
Change and Adaptive Maintenance Detection in
Java Software Systems

Derek Rayside Scott Kerr
Systems Design Engineering Object Technology International Inc.

University of Waterloo Ottawa, Canada
drayside@amorgos.uwaterloo.ca Scott-Kerr@oti.com

Kostas Kontogiannis
Electrical & Computer Engineering

University of Waterloo
kostas@amorgos.uwaterloo.ca

Abstract

Java is a relatively new programming language that
is gaining popularity due to its network-centric fea-
tures and platform independence (‘Write Once, Run
Anywhere’). This popularity has caused rapid evolu-
tion in the libraries that are available for Java appli-
cations. This evolution, in combination with Java’s
run-time linking, may cause incompatibilities between
an application and the library it depends on: an ap-
plication may execute with a different library version
than the one it was compiled for. This paper presents
techniques to automatically detect change in a library
from its bytecode (binary) representation, and to apply
the impact of those changes to any Java application.
This paper also includes results of change detection
experiments performed on the standard Java library
(JDK) .

1 Introduction

Most software applications depend on a set of li-
brary functions which are either generic (e.g. Unix C
libraries) or specific to an application (e.g. matrix ma-
nipulation libraries). Applications written in Java are

not an exception. Indeed, all Java applications nec-
essarily depend on the Java Development Kit (JDK)
library, since all objects in Java are descendents of

*This work was funded by IBM Canada Ltd. Laboratory:
High Performance Java Group and Centre for Advanced Stud-
ies. Acknowledgments to Erik Hedges, Mohammed Ladha and
Proesemit L a h i r y o f S y s t e m s D e s i g n E n g i n e e r i n g a t t h e U n i v e r -
sity of Waterloo for their contributions.

java.lang.Object’
This paper discusses and proposes techniques for

the identification of possible failure points due to in-
compatibility that may occur when an application
written in Java is ported from one JDK version to
another. The techniques presented here are general
enough to be applied to any Java application and any
Java library (not just the JDK).

Java is a network-centric environment, with appli-
cations and libraries being retrieved from disparate
locations, often just before execution. Therefore, each
execution of a Java software system could occur in a
different configuration. This is also known as a dy-
namic configuration [KatzSO].

The implication of Java systems representing dy-
namic configurations is that no party is in direct con-
trol of system configuration management. As an ex-
ample, consider Sun’s ‘Java Plug-in’ (formerly known
as ‘Activator’) which automatically down-loads new
versions of the JDK to a user’s machine.

A Java software system is a self contained set of
bytecode which is divided into application 2 and li-
brary subsystems. The important distinction is that
no component in the library may depend on a compo-
nent in the application (by definition). For the pur-
Poses of this analysis the application is considered in-

variant and the library may change. The application
may need to be adapted to the library change after
the analysis is complete.

Within this context, this paper discusses methods

‘In o t h e r w o r d s , J a v a h a s a s i n g l y - r o o t e d i n h e r i t a n c e h i e r a r -
chy [Ecke198].

‘An a p p l i c a t i o n m a y i n c l u d e applets, b eans , s e r v l e t s , o r c ode
f r o m o t h e r p a r t i e s .

10
O - 8 1 8 6 - 8 9 6 7 - 6 / 9 8 $ 1 0 . 0 0 0 1998 IEEE

for:

l identification and detection of interface-related
failures that may arise in an application when the
library interface changes. Interface failure is simi-
lar to a linkage error and precludes system execu-
tion. Interface failure can be computed determin-
istically by a static verification tool [Somm96].

l identification and detection of possible regres-
sion in the application due to an implementa-
tion change in the library. Regression is a loss
of system functionality due to a change in some
component [Myers79]. Regression is a subtle
and complicated problem: i t cannot be com-
puted deterministically by a static verification
tool [Somm96]. The application must be tested
with the new library to determine if regression
has occurred. Therefore, ‘possible regression’ is
detected here.

In order to perform the above tasks a) Java source
and bytecode have to be represented at a higher level
of abstraction so that dependencies between different
software components in a library can be modeled and
revealed; b) a set, of Java features and dependencies
that may affect port,ability has to be selected; c) a set
of routines that autlomatically detect changes on the
selected features and1 dependencies from one JDK ver-
sion to another must be developed and finally; d) inter-
face or implementat,ion related library changes must
be associated with the application’s source code.

Our analysis is based on bytecode from which
a set of program related facts are extracted. The
facts are tuples represented in Rigi Standard Form
(R S F) [Muller93] ‘dan are of the form [relation entityl
entityz]. The set of 1pelations considered during the ex-
traction of facts from bytecode conform to a domain
model, the structure of which is discussed in more de-
tail later in the paper. Moreover, these relations repre-
sent interface and implementation characteristics of a
Java software component. Simple matching is applied
to detect changes that may occur on the selected fea-
tures from one librazy version to another. An entity-
relation diagram that represents dependencies among
the components is then used to propagate the detected
changes to the application.

This paper is structured as follows: Section 2 dis-
cusses related work in the area of code similarity
and JavaCheck from Sun Microsystems. The domain
model for analysis of Java software systems is pre-
sented in Section 3. Section 4 identifies a technique
to detect change between two versions of a Java li-
brary, and Section 5 discusses a technique to apply

the knowledge of library change to detect required
adaptive maintenance in an application. Section 6
briefly discusses how this tool would be used. Section
7 presents results of change detection experiments con-
ducted on the JDK (versions 1.0.2 through 1.2beta3).
Finally, conclusions are presented in Section 8.

2 Related Work

The work presented here is related to other work in
industry and in research. The most similar industrial
tool is JavaCheck from Sun Microsystems, which is
discussed below.

This work is also related to past research in code
similarity detection techniques. One major difference
between this work and past research in pattern match-
ing is that, here certain components are assumed to
have similar patterns, and differences are detected.
Past research in pattern matching often does not, start
with this assumption, and instead looks for similarity
amongst code that is assumed ‘co be different. Nev-
ertheless, the advanced pattern matching techniques
for discovering code similarity discussed below would
improve this work.

2.1 JavaCheck

JavaCheck from Sun Microsystems is the work
closest to our area of application. The purpose of
JavaCheck is to test an application for compatibility
with a Sun defined subset of the JDK (such as Per-
sonalJava). However, there are significant differences
between JavaCheck and this work:

JavaCheck does not, detect change between two
versions of a library; the changes must be manu-
ally encoded in a platform specification file.

The domain model used by JavaCheck is much
less sophisticated than the one presented here.
JavaCheck determines dependency relations by
scanning the bytecode for strings. The domain
model presented here involves an advanced anal-
ysis of the system’s components and their interre-
lations (instances of which are also extracted from
the bytecode).

JavaCheck only investigates one form of adaptive
maintenance that may be required when an appli-
cation is executed with an alternate library ver-
sion: interface failure. The tool presented here
also looks for possible regression.

11

2.2 Syntactic based matching

Within the framework of syntactic matching,
Baker, [Baker951 represents source code as a stream
of strings. The approach uses parameterized pattern
matching techniques based on a variation of a vari-
ation of the Boyer-Moore algorithm to identify du-
plication within a string. The algorithm allows for
a mechanism to identify global substitutions between
substrings so that strings can be matched by applying
the substitutions.

Paul , [Paul941 proposes a system (SCRU P L E) in
which regular-expressions are used to locate program-
ming patterns in a large software system. Pattern
matching is performed by testing if a code fragment
is accepted by the automaton that is constructed by
a regular-expression provided by the user, as a query.

Johnson, [Johnson94] uses a similar text based ap-
proach where fingerprints in source files are computed
using a hashing mechanism. Fingerprints are com-
pared to identify an overall similarity between two
texts.

In [Jankowitz88], [McCabeSO], [Konto97] statistical
measurements and software metrics are applied in or-
der to compute a fingerprint of a software component.

In [Wu92], [Muth] a Unix utility called agrep al-
lows for approximate matching between a regular
expression-like pattern and text in source code or plain
text files.

2.3 Semantics based matching

Operational Semantics [Stoy77] is an alternative
way of representing program behavior, in terms of how
a computation is performed. Specifically, operational
semantics focus on how the program states are mod-
ified during the execution of a statement. States are
modified using a transition relation. Operational se-
mantics are divided into two major approaches Natural
Semantics and Structural Operational Semantics.

In Natural Semantics a transition relation specifies
the relationship between the initial and the final state
of the execution of each statement. Semantic equiva-
lence of statements is defined in terms of the relation
transition system. When amioms and rules are used to
derive the final state after a statement is executed, a
derivation tree can be obtained. The root of the tree
is the statement and the initial state, and the leaves of
the tree are instances of axioms. The internal nodes
are conclusions of instantiated rules and their corre-
sponding premises are their immediate sons.

Structural Operational Semantics place the empha-
sis on the individual steps of a statement’s execution.

The transition system is different than that of natural
semantics since here we deal with sequences of tran-
sitions and not only a transition from an initial to a
final state.

Denotational Semantics [Stoy77] offer a powerful
method for representing programs as mathematical
entities and then being able to reason about their
dynamic behavior. The idea in this representation
scheme is to define a semantic function which maps
each syntactic entity to its meaning in terms of the
effects it induces when is computed. In the denota-
tional semantics approach there is a semantic clause
for each of the basic syntactic constructs of the lan-
guage [Letovsky88]. For composite syntactic con-
structs there is a semantic clause which is defined
in terms of semantic clauses for the immediate con-
stituents of the composite construct. The approach
of denotational semantics is to use the static struc-
ture to organize the presentation of the dynamical or
behavioral aspects of the program behavior.

2.4 Descriptive Matching

Descriptive matching offers a set of tools and tech-
niques to identify differences that may occur between
two code fragments by matching on a set of data and
control flow features.

In [Mili97] a software representation, matching, and
retrieval mechanism based on relational specifications
is introduced. matching can be refined focusing on
desired properties of the code segment sought. The
approach is based on formal specifications and on the
refinement ordering between specifications.

Canfora, and Cimiti le [Canfora94], [Canfora92],
[Cimitile96] describe efficient algorithms for analyzing
the control and data flow in order to identify binding
conditions on program variables. Versions of programs
with altered binding conditions become candidates for
portability failures.

In [Wills931 a program understanding system that
uses attributed data flow sub-graphs to represent pro-
grams and programming plans is presented. Com-
parison is performed by matching sub-graphs and by
checking constraints involving control dependencies
and other program attributes.

In [Gra92] a program differencing tool for C is dis-
cussed. The tool, named CIAdiff, allows for comparing
program features of corresponding versions by detect-
ing changed, deleted, and added program entities.

In [Murphy961 a lightweight approach for generat-
ing flexible and tolerant source model extractors from
lexical specifications is discussed. The source mod-
els provide means to represent source code features as

12

well as file dependences, event interactions and, call
graphs. Program features can be used to identify mod-
ified code between different versions.

Other approaches in the category of descriptive
matching, applied th’ough to the area of syntax based
editing, include CIA [ChenSO], CSCOPE [Steffen85]
and, the Pan system [BallanceSZ].

3 Domain Model

The domain modlel for Java software systems pre-
sented here consists of entities, relations and at-
tributes. The purpose of this model is to represent
components of Java software system and their interre-
lationships at, a higher level of abstraction. Instances
of this model are extracted from Java bytecode and
expressed in Rigi Standard Form (RSF).

3.1 Entities

This model contains two categories of entities:
components and comparisons. Components have at-
tributes, that describe their interface and implementa-
tion, and relations to other components. Comparisons
occur between two versions of a component, and have
attributes that describe the change in that component.

Most of the components in the model are instances
of Java data types. The Java data types are orga-
nized in a hierarchical fashion. There are two main
categories: Primitive and Reference. The Reference
types are subdivided into Array and ClassOrInterf ace,
which is made up of the Class and Interface types
[LS97]. The Java notion of an Interface is a special
type of abstract cl.ass; it is distinct from the gen-
eral concept of intlerface. The difference between a
Java Class and a Java Interface is so small in our
comparisons that it makes sense to model both as
ClassOrInterface. This is the approach adopted in
[LS97] and [VM97]..

This model does not represent Packages explicitly:
a Package is a mechanism used in Java to partition the
ClassOrInterface namespace in a hierarchical fashion.
A Package correlates to a directory where the source
code and bytecode are kept, and is included in the
fully qualified name [VM97] of a ClassOrInterface.

The model has a comparison
entity for each component that the developer can de-
clare: ClassOrInterfaceComparison, FieldComparison,
and MethodComparison.

The common notion of interface, as it applies to a
ClassOrInterface,isthe aggregate interface ofthe de-
clared Fields and Methods. This is contrary to the no-

tion employed here: a ClassOrInterf ace is recognized
as a component unto itself, not just an aggregation
of other components (as a Package is). For exam-
ple, a non-public ClassOrInterface cannot be used for
casting by methods declared in other Packages. This
example illustrates that a ClassOrInterface has an in-
terface that is completely independent of its declared
Fields and Methods. Similarly, the implementation of
a ClassOrInterface is considered independently of its
declared Fields and Methods.

The following simple application is used as an il-
lustrative example of the domain model. The fully
qualified ClassOrInterface names are not used here
in the interest of clarity: the fully qualified name of
Object is java.lang.Object.

/* A simple HelloWorld application */
public class App {

public static void main(String[l args) (
PrintStream p = System.out;
p.println(“Hello Hawaii!“);

The entities extracted from the bytecode represen-
tation of this application (in RSF) are:

type App ClassOrInterface
type AppO Method
type App.main(String[l) Method
type PrintStream ClassOrInterface
type PrintStream.println(String) Method
type Object ClassOrInterface
type Object0 Method
type String ClassOrInterface
type StringCl Array
type System ClassOrInterface
type System.out Field
type void Primitive

Notice the presence of Object and its default con-
structor. By default all Java Reference types extend
Object, even if this is not explicit in the source code.
The bytecode presents a more detailed representation
of the software.

3.2 Relations

The model presented here contains two categories
of relations: definition and use. All relations repre-
sent a dependency between two components, and the
direction of the relation is defined by the dependency
[Muller93]. Therefore, these relations define a depen-
dency graph of the entities.

13

Only use relations may cross the boundary from
the application to the library. In other words, the ap-
plication cannot define any components in the library
and the library cannot define any components in the
application.

The direct use of a ClassOrInterface component is
represented by such relations as new, checkcast and
instanceof.

Returning to the previous example, the definition
relations are (in RSF):

fieldDeclaredBy System.out S y s t e m
methodDeclaredBy AppO A p p
methodDeclaredBy Object0 O b j e c t
methodDeclaredBy App.main(String[l) A p p
methodDeclaredBy PrintStream.println(String)

PrintStream

It is important to note that the entity declared de-
pends on the entity that declares it: all relations define
a dependency. A subset of the use relations from the
example is presented below:

g e t s t a t i c App.main(String[]) System.out
ParameterType App.main(StringCl) S t r i n g Cl
ReturnType App.main(String[l 1 v o i d
Invoke App() Object 0
Invoke App.main(String[l)

PrintStream.println(String)

Note that the relations implicitly represented in a
method signature, such as ParameterType, are explic-
itly represented in the model.

The complete model contains 7 distinct types of
definition relations and 34 distinct types of use rela-
tions.

3.3 Attributes

Components have attributes that describe their in-
terface and implementation. Comparisons have at-
tributes that describe the change between two ver-
sions of a component. The attributes of components
are used (with other information) to compute the at-
tributes of the comparisons. All attributes take prim-
itive values and are encoded in RSF.

The notion of ‘attribute’ used in this model is sep-
arate and distinct from the notion of ‘attribute’ used
in [VM97].

3.3.1 Component Attributes

The most important interface attribute is the
Signature. The Signature is the set of names which
uniquely identifies each component.

The AccessModifiers are a set of booleans, some of
which relate to interface and some of which relate to
implementation.

The most interesting components are the
ClassOrInterface, Field and Method, as they can be
declared by the application developer. The attributes
of these components are:

The Signature of a CIassOrInterface is its fully
qualified name (i.e. including the Package name). Its
interface defininition includes the public, abstract
and interface AccessModifiers. Its implementation
is defined by the final and super AccessModifiers.

The Signature of a Field is the signature of the
class that declares it combined with its proper name
and the signature of its type. Its interface definition
includes the public, protected, private and static
AccessModifiers. Its implementation is defined by the
final, volati le, and transient AccessModifiers.

The Signature of a Method is the signature of
the class that declares it combined with its proper
name and the signatures of its parameters and re-
turn type. Its interface definition includes the public,
protected, private and static AccessModifiers.

The implementation of a method is defined by its
body, and the final, synchronized, native and
abstract AccessModifiers. The Method body is not
a primitive value; its change is summarized in the
MethodComparison entity.

3.3.2 Comparison Attributes

The attributes of comparison entities describe the
change between two versions of a component. All of
the values for these attributes must be computed; this
computation is discussed in detail in the next section.

The ClassOrInterfaceComparison and
FieldComparisoncomponents have only two attributes:
interf acechanged and implementationChanged. These
attributes take boolean values, and are computed by
examining the change in attribute values of the com-
ponent entities.

MethodComparison is similar to FieldComparison ex-
cept that it has two extra attributes: codechanged
and exceptionschanged. These attributes also hold
boolean values, and are used in the computation of
the implementationchanged attribute.

4 Change Detection

Change between the expected and alternate versions
of a library is detected by computing the attribute
values for comparison entities. Comparison entities

1 4

are only created (and computed) for those components
which are in the library interface. The library interface
is the aggregate of all components which are visible to
the application.

The phrases ‘expected’ and ‘alternate’ are specifi-
cally chosen so as to not imply ordering. The expected
version of the libra.ry is the one that the application
was compiled with. The alternate version is the one
that the application is required to execute with. The
alternate version may be newer or older than the ex-
pected version [KatzSO].

It is more important to detect change in a com-
ponent’s interface than in its implementation. If a
library component that the application depends on
has a changed interface it will certainly cause the
application to have an interface failure; there is no
point in computing whether the library component has
changed implementation.

The Signature of a component is the most impor-
tant interface attribute (as mentioned above), and
components are first matched on Signature.

4.1 ClassOrInterface

The ClassOrIntorf aceComparison interf acechanged
attribute is set to true if the Signature has changed
or the ClassOrInterface has been deleted. Otherwise,
it is computed by examining the attributes of each
version of the ClassOrInterface. If the public flag
has been turned off or the abstract or interface
flags have changedi state then the interfacechanged
flag is set to true.

The implementationchanged value is computed af-
ter the interf aceChanged value. The
implementationChanged value is set to true if any of
the implementation attributes have changed values.

4.2 Field

The FieldComparison interf acechanged attribute
value is set true if the ClassDrInterface that declares
it has been deleted, changed Signature, or had its
public flag turned off. Otherwise, the attribute val-
ues of the Field are examined, and any reduction
in visibility or change in the static value causes
interf aceChanged to be true.

If the type of a Field changes it will change the
Field’s Signature and cause the interf acechanged
value to be true.

The implementationchanged value is computed af-
ter the interf aceChanged value. The
implementationChanged value is set to true if any of
the implementation attributes have changed values.

Returning to the example: the static flag of the
System. out field is true, as is commonly known. Sup-
pose that a new version of the JDK was released where
the static flag of this field was set to false. The
FieldComparison entity for System. out would set the
interf acechanged bit to true.

4.3 Method

The MethodComparison interf acechanged attribute
value is computed following the same procedure for
the FieldComparison. interf aceChanged attribute.

The implementationchanged attribute value is com-
puted by first examining the values of the implementa-
tion attributes. If none of these have changed then the
cod&hanged and exception&hanged values are com-
puted. The implementationChanged value is true if ei-
ther codechanged or exceptionschanged are true.

The content of a method body is a list of opcodes.
An opcode is a single byte instruction for the Java
virtual machine, which may have zero or more argu-
ments. The arguments for these opcodes are encoded
as indices to the ConstantPool (symbol table) of the
class file. To perform an exact match of two lists of
opcodes it is necessary to de-reference their arguments
from their respective ConstantPool’s (the methods are
in different class files).

The exceptions thrown by a method are represented
by a set of indices to class Signatures in the Constant-
Pool. Performing an exact match of these sets is sim-
ilar to performing an exact match of the code in that
the ConstantPool references have to be de-referenced.
However, the exceptions are a set and not a list, so a
pseudo-join must be performed.

In the source code, the exceptions thrown by a
method are considered part of the Signature, and the
method cannot be invoked unless they are caught. The
exceptions are not part of the bytecode Signature, and
the restriction that they must be caught is only en-
forced by javac (the compiler) [VM97]. Therefore,
exceptions are considered as part of a method’s im-
plementation here and not as part of its interface.

The comparison of the code and exceptions thrown
could benefit from the advanced similarity techniques
discussed in the Related Work section; in that case
implementationchanged would be a real number to in-
dicate how much the implementation had changed, in-
stead of a boolean as it is here.

Suppose from the previous example that the
PrintStream.println(String) method has been al-
tered and now throws an IOException if it can-
not write to standard out. This change will be

15

detected when the exceptions thrown are exam-
ined, and the implementationChanged attribute of the
MethodComparison entity representing this method will
be set to true.

5 Adaptive Maintenance Detection

Now that change has been detected in the library
subsystem, the application must be analyzed to deter-
mine how to propagate that change (or if propagation
is required at all). If the change in the library af-
fects the application, the application will have to be
adapted to run on the alternate version of the library.

The steps required to detect where the application
requires maintenance to adapt are worked through be-
low with the previous example:

The first step is to determine the dependencies that
the application has on the library. This information
can be extracted automatically from the dependency
graph in the form of all of the use relations which
cross the application-library boundary. In the exam-
ple these relations are:

Extends App Object
I n v o k e App() Object0
ParameterType App.main(String[l) StringI]
g e t s t a t i c App.main(String[]) System.out
Invoke App.main(String[l)

PrintStream.println(String)

The next step is to examine the comparison entities
for each of the library components that the applica-
tion depends on. In the example Object, Object (>
and String have not changed, but System.out and
PrintStream.println(String) have.

The final step is to report any use relation that
terminates in a changed library component to the de-
veloper. There are two categories of change, and two
corresponding categories of adaptive maintenance to
report: interface failure and possible regression. From
the example, the getstatic relation will be reported
as interface failure, and the Invoke relation that ter-
minates in PrintStream.println(String) will be re-
ported as possible regression.

6 Tool Description

The domain model and analysis process presented
here are encoded in a tool intended for use by Java
software maintenance programmers. This tool accepts
three inputs: the application, the expected version of
the library, and the alternate version of the library.

The tool reports the RSF arcs that are affected by
interface change, and those that are affected by im-
plementation change. The arcs affected by interface
change in the library indicate portability failure in
the application. The arcs affected by implementation
change in the library indicate possible regression in
the application.

A number of metrics could be developed from the
output of the tool to try to assess the effort needed
to modify the application for use with the alternate
library version. For example: the number of arcs cor-
relates to the number of lines of code in the appli-
cation requiring maintenance; the number of source
nodes indicates how localized the maintenance in the
application is; and the number of target nodes indi-
cates how many changes in the library the developer
must contend with.

In the case of the example presented here, the appli-
cation needs a (proportionally) large amount of adap-
tive maintenance to work with the alternate version of
the library. It may not be feasible to adapt an appli-
cation requiring this degree of maintenance. However,
this decision is left to the developer.

7 Change Detection Experiments

This section presents a summary of results from
change detection experiments conducted on the JDK
versions 1.0.2 through 1.2beta3. These experiments
were conducted on the Microsoft Windows versions
of the JDK: there are small differences between the
Windows and Unix versions of the JDK.

The purpose of these experiments is twofold: first,
to demonstrate the necessity of this tool by showing
the degree of change in the JDK; and second, to pro-
vide experimental verification for the domain model
presented here.

These experiments were conducted in two sets to
show the complementary portability problems faced
by Java application developers: running old applica-
tions on new libraries, and running new applications
on old libraries. Table 1 presents a summary of the
change in the JDK measuring forward from the ini-
tial release (1.0.2). Table 2 presents a summary of
the change in the JDK measuring backwards from the
latest release (1.2beta3).

7.1 Experiments

The JDK contains two major sets of packages: the
Java packages and the Sun packages. The Java pack-
ages are considered to be the ‘core JDK’ and the Sun

16

Table 1: Change d.etection results measuring forwards
from the first JDK release (1.0.2).

packages the ‘undocumented’ portion of the library.
To be certified as 1100% Pure Java an application must
use only the core JDK (i.e. the Java packages). There-
fore, only results :for the Java packages are discussed
in detail here.

These experiments detect change in the library in-
terface: the aggregate of all components which are vis-
ible to the application. In practical terms this is the
public or protected fields and methods in public
ClassOrInterf aces.

The low level data collected from these experi-
ments can be used to detect the adaptive mainte-
nance required in an application, as discussed previ-
ously. Most applications will not use every component
in the library. T:herefore this summary information
represents the upper bound on the degree of adaptive
maintenance required for the application. The adap-
tive maintenance detection will identify which specific
components in the library cause the required adaptive
maintenance.

Tables 1 and 2 present a summary of the data for
two sets of experiments. The first set (Table 1) com-
pares JDK version 1.0.2 to all subsequent versions
(only 1.1.1 is shown from the 1.1.x series). The pur-
pose of this set of experiments is to assess the back-
wlards compatibility of the JDK: will future versions of
the JDK be compatible with applications written for
version 1.0.2?

The second set of experiments (Table 2) compares
JDK version 1.2 beta3 to all previous versions (only
1.1.1 is shown from the 1.1.x series). The purpose
of this set of experiments is to assess the backwards
portability of the ,JDK: will an application developed
for the latest version of the JDK work on past versions
of the JDK?

Results for the JDK 1.1.x series are not displayed
as the changes are so small, as would be expected from

JDK Change Measurement

Table 2: Change detection results measuring back-
wards from the latest JDK release (1.2beta3).

the version numbers.
Method ‘deprecation’ is a feature that is unique to

J,ava. The purpose is to allow the library developer
(i.e. Sun) to specify which methods will be removed
from the library interface in future versions. This is
an advance warning to application developers that the
library is going to change, so that they may adapt their
applications before the change actually happens.

Recall that interface change indicates that an ap-
plication may have interface failure with the alternate
version of the library, and implementation change in-
dicates that the application may regress if used with
the alternate version of the library.

7.2 Results

The first set of experiments (Table 1) indicate, as
expected, that the JDK shows good backwards com-
patibility. In other words, an application written for
JDK 1.0.2 is likely to execute with any future version
of the JDK, although the application should be tested
for regression.

The second set of experiments (Table 2) show how
much the JDK has grown since its initial release in
late 1995. In just three years it has grown almost
tenfold. Therefore, applications developed with later
versions of the JDK are less likely to execute with
earlier versions - unless the developer takes care to
use only those features of the JDK that are available
in earlier versions. Newer features of Java, such as
Beans, reflection, RMI, and the new event model, are
not available in older versions of the JDK.

These two sets of experiments display internal con-
sistency. Notice that the third column of table 1 is
similar to the first column of table 2. The third col-
umn of table 1 measures change between JDK 1.0.2
and JDK 1.2beta3; the first column of table 2 mea-
sures change between JDK 1.2beta3 and JDK 1.0.2.

17

The following numbers are identical: fields with im-
plementation change, fields with no change, meth-
ods deprecated, and methods with no change. It is
expected that the fields with interface change and
the methods with interface change numbers be differ-
ent, as these numbers will include fields and methods
‘deleted’. There is a small anomaly here: methods
with implementation change from 1.0.2 to 1.2beta3 is
743, and from 1.2beta3 to 1.0.2 is 741.

Also note that no change is detected between JDK
1.0.2 and JDK 1.0.2 (table 1, column 1) or between
JDK 1.2beta3 and JDK 1.2beta3 (table 2, column 3).
These columns indicate the size of the respective JDK
versions.

7.3 Details of Results

Table 1 indicates that the JDK has a few small
points where it may not be backwards compatible:
these are discussed here.

The three fields that have displayed implementa-
tion change are in the System class: in, out and err
(the standard IO streams). These three fields have
had the final flag turned on. This is an implementa-
tion change, not an interface change, so applications
which use the standard IO streams will still execute,
but should be re-tested with later versions of the JDK.

The single f ield with interface change is the
pushBack field from the Pushback1nputStrea.m class.
This field was protected, and has been deleted.

Seven of the thirteen methods with interface change
between JDK 1.0.2 and JDK 1.1.1 are accounted for
by the fact that the Win32Process class is no longer
public. This class is not to be used by application de-
velopers, and is not present on Unix implementations
of the JDK (there is a corresponding Unix32Process
class).

The following methods have been deleted from the
Abstract Window Toolkit (AWT), the graphical user
interface portion of the JDK: FramePeer.setCursor
ScrollbarPeer.setValue ComponentPeer.handleEvent
ComponentPeer.nextFocus

The AWT had the largest change (where change
does not include addition) of any segment of the JDK,
due to the introduction of a new event model.

The SecurityManager.checkPropertyAccess
and DatagramSocket . f inalize methods have also been
removed from newer versions of the JDK.

The Vector. tostring method has been moved to
Vector’s new parent class, as a part of the enhance-
ment of the JDK collections classes in JDK 1.2beta3.

8 Conclusions

This paper discussed a domain model which allows
for the representation of Java bytecode components
at a higher level of abstraction. A bytecode parser ex-
tracts RSF facts (entity relationship tuples) that con-
form with the domain model. An entity relationship
structure is then used to detect the change between
two versions of a component. A simple illustration of
how this change information could be applied to an
application to detect adaptive maintenance was pre-
sented.

These techniques are general enough for any arbi-
trary application and library that can be represented
as Java bytecode. Analyzing bytecode representations
of software instead of source code has three advan-
tages: often the source code is not available, other lan-
guages can be represented in Java bytecode, and the
bytecode explicitly represents certain relations that
are only implicit in source code.

A prototype static verification tool has been built at
the IBM Toronto Laboratory that can detect change
and compute interface failure deterministically from
bytecode. This tool can also identify ‘possible’ regres-
sion.

The detection of interface failures and possible
points of regression due to library changes is a very
important issue for network centric applications such
as those written in Java. The proposed system reduces
the maintenance time, and allows for easier integration
of large Java applications.

The domain model and change propagation tech-
niques presented here could be combined with more
sophisticated change detection techniques (see Related
Work) to identify possible regression points more ac-
curately.

Finally, we presented the results of change detection
experiments conducted on the standard Java class li-
brary, the JDK. These experiments show that the JDK
has grown almost tenfold in the three years since its
inception, but still retains good backwards compatibil-
ity. Therefore, the prototype tool will be most useful
to detect adaptive maintenance in Java applications
developed on new versions of the JDK, but deployed
on older versions. Other libraries may show different
results.

References

[Baker951 Baker S. B, “On Finding Duplication and Near-
Duplication in Large Software Systems” 1n Pro-

1 8

ceedings of the Working Conference on Reverse En-
gineering 1995, Toronto ON. July 1995i, pp. 86-95.

[BaIIance92] BaIIancme, R., Graham, S., Van De Vanter,
M., “The Pan Language-Based Editing System”,
ACM Transactions on Software Engineering and
Methodology, Jan. 1992, Vol. 1, No.& pp.95-127

[Canfora94] Canfora, G., Cimitile, A., DeLucca, A., “Soft-
ware Salvaging Based on Conditions”, IEEE Cont.
on Software &faintenance, 1994, pp. 424-433.

[Canfora92] Canfora, G., Cimitile, A., CarIini, U., “A
Logic-Based Approach to Reverse Engineering
Tools Production”, Transactions of Software Engi-
neering, Vol.i8, No. 12, December 1992, pp. 1053-
1063.

[ChenSO] Chen, Y., Nishimoto, M., Ramamoorthy, C.,
“The C Information Abstraction System.“, IEEE
Transactions on Software Engineering, ~01.16,
No.3, 1990, pp.325-334.

[Cimitile96] Cimitile, A., Munro, M., “An Improved Algo-
rithm for Identifying Objects in Code “, Software

Practice and Experience, ~01.26, No.1, 1996 pp.25-
48.

[Ecke198] Eckel, B., “Thinking In Java”, Prentice HaII,
1998

[Gra92] Grass, J., “&Ii% A Syntax Directed Differencer
for C++ Programs”, Usenix Ct t Conference,
Portland, Oregon, Aug.1992, pp.181-193.

[JankowitzSS] Janko’witz, H., T., “Detecting Plagiarism in
student PASCAL programs”, Computer Journal,
~01.31, no.1, 1988, pp. l-8.

[Johnson94] Johnson, H., “Substring Matching for Clone
Detection and Change Tracking”, International
Conference on Software Maintenance 1994, Victo-
ria BC, 21-23 September, 1994, pp.120-126.

[KatzSO] Katz, R.H. “Toward a Unified Framework for
Version Modeling in Engineering Databases” ACM
Computing Surveys, Vol. 22, No. 4, December 1990.

[Konto97] Kontogiannis K., “Evaluation Experiments on
the Detection of Programming Patterns Using
Software Metrics”, In Proceedings of WCRE’97,
Amsterdam, The Netherland s,

[LetovskySS] Letovsky, S. “Plan Analysis of Programs”,
Ph.D thesis, Yale University, New Haven CT,
Dept. of Computer Science, YALEU/CSD/RR662,
December 1988.

[LS97] “The Java Language Specification”, Sun Microsys-
tems Addison-Wesley, 1997

[McCabe901 McCabe T., J., “Reverse Engineering,
reusability, redundancy: the connection”, Ameri-
can Programmer, ~01.3, no.10, Oct. 1990, pp.8-13.

[MiIi97] MiIi, R., MiIi, A., Mittermeir, R., “Storing and
Retrieving Software Components: A Refinement
Based System”, IEEE Transactions on Software
Engineering, July 1997, ~01.23, no.7, pp. 445-460.

[Myers891 Myers, E., Miller W. “Approximate Matching
of Regular Expressions”, Bulletin of Mathematical
Biology, ~01.51, no.1, 1989, pp.5-37.

[Myers791 Myers, G. J. “The Art of Software Testing”,
John Wiley & Sons, 1979

[MuIler93] Miiller, H.A., “Understanding Software Sys-
tems Using Reverse Engineering Technology Per-
spectives from the Rigi Project” 1n Proceedings of
CASCON’93, Toronto, ON. 24-28 Oct. pp. 217-
226.

[Murphy961 Murphy, G., Notkin, D., “Lightweight Lexical
Source Model Extraction”, ACM Transactions on
Software Engineering and Methodologyvo1.5, No.3,
July 1996, pp. 262-292.

[Muth] Muth, R.,Manber U.,“Approximate Multiple
String Matching”,

http://www.glimpse.cs.arizona.edu/udi.html

[Paul941 Paul, S., Prakash, A., “A Framework for Source
Code Search Using Program Patterns”, IEEE
Transactions on Software Engineering, June 1994,
Vol. 20, No.6, pp. 463-475.

[Somm96] SommerviIIe, I. “Software Engineering”, 5th
Edition Addison-Wesley, 1996

[Stoy77] Stoy, J.E., Denotational Semantics, MIT Press,
1977.

[Steffen85] Steffen, J., “Interactive examination of a C
program with Csope”, Proceedings USENIX AS-
SOC., Winter Conference, Jan. 1985

[VM97] “The Java Virtual Machine Specification”, Sun
Microsystems Addison-Wesley, 1997

[W&93] Wills, L.M., “Automated Program Recognition
by Graph Parsing”, MIT Technical Report 1358,
MIT, AI Laboratory, 1993

[Wu92] Wu, S., Manber, U., “Agrep - A fast approximate
pattern matching tool”, Usenia: Winter 92 Techni-
cal Conference, San Pransisco, Ca., January 1992,
pp. 153-162.

19

