Kafura information flow metric (Kafura)

. Knot count

. Local complexity

_
=

McCabe’s (extended) cyclomatic complexity metric
11.
12.
13.
14.
15.
16.
17.
18.

The second goal of this process step is to identify a mini-

mal set of design metrics that are relatively easy to obtain

and, are useful in predicting software maintainability. With
this objective in mind we identified metrics which are hard
to compute (i.e. “Yau and Collofello’s design stability met-
ric’, *Yin and Winchester’s network metric’) or contain re-

dundant information with respect to the other (i.e use com-
mon software features). For example, 'Card and Agresti’s

McClure’s program complexity metric
Nesting level

Relative complexity metric

Shepperd’s IF4 metric

Span of control

Structural complexity metric (Fan-out)
Yau and Collofello’s design stability metric

Yin and Winchester’s network metric

system complexity metric’ 'Henry and Kafura information
flow metric’ "McClure’s program complexity metric’ ’Rel-
ative complexity metric’ and 'Shepperd’s IF4 metric’ all
use the 'fan-in’ and ’fan-out’ concepts. This selection can
be automated by applying a Spearman-Pearson correlation
test to identify highly correlated metrics from the initial set.
Highly correlated metrics were flagged and discarded. The
metrics were computed for 32 modules (files) of ANSI C
programs, ranging in size from 500 to 2000 lines of code
with total size of approximately SSKLLOC. This data set
was used to develop the maintainability model. A separate
data set of approximately 92KLOC was used to validate the
model. Following this selection process. the metrics that
have been considered from the initial set include:

1. Module level Function Point Metric

2. Module level Information Flow Metric

. Module level Global Data Flow
. Average Structural Complexity Metric (Fan-out)
. Average Knot Count

6. Average Cyclomatic Complexity Metric

3.2 Data collection

The second step aims on the collection of subjective
maintainability data from the software developers. This col-
lection of data will form the core against which the metric
values will be compared to develop the prediction model.
The questionnaire used to gather the subjective data was
adapted from [Oman94]. In [Oman94] it has been men-
tioned that this questionnaire has also been used in similar
studies. The questions require answers to be given on a five
point scale (very poor, poor, medium, good, very good) and
all questions must to be answered. The engineers in charge
of maintaining the design and code completed the surveys.
The purpose of the five point responses was to provide a nu-
merical rating that could be used as a dependent variable for
polynomial regression analysis. A summation of the 32 re-
sponses was calculated by tallying the point values for each
response, with values ranging from 1 for "very poor” to 5
for "very good”. Software with a maintainability index <
65 is considered "low” maintainability, between 65 and 85
is considered “medium,” and software with a maintainabil-
ity index > 85 is considered to have “high” maintainability
[Coleman95].

3.3 Correlation Analysis

The third step involves the selection of the metrics which
are the strongest maintainability predictors. This can be

251

B0 Mo R

FOb s . s NI R

Subjective Maintainability Values

20 25 30

Data Flow Values

45

Figure 1. Subjective Value vs. Data Flow.

accomplished by examining the correlation between each
metric and the subjective ratings provided by the software
developers. The metrics can be ranked and the development
of several models is possible. For example if the best two
metrics are chosen a two metric model is possible, while if
the three best metrics are selected a three metric model can
be developed, and so on.

In our experiment, the total and average values per mod-
ule (i.e.total value/ number of functions) of these five met-
rics were analyzed by the Pearson correlation test against
the subjective values. A list of the metrics ordered by the
correlation coefficients was obtained. Metrics with high
correlation coefficients are potential candidates in predict-
ing maintainability. The correlation relationships (R value)
between the subjective value and the total metric variables
have been computed as fan-out = -0.547; McCabe = -0.536;
Albrecht = -0.197; Kafura = 0.199; total data flow = -
0.864. Note that, these metrics are not as strongly corre-
lated among themselves (because of the pre-selection at step
1). The corresponding correlation coefficients using aver-
age metric values and subjective values were computed as :
average fan-out = -0.880; average McCabe = -0.728; aver-
age Albrecht = -0.264; average Kafura = 0.043; and average
data flow = -0.359. The negative coefficients indicate that
as the complexity of the software increases as measured by
these metrics, the ease of maintenance goes down. Graph
plots lend support to the conclusion we drew on the basis of
the correlation coefficient table alone. The scatter-plots al-
low us to see the relationships such as a curvilinear pattern
between two quantitative variables that descriptive statistics
do not reveal. An example consider the scatter plot for the
Data Flow metric is illustrated in Fig.1, which shows a pos-
sible “’linear” pattern indicating high correlation values.

3.4 Regression Analysis and Model Development

The objective of the fourth step is first to determine a
single maintainability prediction value by combining a min-
imal set of metrics. We call this maintainability predic-
tion value the Maintainability Index, which when develop-
ers provide is the subjective rating. The second objective is
to determine the best possible regression model for the data
being considered. Correlation and regression are equally
important, and a complete analysis of the relationship be-
tween two variables includes both.

In this step a series of linear regression tests were carried
out using the selected metrics (avg. fan-out, data flow, avg.
McCabe, fan-out and McCabe) as independent variables for
predicting the subjective maintainability value provided by
the developers. The regression tests aimed to determine:

e How these metrics could be combined into a single
maintainability index

o What is the best possible regression model for the data
being considered

Once alternative models were constructed, the combina-
tion of the selected metric variables and their coefficients
for the best model were chosen based on:

o goodness-of-fit statistic tests. These tests include the
correlation coefficients of the suggested model with
the subjective values. In particular, the values of R,
R2, adjusted R?, and standard error of the estimate
were considered. All metric variables in the model
must also pass the tolerance criterion which for this
experiment was set to 0.0001. A metric variable also
is not considered in the final model if it causes the tol-
erance of another variable to drop below the pre-set
tolerance criterion. The regression analysis indicated
that fan-out and McCabe metrics were not significant
contributors for building a regression model compared
to that of average fan- out, data flow and average Mc-
Cabe metrics.

analysis-of-variance tests. These tests used the F-
statistic to test the hypothesis that the estimates of the
true errors in the model follow a normal distribution
(the points fall in an horizontal band with no appar-
ent systematic features'). In this statistic test F is large
when the independent variables help explain the varia-
tion of the dependent variable. In our experiments the
linear relation is highly significant (F = 59.17 with sig-
nificance < 0.0005)

analysis-of-regression-coefficients test. The t statis-
tics values provide some insight regarding the relative

'see also Fig.3

252

importance of each variable in the model. The value
of t is obtained by dividing each coefficient by its
standard error [SPSS96]. As a rule of thumb, t val-
ues below -2 or above +2 give an idea regarding use-
ful predictors and indicate that they are not correlated
among themselves. Hence in our analysis, the t val-
ues, -3.515, -3.390, and -2.388 for average fan-out,
data flow, and average McCabe respectively meet the
guideline.

As our objective was to develop a model using minimal
set of metrics with high R? (R-square) value, we restricted
ourselves to average fan-out, data flow and average McCabe
metrics for building a regression model.

R is the Spearman correlation factor between the ob-
served and predicted values of the dependent variable. R®
indicates the amount of the dependent variable informa-
tion that can be obtained by using the predicted variables
in the maintainability model. In our experiments the com-
bination of the metrics above metrics give an R? value of
0.85. Regression coefficients were computed using stan-
dard polynomial regression techniques [SPSS96]. Given
the above parameters, our estimated regression three-metric
linear model has been estimated as:

SMI =125-3.989-FAN,,y—0.954-DF —1.123-MCa,y
where,

SMI is the Software Maintainability Index (predicted
value with value ranges 0-125) for a given module,

FANg,, is the average number of external calls ema-
nating from the module,

DF is the total number of outgoing and incoming data
flow for the module and,

MC 04 is the average McCabe for the module.

4 Model Validation

This section discusses the validation of the estimated
model. As a matter of model’s validity it must be verified
that:

e the data does not contain values that violate any
assumptions considered for the development of the
model. This can be achieved by plotting standardized
residual values against standardized predicted value of
the dependent variable. If the model is appropriate for
the data, the residuals should follow a normal distribu-
tion (the points fall in a horizontal band with no appar-
ent systematic features).

2 T i j ™ T T T
15k e g R L]
*I H H H
b RaE s s
= : : % :
_é o5k TR g LM x
g » 5 »* 'I :
g of s O TP S
2 : : * f
8 : : :
g -05F T e 4
% : : *: x x
@ N N H E] 3
] R e e T J
-1.5F- g * =
. N . B *
255 Y3 = =y T Y3 o o5 1 15
Standardized Predicted Value
Figure 2. Standardized Predicted Value vs.
Studentized Residual Value
e regression assumptions are satisfied. This can be

achieved by plotting the Studentized deleted residuals
against standardized predicted values. This plot is il-
lustrated in Fig.2. Many researchers prefer using this
plot, because, when the model used to compute the
residuals is valid, they have mean 0 and variance 1.
If the errors are normally distributed and the form of
the model is correct, then about 95% of the residuals
should fall between -2 and +2 values. For each mod-
ule, a deleted residual can be calculated by excluding
the module from the calculation of the regression coef-
ficients (this procedure was repeated for each module
in turn).

Another validation plot is the standardized predicted val-
ues vs. observed (subjective) values to check the data coin-
cidence. If the model fit each data value exactly, the ob-
served and predicted values would coincide on a straight
line extending from the lower left corner to the upper right
(linear y = x type of relation). This plot is illustrated in
Fig.3. To test the applicability of the polynomial model, a
separate set of ANSI C programs data must be tested against
the model. The subjective values must be obtained by using
the same questionnaire that has been used to collect the data
for building the model.

In our validation experiment 92KLOC of C source code,
taken from large and medium sized industrial systems were
considered. The metric values were used in the model for
assessing the maintainability index. The observed values
provided by the developers along with the proposed model’s
predicted values for a subset of our validation data are given
in Table.1. The difference between the predicted value and
the observed (subjective) value of our validation data are

253

-
n

“ T -1 * ﬁ ﬁ" T
1 B L e B 4
: ; ; R
N : »® : *
o5k e K e 4
D N N H
2 " :
> X B
= of EIE NN L i
§ i
K x x :
B OBk i ‘* e X PR B
j: ; : z
© »* : :
5 - Bt I p
s N
S g
@ :
15t *« L% i .4
Y A i o
x : : :
28 i ; _ .
40 50 60 °0 100 10

Subjective Value

Figure 3. Subjective Value vs. Standardized
Predicted Value.

close enough in most of the cases.

Here, scatter-plots of the subjective value versus the
model’s predicted value provides useful validation informa-
tion as well. The validation plots and table (Fig.2, Fig.3,
Table.1), provide evidence that the model is fit for the test
modules. We may statistically infer that the maintainabil-
ity assessment polynomials presented here are statistically
accurate models of the test data on which they were con-
structed. A detailed set of validation tests can be found in
[Muthann97].

5 Model Restrictions

This model can be used to measure the maintenance dif-
ficulties of systems that can be broken down to modules
(source files) of medium size (i.e. 1KLOC - 2KLOC source
lines per module (file). The working ranges of values for
this model are between 0-14 for the average values of fan-
out and McCabe metrics and 0-45 for data flow metric. We
believe that these are very reasonable restrictions (one does
not expect average McCabe more than 14, or more than 14
function calls per function, or more than 45 global vari-
ables updated/used within a single function). The objective
is that this model would help software developers identify
difficult to maintain modules before integrating all software
modules together. If the complexity of the system is very
high, having very high value of fan-out, data flow, and Mc-
Cabe, the model’s maintainability index becomes off-scale
negative which again indicates poor level of maintainabil-
ity. Although the model can be applied in a wide range of
procedural software systems, we do not claim that this is
the only model for predicting maintainability, nor that is the

best overall. However, it is a model that can be automated
and used to quickly and easily predict software maintain-
ability. New models tailored to particular application do-
mains can also be built following the process discussed in
this paper.

6 Conclusion

Software maintainability is going to be a continuing
challenge for many years to come. It is believed that pre-
dicting the maintenance at the design level will help soft-
ware designers and maintainers to alter the architecture of
the software system for better performance that leads to the
overall reduction of maintenance costs. The intent of this
paper is to develop an automated working maintainability
model using design level metrics. At the module level this
model can be used to monitor changes to the system as they
occur, and as a method of predicting error prone modules.
The proposed model a) focuses on the design aspects of the
software; b) does not depend on subjective metrics; ¢) is
fast to compute and, d) is robust (linear). Although this
model may not be perfect in all environments, it demon-
strates the utility of developing such models tailored for
particular application domains. Developers and maintain-
ers can follow the process described in this paper to fur-
ther customize the maintainability model for their applica-
tion domain, if needed. The point is that a good model at
an early stage (design) of the software life cycle can help
maintainers guide their efforts and provide them with much
needed feedback.

The applications presented in this paper are only a few
of the uses for maintainability prediction. There are many
more directions this work could take in the future. Possible
topics for further research that will provide valuable infor-
mation about industrial software development include: a)
the use of automated maintainability prediction models as
acceptance criteria for software quality control, third party
software procurement and, in-house product maintenance
(i.e system restructuring to achieve maintainability criteria);
b) the analysis on how maintainability differs between func-
tional and object oriented systems and finally, ¢) the anal-
ysis of how software maintainability affects other software
quality factors such as reliability, re-usability and portabil-
ity.

Acknowledgment

The authors would like to thank Chris Tandy and Cin-
derella Lee of IBM Canada Ltd., for providing assistance
and valuable insights for the development of the proposed
model. We also thank the Consortium for Software Engi-
neering Research members for their useful comments on

254

various CSER technical meetings where preliminary ver-
sions of this research were presented.

References

[Adamov87] Adamov, R. “Literature review on software
metrics”, Zurich: Institut fur Informatik der Uni-
versitat Zurich, 1987.

[Arnold93] Arnold, R., “Software Reengineering”, IEEE
Computer Press, 1993.

[Berns84] Berns, G., “Assessing Software Maintainabil-
ity”, Communications of the ACM, vol.27, no.l,
pp.14-23.

[Coleman95] Coleman, D., Lowther, B., Oman, P., “The
Application of Software Maintainability Models in
Industrial Software Systems”, Journal of Systems
Software, vol.29, pp.3-16.

[Card88] Card, D., Argesti, W., “Measuring Software De-
sign Complexity”, Journal of Systems and Software,
vol.8, pp.185-197.

[Ganes99] Ganesan, K., Khoshgoftaar, T., Allen, E.,
“Case-based software quality prediction”, Interna-
tional Journal of Software Engineering and Know!|-
edge Engineering, 9(6), 1999.

[Hoit96] Holt, R., Pak., J., “GASE: Visualizing Software-
Evolution-in-the-Large” Working Conference on

Reverse Engineering, Monterey, CA., 1996,
pp.163-167.
[Khosh92] Khoshgoftaar, T.M., Bhattacharya, B.B.,

Richardson, G.D., “Predicting Software Errors,
During Development, Using Nonlinear Regression
Models: A Comparative Study”, IEEFE Transactions
on Reliability, 41:3, 1992, pp. 390-395.

[Khosh98] Khoshgoftaar, T., Allen, E., Halstead, R., Trio,
G., Flass, R., “Using Process History to Predict
Software Quality”, IEEE Computer 31(4), 1998,
pp- 66-72.

[Khosh99a] Khoshgoftaar, T., et.al., “Which software
modules have faults that will be discovered by cus-
tomers?” Journal of Software Maintenance: Re-
search and Practice, 11(1), January 1999, pp.1-18.

[Khosh99b] Khoshgoftaar, T., et.al., “Predicting fault-
prone software modules in embedded systems with
classification trees”, In Proceedings: Fourth IEEE
International Symposium on High-Assurance Sys-
tems Engineering, Washington, DC USA, Novem-
ber 1999. IEEE Computer Society, pp. 105-112.

[Kitchenham90] Kitchenham, B., Pickard, L., Linkman, S.,
“An Evaluation of Some Design Metrics”, Software
Engineering Journal, vol.5, no.1, pp.50-58.

[{McCall77] McCall, J., Richards, P, Walters, G., “Fac-
tors in Software Quality”, National Technical
Information Service, vol.l,2 and,3, AD/A-049-
014/015/055.

{Munson90] Munson J., Khoshgoftaar, T., “Applications of
a Reactive Complexity Metric for Software Project
Management”, Journal of Systems Software, vol.15,
1990, pp.283-291.

[Muller93] Muller, H., Orgun, M., Tilley, S., Uhl, J,, “A
Reverse-engineering Approach to Subsystem Struc-
ture Identification”, Journal Software Maintenance
Research and Practice, vol.5., pp.181-204.

(Muthann97] Muthanna, S., “Assessing Maintainability of
Industrial Software Systems Using Design level
Metrics”, M.Sc. Thesis, Department of Systems De-
sign Engineering, University of Waterloo, Water-
oo, ON., 1997.

[Ponna96] Ponnambalam, K., Kalaichelvan, S., Goel, N,
Munikoti, R., “Analyzing Sensitivities of Software
Qualities to Various Metrics”, The Sixth Interna-
tional Conference on Software Quality (61CSQ), Ot-
tawa, pp.346-355.

[Schach96] Schach S., “Software Engineering”, Irwin Pub-
lishers, 1996.

[Sneed85] Sneed, H., Merey, A., “Automated Software
Quality Assurance”, IEEE Transactions on Soft-
ware Engineering, vol.11, no.9., pp.909-916.

[Oman94] Oman, P., Hagemeister, J., “Construction of
Testing Polynomials Predicting Software Maintain-
ability”, Journal of Systems Software, vol. 27,
pp.251-266.

[Oman92] Oman, P, Hagemeister, J., Ash, D., “A Defi-
nition and Taxonomy for Software Maintainability
Assessment”, Software Engineering Test Lab Tech-
nical Report, University of Idaho, 1992

[Peercy81] Peercy, D., “A Software Maintainability Eval-
uation Methodology”, IEEE Transactions on Soft-
ware Engineering, vol.7, July 1981, pp.343-352.

[Schnei94] Schneidewind, N., “Validating Metrics for En-
suring Space Shuttle Flight Software Quality”,
IEEE Computer 27(8): 50-57, 1994.

[Sommer96] Sommerville, I,
Addison Wesley, 1996.

“Software Engineering”,

2565

[SPSS96] “SPSS Base 7.0 for Windows User’s Guide”,
SPSS Inc.

[VanEmden71] VanEmden, M., “An Analysis of Complex-
ity”, Mathematical Centre Tracts, Amsterdam.

[Yu93] Yu, X., Lamb, D., “Metrics Applicable to Software
Design”, Software Quality Management, vol.10,
1993.

Module Id Subjective Subjective Model Model
Index Rating Index Rating

1 42 Low 45.71 Low

2 46 Low 44.59 Low

3 41 Low 33.74 Low

4 57 Low 66 Low

5 60 Low 65.89 Low

6 58 Low 70.54 Medium
7 53 Low 50.30 Low

8 86 Medium 79.71 Medium
9 88 Medium 89.28 High
10 84 Medium 78.47 Medium
11 81 Medium 102 High
12 72 Medium 92 High
13 74 Medium 70.97 Medium
14 74 Medium 70.97 Medium
15 95 High 95.13 Low
16 100 High 99.85 High
17 101 High 115 High
18 104 High 117 High
19 93 High 717 Medium
20 89 High 102 High
21 81 High 88.39 High

Table 1. Results of Model Application

256

