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Abstract

Code duplication, plausibly caused by copying source
code and slightly modifying it, is often observed in large
systems.

Clone detection and documentation have been investi-
gated by several researchers in the past years. Recently,
research focus has shifted towards the investigation of soft-
ware and process restructuring actions based on clone de-
tection.

This paper presents a new redesign approach developed
for Java software systems. The approach factorizes the
common parts of cloned methods and parameterizes their
differences using the strategy design pattern. The new en-
tities created by such transformations are also decoupled
from the original contexts of their use thus facilitating reuse
and increasing maintainability.

The applicability and automation of the technique pre-
sented in the paper have been verified by partially redesign-
ing JDK 1.1.5.

1 Introduction

Source code reuse in object-oriented systems is made
possible through different mechanisms such as inheritance,
shared libraries, object composition, etc. Some design ap-
proaches, namely the well-known design patterns [6] par-
ticularly facilitate reuse. Nevertheless programmers often
need to reuse components which haven’t been designed for

this purpose. This happens often when software systems go
through the expansion phase and new requirements have to
be satisfied periodically [6].

When such a situation arises, ideally, the modules in-
volved should be restructured and the component properly
reused. Even better, the whole system could be reorganized,
classes could be refactored into general components and
their interfaces rationalized. Such a process is known as
consolidation and allows a system to become more flexi-
ble and easier to expand [6]. Unfortunately, often the pro-
cess used instead is ”cut-and-paste”, i.e. performing some
sort of reuse by manual source code inlining. This other
approach produces what we call cloned pieces of code, or
clones which will undergo independent successive mainte-
nance [9].

Previous research has studied the detection of clones
and has investigated their use for widely varying purposes
including program comprehension, documentation, quality
evaluation or system and process restructuring. Several
techniques have been investigated in the literature for the
detection of clones in software systems. Some techniques
are based on a full text view of the source code. Johnson [7]
has developed a method for the identification of exact du-
plications of substrings in source code using fingerprints
whereas Baker’s tool, ”Dup” [2], reports both identical sec-
tions of code and sections that differ only in the systematic
substitution of one set of variable names and constants for
the other.

Other approaches, such as those pursued by Mayrand
et al. [10] and Kontogiannis et al. [8] focus on whole se-



quences of instructions (BEGIN-END blocks or functions)
and allow the detection of similar blocks using metrics.
Those metrics relate to aspects of sequences of instructions
such as their layout, the expressions inside them, their con-
trol flow, the variables used, the variables defined, etc.

In [8], Kontogiannis et al. also detect clones using two
other pattern matching techniques namely dynamic pro-
gramming matching which finds the best alignment be-
tween two code fragments, and statistical matching between
abstract code descriptions patterns and source code.

Yet another clone detection technique relies on the com-
parison of subtrees from the AST (Abstract syntax tree) of
a system. Baxter et al. [4] have investigated this technique.

Several applications of clone detection have also been
investigated, Johnson [7] visualizes redundant substrings
to ease the task of comprehending large legacy systems.
Mayrand et al. [10] as well as Lag¨ue et al. [9] document
the cloning phenomenon for the purpose of evaluating the
quality of software systems. Lag¨ue et al. [9] have also eval-
uated the benefits in terms of maintenance of the detection
of cloned methods.

The purpose of our research is to investigate the use
of clones as a basis for those reengineering actions which
are useful to the maintenance of systems. In this paper,
we present a new technique that allows to factor common
parts of cloned methods while parameterizing their differ-
ences using thestrategydesign pattern. Process changes
like “problem mining and “preventive control” introduced
by Lagüe et al. [9] are fully supported by the approach.

Merging the common parts of cloned pieces of code has
already been investigated by Baxter et al. in [4]. Their
approach, based on macros, allows the elimination of re-
dundancies and thus the reduction of the quantity of source
code in a system. Although macros are applicable to all de-
tected cloned, since the semantics of differences is ignored,
their use presents several drawbacks. It is restricted to lan-
guages that support macros but more importantly, when lex-
ical changes are introduced to the macro, a manual veri-
fication is necessary to ensure that the intended semantic
change correctly propagates to all the contexts of use of the
macro.

The approach presented in this paper takes into account
the meaning of clones and of their differences allowing the
redesign to remain meaningful in the context of its use. The
extraction of semantic differences between clones and their
translation in terms of programming language entities is
based on a detailed matching algorithm presented in Sec-
tion 2. The main concepts underlying the redesign process
are presented and discussed in section 3. The details of the
process can be found in section 4.

The process has been applied to a real Java system, JDK
1.1.5. The results obtained from the redesign are presented
and discussed in Sections 5 and 6.

1 function match(c: Grid; v1,v2: Sequence)=> (cost: Integer)
2 for ( i 1 to size(v1) )
3 for ( j 1 to size(v2))
4 tempCost computeCost(v1[i],v2[j])

5 c[i][j].cost min
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Figure 1. Core method of the matching algo-
rithm.

2 Matching algorithm

In order to take advantage of cloned methods for system
redesign, the differences existing between them must
first be extracted and analyzed. The extraction is per-
formed using the algorithm briefly presented in this section.
For a detailed discussion of the algorithm please refer to [3].

The comparison algorithm used is based on Kontogian-
nis et al.’s Dynamic Pattern Matching algorithm [8] in
which a fundamental change has been performed: rather
than aligning syntactically structured entities like state-
ments, the new algorithm aligns syntactically unstructured
entities like tokens. Afterwards the obtained alignment is
projected onto the corresponding AST representations of
the input sequence and the pattern sequence to produce a
syntactically structured alignment which is used to analyze
differences among code fragments. Hence, the dynamic
matching is performed on vectors corresponding to the se-
quences of tokens forming the code fragments compared. A
grid is used to compute and hold the detailed results of the
match.

The core of the algorithm which is defined in function
matchis presented in Figure 1. Functionmatchiterates over
all the elements of the grid and computes the distance for
consecutive sequences using previously computed distances
between shorter sequences as well as the cost of matching
the current tokens. This latter cost is determined bycom-
puteCost.

FunctioncomputeCostcompares two tokens by testing
for equality of types and values. Two nodes match perfectly
if they belong to the same type, except if they’re literals
or identifiers. Then they must also have the same value.
The function returns 0 if the tokens are equal and can be



matched. Otherwise, it returns 2 (the equivalent of the cost
of removing one token and then adding the other instead).

The optimal match or distance between two vectors is
defined as the minimal amount of tokens that have to be
inserted or deleted to transform one vector into the other.

Once the optimal match has been obtained, the corre-
spondence between the sequences of tokens and the entities
of the programming language has to be made. To achieve
the correspondence, the source code must first be repre-
sented in a higher level of abstraction.

A number of program representation schemes have been
proposed in the relevant literature. These include frames
[13], annotated data and control flow graphs [15], Abstract
Syntax Trees [12], logic formulas on program dependencies
[5] and, relation tuples based on a language domain model
[11].

We have chosen as a program representation scheme, the
program’s annotated abstract syntax tree (AST). We believe
that this scheme is most suitable because:

� it does not require any overhead to be computed as it
is a direct product of the parsing process and,

� it can be easily analyzed to extract programming lan-
guage entities corresponding to the differences found
during the comparison,

� it will be easy to manipulate during the redesign phase
of the process.

� it’s a machine usable format.

The tree is created during the parsing phase, and is anno-
tated in a post-processing phase where linking information
is added. An example AST is illustrated in Figure 2

Once the source code has been represented in this higher
level of abstraction, the tokens forming the differences are
linked to the corresponding AST elements. When consec-
utive tokens form a single difference, the proper ancestor
is found. From the AST, the corresponding programming
language entities are determined.

The algorithm finally returns a sequence of subtrees of
the AST that represent differences between two code frag-
ments. Those subtrees will be directly manipulated during
the redesign phase of the process.

3 Making reuse explicit and increasing main-
tainability

As previously mentioned, the goal of the redesign pro-
posed in this paper is to increase the explicit reuse of com-
ponents and the maintainability of the system. A more
maintainable system will be, among others, easier to modify
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Figure 2. A sample AST.

and will present a smaller risk of unwanted side effects fol-
lowing modifications. To achieve the goal, the redesign pro-
cess must factorize commonalities found in cloned methods
and parameterize their differences to preserve the original
behaviors of the clones. The newly created entity must also
be decoupled from its environment to allow its further reuse
and expansion.

In this section, a new structure which allows to produce
such an entity is presented. It’s based on thestrategydesign
pattern.

3.1 Thestrategydesign pattern

For an entity to partially change its behavior depending
on use, some configuration mechanism must be provided.
The challenge of producing a class containing a method
with a partially configurable behavior can be met with the
strategydesign pattern. Indeed, as defined by Gamma et
al. [6], “strategies provide a way to configure a class with
one of many behaviors”.

Figure 3 presents thestrategydesign pattern as described
by Gamma et al. Three different kinds of classes participate
in the pattern. The context class implements an operation
containing some variable parts which can be the steps of
an algorithm, accesses to complex data structures and so
on. The context delegates the variable operations to the
concrete strategy it’s configured with. Hence, all the con-
crete strategies implement the same interface inherited from
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Figure 3. Structure of classes forming a strat-
egydesign pattern.

the abstract strategy class. Variations in the implementation
correspond to variations in behavior.

Both the context and the family of strategies are visi-
ble to clients. The latter must first choose a strategy and
configure the context with it. Thereafter, they can interact
exclusively with the context.

3.2 Application of the strategydesign pattern to
the parameterization of clone differences and
their decoupling from context

Although cloned methods are often highly similar and
accomplish almost the same operations, their output and
side effects often differ in two aspects. First, different
clones can manipulate different data structures and call dif-
ferent methods, even though those structures might have the
same names. Indeed, except for parameters and local vari-
ables, the data structures manipulated and methods called
depend on the class where each clone belongs, i.e. its con-
text. Second, even similar clones are hardly ever identical.
Usually, when a piece of code is copied and used in a differ-
ent situation, it’s somewhat modified: method calls, types
of parameters or other elements are changed in its body.
Therefore, part of the operations performed inside a cloned
method varies from clone to clone.

Hence, when a new method in a new class is to replace
some piece of code previously shared by different classes it
has to be able to configure two aspects of its behavior. First,
each time the method is called it has to be able to change the
meaning of the identifiers present inside its body to match
the meaning of those same identifiers in the context of the
original clone, i.e. the context of the original clone class.
Second, it has to be able to change those operations which
are different in the different clones. On each call, it has
to choose the right alternative for each difference. Those
two requirements imply that the new class and method will
have to be configured with two strategies: one allowing the
decoupling from the original context and the other allowing
the parameterization of the differences.

Figure 4 shows an original use of thestrategydesign pat-
tern that allows the factorization of clone commonalities,
the parameterization of their differences and the decoupling
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Figure 4. Strategydesign pattern applied to
clone removal.

of the shared entity from the original contexts of its use.
The new class containing the factored source code is rep-
resented by the CloneHandler class which uses two strate-
gies for its configuration. CloneHandler contains the new
ClonedMethod which will handle the cloned operation as
a whole while delegating the variable parts to one of the
two strategies. Necessary identifier redirections will be del-
egated to theIdStrategywhereas difference handling will be
delegated to theDiffStrategy. Each one of the two strategies
corresponds to a different interface.

The original classes represent the concreteIdStrategies.
They will handle all the operations necessitating the access
to their attributes or methods. Each of the original classes
is also made to aggregate one or several new classes which
represent theDiffStrategies. OneDiffStrategyis created per
cloned method. It will handle the operations unique to that
clone.

An important particularity of the structure of classes ob-
tained is that the original classes are also the clients of the
new CloneHandler class. It makes the relationship cycli-
cal: the original classes delegate the handling of the whole
cloned operation to the new class which then delegates back
context dependent operations.

Figure 4 also shows that instead of inheriting an abstract
strategy as proposed by Gamma et al., the concrete strate-
gies implement interfaces. Such a modification allows not
to modify the existing relations between the original classes
and avoids multiple inheritance when original classes al-
ready have parents.

Finally, it’s important to note that cloned pieces of code
don’t have to correspond to complete methods. Indeed, if
a piece of code of arbitrary length and position has to be
moved to a new class, it can be encapsulated in a method
and replaced by a method call. Of course, the parameters it
needs will have to be determined but the task is quite trivial
when using a proper symbol table.
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4 Redesign process

To accomplish the transformations described in the pre-
vious section, a precise redesign process has been devel-
oped. Figure 5 shows the phases of the process which takes
as input a group of cloned methods and outputs the new
source files ready to be compiled.

The main phases of the process are the following:

� The comparison algorithm described in Section 2 is
first used to determine the differences between the
cloned methodsClonedMethod1, ClonedMethod2,...
ClonedMethodNfrom the original classesOriginal-
Class1, OriginalClass2,... OriginalClassN.

� ClonedMethod1, ClonedMethod2,... ClonedMethodN
are transformed into the singleCloneMethodmethod

which will become a member of the newCloneHan-
dler class.

� The original classes and methods are modified using
the following main steps:

– For each cloned method of each class, an inner
class is created and instantiated. It will represent
theDiffStrategyof the cloned method.

– The bodies of the cloned methods are replaced
by method calls to the new methodCloned-
Method. Those method calls will forward to
ClonedMethodthe requests originally handled by
the clones.

– Methods created during the phase of merging the
cloned source codes are inserted into the origi-
nal classes or the inner classes depending if they
relate to redirections or difference handling.

� The interfacesIdStrategyandDiffStrategyare built by
adding to them all the necessary signatures.

� The new CloneHandler class containing the new
methodClonedMethodis created.

� Finally the new source files are generated.

Figure 6 presents two cloned methods,setStartRuleand
setEndRuleextracted from the file SimpleTimeZone.java
(package java.util) of JDK 1.1.5. Figure 7 presents the same
file after reengineering. Figure 8 and 9 contain the source
code of the new class and the new interfaces created.

The following subsections detail the different phases of
the redesign process.

4.1 Factorizing cloned methods commonalities

To merge the source code of different clones, two kinds
of actions have to be performed. First, all the differences
found during the comparison of the methods have to be re-
placed by appropriate structures so their handling could be
parameterized with theDiffStrategy.

Those transformations are facilitated by the fact the the
comparison algorithm introduced in Section 2 abstracts the
source code and the differences between clones into ASTs
thus obtaining syntactically structured differences which
are appropriate to parameterization and meaningful in terms
of the programming language.

Second, all the remaining identifiers have to be found in
the symbol table to determine whether they’re visible in the
new class and can be used directly or they’re not visible and
have to be manipulated through method calls (through the
IdStrategy).



File: SimpleTimeZone.java
-----------------------------------------------------------
1 package java.util;
2 import java.io.ObjectInputStream;
3 import java.io.IOException;

//-----------------------------------------
4 public class SimpleTimeZone extends TimeZone {

...
5 private int startMonth, startDay,
6 startDayOfWeek, startTime;
7 private int endMonth, endDay,
8 endDayOfWeek, endTime;
9 private boolean useDaylight = false;

//-----------------------------------------
10 public void setStartRule(int month,
11 int dayOfWeekInMonth,
12 int dayOfWeek,int time)

{
13 startMonth = month;
14 startDay = dayOfWeekInMonth;
15 startDayOfWeek = dayOfWeek;
16 startTime = time;
17 useDaylight = true;

}
//-----------------------------------------

18 public void setEndRule(int month,
19 int dayOfWeekInMonth,
20 int dayOfWeek,int time)

{
21 endMonth = month;
22 endDay = dayOfWeekInMonth;
23 endDayOfWeek = dayOfWeek;
24 endTime = time;
25 useDaylight = true;

}
}

Figure 6. Cloned methods extracted from JDK
1.1.5.

4.1.1 Parameterizing differences

Most of the differences can be encapsulated into methods
and replaced by method calls. For each of such differences,
the kind of method appropriate for its encapsulation has to
be determined, the method has then to be created and the
difference has to be replaced by the corresponding method
call.

The choice and use of the appropriate method to replace
a difference can be determined using the following rules:

� If the difference is a method call, it can be replaced
by a call to a unifying method from theDiffStrategy
which will redirect the call to the appropriate method.
For example, let’s suppose that at some point, one
clone uses method doSomething() and another uses
method doSomethingElse() instead. In the factored
code, the difference can be replaced with a call to strat-
Diffs.differencei() with stratDiffs being the parameter
referring to the appropriate strategy and methods dif-
ferencei() being defined as (let’s suppose both meth-
ods returned an int value):

File: SimpleTimeZone.java
-----------------------------------------------------------
1 package java.util;
2 import java.io.ObjectInputStream;
3 import java.io.IOException;

//-----------------------------------------
4 public class SimpleTimeZone extends TimeZone
5 implements newInterf.STZone_InterfID {

...
6 private int startMonth, startDay,
7 startDayOfWeek, startTime;
8 private int endMonth, endDay,
9 endDayOfWeek, endTime;
10 private boolean useDaylight=false;

//-----------------------------------------
11 public void setStartRule( int month,
12 int dayOfWeekInMonth,
13 int dayOfWeek,int time) {
14 STZone_handler.setStartRule(month,dayOfWeekInMonth,
15 dayOfWeek,time, STZone_setStart_strategy);

}
//-----------------------------------------

16 public void setEndRule( int month,
17 int dayOfWeekInMonth,
18 int dayOfWeek,int time) {
19 STZone_handler.setStartRule(month,dayOfWeekInMonth,
20 dayOfWeek, time, STZone_setEnd_strategy);

}
//-----------------------------------------

21 class STZone_setStart
22 implements newInterf.STZone_InterfDiffs {
23 public STZone_setStart() {

}
24 public void set_startMonth( int x) {
25 startMonth = x;

}
26 public void set_startDay( int x) {
27 startDay = x;

}
28 public void set_startDayOfWeek( int x) {
29 startDayOfWeek = x;

}
30 public void set_startTime( int x) {
31 startTime = x;

}
}
//-----------------------------------------

32 class STZone_setEnd
33 implements newInterf.STZone_InterfDiffs {
34 public STZone_setEnd() {

}
35 public void set_startMonth( int x) {
36 endMonth = x;

}
37 public void set_startDay( int x) {
38 endDay = x;

}
39 public void set_startDayOfWeek( int x) {
40 endDayOfWeek = x;

}
41 public void set_startTime( int x) {
42 endTime = x;

}
}
//-----------------------------------------

43 public void set_useDaylight( boolean x) {
44 useDaylight = x;

}
//-----------------------------------------

45 private newHandlers.STZone_Handler STZone_handler
46 = new newHandlers.STZone_Handler(this);
47 private STZone_setStart STZone_setStart_strategy
48 = new STZone_setStart();
49 private STZone_setEnd STZone_setEnd_strategy
50 = new STZone_setEnd();

}

Figure 7. Cloned methods from Figure 6 after
reengineering.



File: STZone_Handler.java
-----------------------------------------------------------
1 package newHandlers;
2 import java.io.ObjectInputStream;
3 import java.io.IOException;
4 import java.util.*;

//-----------------------------------------
5 public class STZone_Handler {
6 private newInterf.STZone_InterfID _stratID;

//-----------------------------------------
7 public STZone_Handler(newInterf.STZone_InterfID
8 stratID) {
9 _stratID = stratID;

}
//-----------------------------------------

10 public void setStartRule(int month,
11 int dayOfWeekInMonth,
12 int dayOfWeek, int time,
13 newInterf.STZone_InterfDiffs stratDiffs) {
14 stratDiffs.set_startMonth( month);
15 stratDiffs.set_startDay( dayOfWeekInMonth);
16 stratDiffs.set_startDayOfWeek( dayOfWeek);
17 stratDiffs.set_startTime( time);
18 _stratID.set_useDaylight( true);

}
}

Figure 8. New class obtained from merging
the source code of the cloned methods from
Figure 6.

...inside the first strategy:
public int difference_i() {

return doSomething();
}

... inside the second strategy:
public int difference_i() {

return doSomethingElse();
}

� It the difference is a non-local variable, the method that
can replace the difference is a “get” or “set” method
on the variable. The example of figures 6 through
9 shows such transformations. For example lines 13
and 21 from file SimpleTimeZone.java are factored by
being replaced by the method call of line 14 in file
STZoneHandler.java.

The choice of the “get” or “set” methods depends on
the context of use of the variable. The argument to
the “set” method is also determined by the context.
The type of the parameter or return value is determined
from the symbol table entries of the variables.

� If the difference is a constant, the type of the constant
must be determined and a “get” method must be cre-
ated and used.

� If the difference is an expression, a statement or a
block of statements, the subtree has to be carefully ex-

File: STZone_InterfID.java
-----------------------------------------------------------
1 package newInterf;
2 import java.io.ObjectInputStream;
3 import java.io.IOException;
4 import java.util.*;

//-----------------------------------------
5 public interface STZone_InterfID {
6 public void set_useDaylight(boolean x);

}
-----------------------------------------------------------
File: STZone_InterfaceDiffs.java
-----------------------------------------------------------
1 package newInterf;
2 import java.io.ObjectInputStream;
3 import java.io.IOException;
4 import java.util.*;

//-----------------------------------------
5 public interface STZone_InterfDiffs {
6 public void set_startMonth(int x);
7 public void set_startDay(int x);
8 public void set_startDayOfWeek(int x);
9 public void set_startTime(int x);

}

Figure 9. Interfaces created after reengineer-
ing clones from figure 6.

amined to determine the variables used and the expres-
sion returned. Then the subtree can be encapsulated in
a method and replaced by a method call.

� If the difference is a list of arguments, each argument
has to be enclosed in a method call separately.

When the differences reside in types of parameters, local
variables or the return type, the treatment of the difference
is more complex but the following rules can be used:

� If the difference is the return type, the method should
be made to return an Object type. The appropriate type
cast must be used when recuperating (in the original
methods) the object returned.

� If the difference is a parameter type, an appropriate
parent has to be identified. If the interface of the parent
corresponds to what is used inside the method, no other
manipulation has to be performed. If such is not the
case, each manipulation of one of the parameters has
to be encapsulated in a method and delegated to the
strategy.

� If the difference resides in the type of a local variable,
one of the creational design patterns such as factory
has to be used to defer to theDiffStrategyclass the
choice of the type of the entity to create.



4.1.2 Decoupling the common parts from their original
contexts

Once the differences have been taken care of, all the remain-
ing identifiers found in the body of the clones have to be
analyzed. Indeed, all the methods, attributes and constants
declared in the original classes, their ancestors or their en-
closing classes are context dependent elements from which
the new method must be properly decoupled. Hence, their
use has to be changed as follows:

� Method calls are changed so that they are ac-
cessed through the reference to theIdStrategyas in
stratID.doSomething(). The only problem is when the
methods are private or protected. Currently, the prob-
lem is solved by changing the visibility of the methods
to public.

� The attributes and constants are treated as differences
except for the strategy used to manipulate them. An
example of such a transformation is the factorization
of lines 17 and 25 from file SimpleTimeZone.java (fig-
ure 6) into line 18 from file STZoneHandler.java. (fig-
ure 8).

The other identifiers aren’t context dependent and re-
quire only simple manipulations. Local variables and pa-
rameters are left as they are because they are still visible
when the code is moved between classes. Methods, types
and constants which are declared in classes or interfaces un-
related to the original classes might not be directly accessi-
ble in the new class. Their visibility depends on the imports
and package declarations. To ensure that their visibility will
be the same in the new class as it was in the original classes
(and so to avoid redirecting their accesses), all the imports
made in the files containing the original classes are copied
to the files containing the new class and interfaces. All the
elements in the packages to which the original classes be-
long are also imported in the new class and interface.

4.2 Transforming the original classes

Once the bodies of the cloned methods have been fac-
tored, they are replaced in the original classes by calls to
the new method. The method call is made through a ref-
erence to an instance of the new classCloneHandler. This
reference is declared as a private attribute of each of the
original classes. Figure 7 shows an example of such a trans-
formation on lines 14-15 and 19-20. When the call is made,
an extra argument is added to the called method. This argu-
ment is the concreteDiffStrategythat is passed to the new
method so the latter will be able to configure its behavior.

All the original classes are also made to implement the
new interfaceIdStrategybecause they represent the con-
crete IdStrategies. Methods created during the phase of

merging the cloned source codes and treating the identifiers
are inserted into the original classes.

For each cloned method present in a class, an inner class
and a corresponding private attribute are created and in-
serted into the original classes. Each inner class will rep-
resent theDiffStrategyof one cloned method. They will
contain all the methods needed to handle differences be-
tween the corresponding cloned methods and other cloned
methods. Such difference handling methods were created
during the factorization of the source codes and more pre-
cisely the phase of difference treatment. Each inner class
is also made to implement the new interfaceDiffStrategy
which represents the behavior configuration strategy.

4.3 Building the strategy interfaces

The strategy interfaces are simply built by including in
them all the necessary methods signatures. All the imports
made in the original classes are also inserted into the inter-
face as are all the elements of the packages to which the
original classes belong. The new interfaces are declared as
belonging to a new package. All the new interfaces belong
to the same package.

4.4 Creating the new class

The new class is created by setting all the imports as they
have been set in the new interfaces and declaring the class
to belong to the package of clone handlers.

A reference to anIdStrategyclass is declared along with
a constructor that sets it with a value received in parameter.
Indeed, theIdStrategydoesn’t change over the life span of
an instance of the class.

Finally, the factored code of the cloned methods is in-
serted into the new class.

5 Applying the redesign process

The process presented in the previous section has been
implemented in CloRT (Clone Reengineering Tool). The
tool has been developed in Java, using JDK 1.1.7. To get the
ASTs of the source files, CloRT uses a java parser generated
with Javacc version 8 (first pre-release).

We have applied CloRT to JDK 1.1.5 [14], a develop-
ment kit from Sun Microsystems with 145 000 lines of code.
The redesign was conducted on a Pentium Pro 180MHz
with 64MB RAM running Linux version 2.0.27.

CloRT implements the reengineering of identical clones,
clones presenting superficial differences (names of local
variables, names of parameters and name of the method),
and clones differing in the use of non-local variables.



Table 1. Impact of the reengineering of 28
clones extracted from JDK 1.1.5

Identical Global
Clones variables

number of clusters
reengineered 6 5
source code
variation in LOCs +512 +545
percent variation of the
total size of the system +0.7 +0.8
files affected 13 7
reengineered classes 13 7
reengineered methods 14 14
classes created 6 5
interfaces created 12 10
methods created 44 40

Therefore clones corresponding to the three mentioned
categories have been isolated from the other clones ex-
tracted from JDK. To isolate the three categories of clones,
all the clones have been categorized using SMC (Similar
Method Classifier) [3]. SMC classifies similar methods into
18 categories based on the meaning of the differences exist-
ing between clones. Finally, 28 cloned methods grouped in
11 clusters have been used for the redesign process.

After redesign, the corresponding source code has been
automatically synthesized. The obtained system has been
successfully compiled to create a new version of JDK. Sim-
ple programs which exercise some of the modifications have
been successfully executed in the redesigned and regener-
ated environment.

6 Discussion

6.1 Impact on the maintenance of the system

The application of the redesign process to real systems
allows to increase maintainability and explicit reuse. The
redesign is in agreement with Lag¨ue et al.’s [9] “problem
mining” process that aims at coping with the existing base
of software clones in a system by allowing programmers to
see the clones of any piece of code they’re changing and
determine if the changes should be propagated to the other
copies of the code or not. Indeed, our redesign process al-
lows changes affecting the common part of clones to prop-
agate automatically to all copies whereas changes affecting
unique characteristics to remain local.

Moreover, because the new structure clearly separates
shared source code from differences, changes made to any
method of a group of related methods won’t propagate to
any other method of the group. The modifications simply

have to be introduced in the appropriateDiffStrategyclass.
Even if new differences have to be introduced between

related methods, the transformation remains of little com-
plexity. The differences need only to be encapsulated in
methods and used through method calls.

Similarly, if the common part of related methods is to be
changed, the change applies automatically to all the meth-
ods. The detection of the classes affected by the impact is
also straightforward. Thus the modification of existing fea-
tures of a system should be simple after the system has been
reengineered.

Keeping track of transformed clones and files added to
the system is also of little difficulty as the interfaces and
classes created are grouped into separate packages.

Another advantage of the newly created structures is
their extensibility. If the source code of one of the shared
method needs to be reused again in some other class or mod-
ule, a proper and easy reuse is possible. No matter where
the method is needed, the only manipulations that have to
be performed are the addition of a reference to the class
containing the factored code and the creation of the meth-
ods and inner classes that will handle the differences and
attribute manipulations. The latter are very simple meth-
ods, so their creation is of little difficulty. Therefore, not
only is the reuse simple but the overhead is small.

6.2 Impact on program comprehension

From Figures 6 through 9, it appears that the new source
code is easy to understand. Thestrategydesign pattern al-
lows to parameterize the parts that depend on the original
methods or on their classes. The methods created are also
quite simple and short which eases their comprehension.

6.3 Impact on the size of the system

Table 1 shows the impact of the redesign in terms of vari-
ation in the size of the source code, quantity of classes, in-
terfaces and methods. One notices that the reengineering
activity actually increases the size of the source code as it
happens in many reengineered systems. This result is quite
interesting. In fact, merging cloned methods decreases the
total size of source code but when this code is moved into a
new class, short methods to access and modify internal at-
tributes of the original classes have to be created. Moreover,
methods that correspond to differences between clones have
also to be added to the new inner classes. As the table shows
as much as 84 methods have been created while merging the
source code of 28.

Actually, this result is in agreement with the trend of well
designed object-oriented systems which present more but
shorter methods than more tightly coupled systems.



As the example presented in Figures 6 through 9 shows,
the overhead of the new structures is quite important. Thus,
the variation of the size of source code is smaller when
methods cloned are longer, contain proportionally less dif-
ferences and more methods form each group of clones.
The overhead could be reduced by making CloRT verify
the existence of methods allowing manipulations of the at-
tributes of classes before creating such methods. Currently,
CloRT only ensures that it never creates twice the same
method even in a different execution. CloRT also cre-
ates only the methods that are really necessary. If, for ex-
ample, an attribute is used without being modified only a
“get attribute()” method will be created without the corre-
sponding “setattribute(...)”.

6.4 Difficulties in the application of the process

The major difficulty related to the process is the degree
of complexity of some manipulations such as the determi-
nation of the return type of a complex expression.

Also, synchronized methods are currently not considered
by the process. Indeed, the lock associated with the cloned
methods must be moved from the original classes to the new
class. Static clones aren’t transformed either because they
would require a different implementation of the strategy that
handles the identifier redirections.

Finally, the overhead associated in the new method, with
the redirections of attributes through a method call and an
interface may have an impact on the execution time of the
method. Nevertheless, such a difference shouldn’t bear any
consequences in most cases. Critical methods from the
point of view of the execution time can simply be omitted
during redesign.

7 Conclusions and future work

This paper has presented a new automatic redesign pro-
cess that allows to transform the implicit reuse of source
code by cloning into an explicit reuse of an independent
component. The transformation is accomplished through
the factorization of commonalities found between clones,
the parameterization of their differences and the decoupling
of the newly created entity from its original contexts of use.

The process has successfully been applied to three cate-
gories of clones found in JDK 1.1.5. Duplicated pieces of
code have been replaced with more appropriate structures
that allow explicit reuse and promote a high degree of exten-
sibility and thus facilitate maintenance. The new structures
created are also easy to understand and manage.

The results of the reengineering activities conducted
show an increase in the total size of source code due to the
numerous but simple methods created.

Finally, the experiment shows that it’s possible to replace
clones with more maintainable structures totally automati-
cally, i.e. without any input from users nor any information
on the system besides its source code.

The next step in the analysis of redesign based on clone
information is to investigate the redesigns of other cate-
gories of clones [3] and to experiment with other design
patterns and structures possible in Java or in other program-
ming languages.
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[9] B. Lagüe, D. Proulx, E. Merlo, J. Mayrand, and J. Hudepohl.
Assessing the benefits of incorporating function clone detec-
tion in a development process. InProceedings of the Inter-
national Conference on Software Maintenance 1997, pages
314–321. IEEE Computer Society Press, 1997.

[10] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the
automatic detection of function clones in a software system
using metrics. InProceedings of the International Confer-
ence on Software Maintenance 1996, pages 244–253. IEEE
Computer Society Press, 1996.



[11] H. Müller. Understanding software systems using reverse
engineering technology perspectives from the Rigi Project.
CASCON’93, pages 217–226, October 1993.

[12] P. Newcomb and P. Scott. Requirements for advanced year
2000 maintenance tools.IEEE Computer, pages 52–57,
March 1997.

[13] J. Ning, A. Engberts, and W. Kozaczynski. Automated sup-
port for legacy code understanding.Communications of the
ACM, 37(5):50–57, 1994.

[14] Sun Microsystems Inc. Jdk 1.1.5.: Java development kit.
[15] L. Wills. Automated program recognition by graph parsing.

MIT Technical Report 1358, MIT, AI Laboratory, 1993.


