Localization of Design Concepts in Legacy Systems

K. Kontogiannis R. DeMori

M. Bernstein E. Merlo

McGill University
3480 University St., Room 318, Montréal, Canada H3A 2A7

Abstract

Complete automation of design recovery of large
systems is a desirable but impractical goal due to com-
plezity and size issues, so current research efforts focus
on redocumentation and partial design recovery.

Pattern matching lies al the center of any design re-
covery system. In the contezt of a larger project to de-
velop an integrated reverse engineering environment,
we are developing a framework for performing clone
detection, code localization, and plan recognition. This
paper discusses a plan localization and selection strat-
egy based on a dynamic programming function that
records the matching process and identifies parts of the
plan and code fragment that are most “similar”. Pro-
gram features used for maiching are currently based on
data flow, control flow, and structural properties. The
matching model uses a transition network and allows
for the detection of insertions and deletions, and it is
targeted for legacy C-based systems.

1 Introduction
As its name implies, reverse engineering encom-
passes the set of activities which move from a lower,
implementation-oriented level of abstraction to a
higher, design-oriented level. When a successful soft-
ware system is maintained and evolved for an extended
period of time, original design documents become ob-
solete and design rationales are lost, so reverse engi-
neering activities to reconstruct such information be-
come critical for the continued viability of the soft-
ware.

Reverse engineering techniques are used to achieve
a variety of objectives from simple identification of sys-
tem structure to the recovery of reusable components

*This work is funded by IBM Canada Ltd. Laboratory - Cen-
ter for Advanced Studies (Toronto), National Research Council
of Canada, IRIS Network of Centers of Excellence, and McGill
University.

0-8186-6330-8/94 $04.00 © 1994 IEEE

414

and design concepts. Defect detection is an important
related activity.

Large software systems (1 MLOC) impose severe
constraints on the complexity of analysis algorithms,
so real-time, interactive design recovery is not a fea-
sible objective. Therefore, alternative solutions must
be devised.

One less ambitious objective is redocumentation,
which is defined in [5) as “the creation or revision of
representations of a subject system in order to improve
the comprehensibility of the overall system. System
representations are created from the source code alone
and usually involve data and control flow properties”.

In contrast, design recovery deals with the identifi-
cation of higher level abstractions by attaching “mean-
ing” to program segments [2]. These higher level ab-
stractions may be instances of predefined plans, pro-
gramming concepts, or abstract data types and oper-
ations.

Our research aims to develop a) redocumentation
tools to focus design recovery efforts on particular
subsystems, b) localization and recognition algorithms
based on pattern matching techniques, and c¢) lever-
age obtained through integration with other tools [22]
using a software repository [16].

We consider redocumentation to be a macroscopic
activity or reverse engineering in the large. The ob-
Jective is to obtain in useful insights about the entire
system in a reasonable amount of time. For this type
of analysis, research efforts focus on program data flow
features that can be used to identify clusters of related
components (modules). Currently, program features
based on data bindings, common data resources, and
software structure are under examination. We argue
that de facto modules can be identified based on the
number and type of shared data resources.

Information about modular structure obtained
from our system can be exported to other tools for
visualization, storage, or user refinement. In particu-
lar, user-defined system views [22] provide design in-
formation using the insights of the developer, based

on a first-cut representation produced by our tool.

At the other end of the scale, we consider design
concept localization, or plan recognition, to be a mi-
croscopic activity (Reverse Engineering in the small).
More detailed insights about the organization and be-
havior of a system can be obtained on a smaller area
of interest. In particular, we are interested in (a) rec-
ognizing specific models or plans in the code, (b) rec-
ognizing general design concepts, and (c) detecting
highly similar code fragments (suggesting instances of
code cloning). Programs are represented using an-
notated abstract syntax trees (ASTs) in an object-
oriented environment.

Macroscopic and microscopic techniques work to-
gether to yield an effective synergy. Using Macro-
scopic techniques, “interesting” components are iden-
tified as candidates for further study. Once focus is
narrowed to a small portion of the system, microscopic
tools aid detailed design recovery.

The system currently runs in a distributed environ-
ment and performs clustering [22] and code localiza-
tion [11], [15) on small to medium-sized programs (50-
400 KLOC). Our ultimate objective is to work with
large (1 MLOC) and very large (10 MLOC) systems.

Using these ideas, we are developing a Reverse En-
gineering environment in conjunction with the Uni-
versity of Toronto, the University of Victoria, and the
Centre for Advanced Studies at IBM Canada Ltd. The
environment incorporates several different tools which
communicate through a software repository. Analysis
results may be displayed, stored in the repository, or
communicated to other tools for further analysis.

2 The Analysis Framework

In [5], four levels of abstraction for Reverse Engi-
neering have been identified: implementation, struc-
tural, functional, and domain.

The implementation-level view examines individual
programming constructs. For analysis at the imple-
mentation level, a program is typically represented as
an abstract syntax tree (AST) [13], symbol tables, or
plain source text [10].

The structural-level view examines structural rela-
tionships among the program constructs. Dependen-
cies among program components are explicitly repre-
sented.

The functional-level view examines the relation-
ship between program structures and their behav-
ior (“function”). The rationale behind program con-
structs is investigated.

415

The domain-level view examines concepts specific
to the application domain.

In this project, we have identified three analysis
strategies that can be applied at each level of ab-
straction: 1) structural analysis, £) behavioral anal-
ysis, and 3) conceptual analysis. A structural analysis
technique examines the structural elements of the pro-
gram, without considering execution-time behavior. A
behavioral analysis technique attempts to understand
the semantics of the program by executing or simu-
lating execution of the target system. A conceptual
analysis technique uses subjective or heuristic infor-
mation to discover concepts and relationships in the
software.

Our efforts focus on performing redocumentation
and design recovery for improving quality and en-
hancing performance by eliminating error-prone code,
bad or unusual programming practices, and unneces-
sary redundancy. Examples of potential or actual de-
fects include 'uninitialized variables, dead code, mem-
ory leaks, code clones.

3 Macroscopic Reverse Engineering

The first step in analyzing a large system is redoc-
umentation, which allows immediately useful conclu-
sions to be drawn by examining the source code itself.
One approach to redocumentation is to present in a
meaningful way control and data flow properties and
information about structure. Such an approach can be
executed in a reasonably short period of time even for
large software systems and is a feasible starting point
for performing semi-automatic user-assisted analysis.
We have investigated redocumentation based on data
flow properties and structural properties and we ex-
port results to a redocumentation tool {22] for further
analysis and visualization.

3.1 Data Flow Properties

Our data-flow based redocumentation efforts have
been focused on developing tools to perform system
clustering using data bindings and common data ref-
erences. A data binding [21] is a triplet (p, ¢, z) where
p is a function that updates variable z and ¢ is a func-
tion that uses z. A common reference is a triplet (p, ¢,
z) where functions p and ¢ both use or update variable
z (not necessarily the same z), where the variable(s) z
have the same name and data type. A common refer-
ence is a more relaxed relation than data binding be-
cause common references are based only on name and

data type. On the contrary data bindings are com-
puted based on global variables or parameters passed
by reference.

A cluster is a set of functions which share a spec-
ified range of data bindings or common references.
Such clusters can be stored in the repository and made
available to other analysis tools. Figure 1 shows anal-
ysis results from a 50 KLOC C-program based on
data bindings (upper part) and a listing of common
references (lower part). Data bindings and common
references provide valuable insights about system de-
composition and allow the user to focus his analysis
objectives on reduced portions of the system [21].

3.2 Structure Properties

A number of research teams are working on design
recovery and redocumentation using the program’s
structural properties. In [19] a pattern language and
a Non Deterministic Automaton mechanism is pro-
posed to match expressions with code fragments. In
[4] a rule-based system is used for identification of er-
ror prone structures (e.g. non void functions with no
return statement). In [10] a text alignment program
performs code clone detection based on textual infor-
mation.

Structure-based redocumentation efforts focus on
code localization using structural criteria such as lan-
guage constructs used, keywords, and grammatical
patterns. Code localization with these criteria can be
used for identifying instances of code cloning and for
performing system clustering. As with data-binding
and data-reference clusters, structural clusters can be
stored in the repository and made available to other
analysis tools.

Clone detection is of particular interest as a key
activity for both plan localization and defect filtering

[4].

4 Microscopic Reverse Engineering

Our key objective for microscopic reverse engineer-
ing is to achieve user-assisted partial design recovery.
The focus is on devising efficient program represen-
tation schemes and implementing fast algorithms for
plan localization that can be applied to large soft-
ware systems. Common plan localization algorithms
used in existing applications include top-down goal
agendas, depth-first search, best-first search, repeated
traversals, and exhaustive search.

Plan localization algorithms must cope with prob-
lems due to syntactic variations, interleaved plans,

416

implementation variations, overlapping implementa-
tions, and unrecognizable code [20].

Drawbacks in many existing applications include
(a) complexity issues, and () failure to produce any
results if perfect localization cannot be achieved. Plan
localization is a problem which in several aspects re-
lates to the problem of recognizing concepts in text.
Segment localization based on features of a specific
type (e.g., structure, keywords, data flow properties,
control flow properties) becomes a key activity to-
wards such a plan localization system.

4.1 Program and Plan Representation

If reverse engineering technologies are to be ulti-
mately successful, one of the central issues that must
be addressed is the definition of a program represen-
tation formalism that encompasses design information
at a higher level of abstraction than source code [17],
(6], [9), [20], [18], [7].

Many researchers consider graph theory as the most
useful mathematical formalism for representing the
structure of a computer program. Some groups use
directed graphs which represent low-level operations
(loops, conditionals etc.) and define a context sen-
sitive grammar for analyzing and interpreting these
graphs [20, 3]. Others use directed graphs to repre-
sent more abstract properties of the program, such as
condensed code descriptions or design specifications
[1].

Most of these techniques use well established theo-
ries and formalisms borrowed from Formal Languages,
Compilers and Parsers. Overall, the focus of Program
Representation is on the development of mathematical
formalisms and techniques which can facilitate:

1. representation of program functions in a more ab-
stract way than source code,

2. the representation of the behavior of a program,

3. search techniques (borrowed from A.I, or graph
theory),

4. ways to reflect information on the problem and
the application domain,

5. user friendliness, in terms of how program design
is presented to the programmer,

6. adaptability, in terms of how easily one represen-
tation can be transformed into another more ab-
stract one (in case of reverse engineering) or less
abstract (in case of forward engineering), and

RLEIMLC

File Edit Programs Analyze Reports Exports Options Windows Toole

Custer of Sotiing Cluster of Using Data Bindings
1flush_expr_list| 1butld_network_tests| Ipn_test)
|axpr_infol
Imomory_table)
QUERRY WHY Iresult2l
HOW QUERRY tresult|
WHY HOW
lstartConclusion|
QUERRY BACK_CHATN Iresultll
HOW Iresult!
WY I etartBranch|
READ_MET MAKE_NET tendOFFilel
Iprems|
lactel
1 flush_command_string! 1expand_command_stringl lcom_nax|
I sat_cosmand_stringl lcom_poal
| appand_command_string) |con_stri
Icreateinitial | 1df_2nd_phass| lvall

ibuild_network_tests)

1field_corwarsionl

larg_list!
Inext_arg!

Ibuild_netuwork_tests|

sRsam ezss TN

lextract_ands)|

Itypel
Iright!
Ipntl
1ynel
larg listl
Inext_argl

I1busld_netwarh_ tests|

fall_in_pattern|

Iypet
Iright!
|bottom!

Ihuild_netuwork_teats!

leombine_sxpressionsi

tamp,
larg_iist]

imemary _table!
1temp_mem_ptri
tnext)
inemory_table!
] mem_ptr|

Figure 1: A Cluster based on data bindings between functions (upper part) and a list of common resources

between pairs of functions (lower part).

7. portability to a computer environment (be able
to define data structures for encoding the formal-
ism).

4.1.1 Program Representation

The foundation for our program representation scheme
is an object-oriented annotated abstract syntax tree.
The development of the Annotated Abstract Syntax
Tree is a two-step process. First, the Refine! environ-
ment is used for the definition of a grammar and a
domain model for the language of the subject system.
The grammar is used for parsing, while the domain
model defines the object hierarchies for the Abstract
Syntax Tree nodes. In such a way an If-Statement
and a While-Statement are defined as subclasses of
the Statement class.

Second, the Tree is annotated with information on

1Refine is a Trademark of Reasoning Systems Corp.

417

system structure (call graphs), data flow (data flow
graphs), the results of previous analysis, and links to
informal information. Annotations are produced ei-
ther by analysis programs which are applied on the
Abstract Syntax Tree level or by the parser.

The tool allows us to rapidly define new attributes
for each class of AST node as our system evolves.
Currently annotations produced by analysis programs
include information such as, local variables, global
variables, variables used, variables updated, functions
called, points-to analysis and number of I/O opera-
tions (e.g. files opened, read/write statements). An-
notations produced by the parser include information
on object hierarchies between nodes of the AST, line
numbers of code location, file names, declarations of
variables and their corresponding references, include
files, and data types. All annotations become part of
AST tree and are available for any subsequent analysis
algorithm to use.

In the current implementation, nodes of the AST
are represented as objects in a LISP-based environ-
ment. Abstract Syntax Tree arcs and Abstract Syntax
Tree annotations are represented as functional map-
pings from one node to another.

4.1.2 Abstract Data Types

Basic information on data types is defined as Ab-
stract Syntax Tree annotations produced at parse
time. These annotations provide information such
as if a data entity is an Array-Type, Function-Type,
Pointer-Type, and Floating-Type. At analysis level we
must be able to provide the analysis algorithms with
abstractions on the data type information provided by
the parser and define/identify the basic operations on
these abstract data types.

Currently we focus on the development of a domain
model for a set of basic data types used in C. This do-
main mode] specifies an object hierarchy of Abstract
Data Types and their corresponding operations. In
such a framework, a List-Data-Type is a superclass
of an Array-Type and a Linked-Lisi-Type. A Linked-
List-Type becomes a superclass of a Double-Linked-
List-Type and of a Single-Linked- List- Type. The corre-
sponding operations such as Search- For-Element, Tra-
verse, Empty-List? become attributes which point ei-
ther to Abstract definitions of programming plans or
to specific nodes in the AST that implement the op-
eration.

4.1.3 Plan and Concept Representation

A concept is a relevant abstraction of a set of ideas.
For example, the concept of “linked list” abstracts
ideas suggested by key words such as “first, “last”,
“next”, “previous”, “insert”, and “append” [14]. Con-
cepts can be from the programming domain, from the
application domain, or universal. For example the
traversal of a linked list is a concept which has asso-
ciated with it keywords (e.g., "next”, "new”, ”old”,
"previous”), a structure (e.g., a looping structure
which is a superclass of a while, a for loop, or a repeat
- until loop), an input abstract data type and an out-
put abstract data type, (e.g., a listing structure which
is a superclass of linked list structure, and of array
structure, etc.). Actual data structures then become
instances of the particular subclasses.

We are tentatively defining plans as user-defined
portions of the annotated AST. The pattern match-
ing and localization algorithm is used to match all
code fragments that are similar to the model. The
plan (model) can be stored for subsequent use and to-

418

Figure 2: The Dynamic Programming model.

gether with all the similar to it code fragments located
can form a “similarity” class. This extends the power
of the pattern matcher, as it allows more models to
participate in the matching process.

4.2 The Model Description

Comparison methods are used to perform simple
plan instance recognition by computing a measure of
distance or similarity between two simple program-
ming plans. A simple programming plan is a plan that
has no other plans interleaved. In our approach such
simple plan instance recognition is performed by ap-
plying pattern matching on the annotated AST using
program structure, keywords, and identifier names to
represent meaningful software entities in specific con-
texts.

The model we consider is a sequential process in
which plans (template) and programs (data) can be
matched using dynamic programming. This process
takes into account insertions and deletions but not
substitutions or permutations (of data independent se-
quences of statements). A statement is the fundamen-
tal unit of the model.

In such a formalism the following notations are
used:

e A simple statement i : S;

A sequence of statements : $51S,...S,

The composition o of statements 4, j : Sioj

A block statement taken from a sequence of state-
ments S1,;52;..8n © Si—n

A vector of feature values for a block statement
starting at position i and ending at position j

(Si~j) = €3, J)

The sequential model is shown in Figure 2 where
nodes represent states that correspond to statement
sequences considered so far and arcs represent transi-
tions between states. A state S; contains vectors of
feature values £(i,5), 1 € {1,2,..j}. A vector £(k,J)
contains feature values extracted in the program seg-
ment Sk_.;j. A loop I; on state S; represents the in-
sertion of arbitrary many g program elements at this
state. A transition R;; represents the fact that seg-
ment S;S; was generated at state Sj, and then the
process continues at state S;.

4.3 The Comparison Process

The matching process is based on composition of
distances. In this formalism, D(£(1,p),£(1, 7)) is the
distance between the first p elements of the program
under analysis and the first j elements of the model.
This distance is computed using dynamic program-
ming.

The computation of such a distance is illustrated in
Figure 3. The z-azis represents the input program in
states and the y-azis the model or the programming
plan.

Distance computation may take a number of forms
according to what properties we want the distance
function to have. For the sequential model we have
adopted the following dynamic programming function:

A(S(p - l,p),f(j - 11]))+
D(£(1,p—1),€(1,5 - 1))

g) T(E(P—1,p),£(5 ~1,5))+
D(EQ,p),£(1,5) = Min{ o~ PP E A
C(f(p - 1,?),5(] - 11]))+
D(E(L,p—-1),£(1,5 - 1))

where, D(E(3, j), £(k, 1)) is the the distance between
the code fragment represented by statement positions
i to j and the model or code fragment represented by
statement positions k to I. Similarly A(z, y) represents
the deletion cost for code feature vectors represented

419

by x and y , I(x, y) the insertion cost, and C(x, y) the
comparison cost.

The above Dynamic Programming function does
not specify the program features used for computing
the costs C, A, and I.

As the quality of the process depends on the pro-
gram features selected for the comparison and not on
the Dynamic Programming algorithm, we achieve dif-
ferent levels of accuracy as the features chosen change.

Currently we are experimenting with

(a) data and control flow properties (such as num-
ber of global and local variables, number of files
opened, type of statements used, and number of
functions called). Under this criterion two state-
ments match if they have similar control and data
flow properties, and

(b) operations on sets of used/updated variables com-
bined with unification and substitution algo-
rithms. In this category the matching criteria in-
clude (a) the variables-used criterion under which
two statements match if they use the same vari-
ables (after unification and substitution), () the
variables-updated criterion under which two state-
ments match if they update the same variables,
and (c) the resources criterion under which two
statements match if one updates and uses a su-
perset of variables used and updated in the other
statement. Cardinality thresholds can be used in
order to define similarity distances between state-
ments.

Moreover, as program statements can be either sim-
ple or composite we introduce the idea of nested Dy-
namic Programming. In the case of simple statements
the comparison process is based on program features
for calculating model/program similarity vectors (e.g.,
number, names and data types of common variables
used/set). The situation, though, is more complex
when composite statements are involved. In such a
case, the algorithm proceeds by starting in a recursive
way a new matching session for the subcomponents of
the original composite statements.

Different programming structures start different re-
cursive matching sessions. For example, an /F-THEN-
ELSE statement is represented as three statements
corresponding to (a) the condition, (b) the Then part,
and (c) the Else part. The Else part, in turn, may
be a While statement. In this case the matching pro-
cess will trigger a new Dynamic Programming (D.P)
matching in which the While statement is represented
as a Condition part and a While-Body part.

4.4 Partial Matching

The matching is based (a) on a sequential model al-
lowing for insertions and deletions between a plan and
a code fragment and (3) on the hierarchical definition
of programming plans.

At model position ¢ and code fragment position p
the dynamic programming function D(£(1, p), &(1,
q)) gives the minimum distance corresponding to the
generation by the first ¢ positions of the model of a
segment in the input program ending at position p.

As the domain model of the language allows for an
hierarchical description of these programming struc-
tures, the nested D.P matching can take advantage of
predefined representations for all these basic language
constructs (e.g., blocks, iterative statements, condi-
tional statements, expression statements) to guide the
matching process, and create the appropriate expan-
sions needed for nested D.P matching.

The object oriented paradigm used for program
representation (e.g., the domain model and the cor-
responding Annotated AST) has been extended to
include an hierarchical description of programming
plans.

As an example of the use of the abstract data type
hierarchy, consider the TRAVERSAL plan that may
be applied to a variety of relevant data types such as
arrays or linked lists.

The hierarchical definition of plans allows for im-
perfect or partial matching between different object
classes. This has been achieved by extending the do-
main model for the language constructs, adding new
object classes and object hierarchies for data types
and common programming plans. Moreover, new ob-
Ject classes can be defined at run time in order to assist
the user to specify his own plans. For example, appli-
cation specific concepts and their corresponding code
fragments can be represented as user-defined object
classes in the domain model.

Plan recognition in terms of user-defined concepts
is only one aspect of microscopic reverse engineering.
In this framework we would like not only to recognize
a plan against a code fragment but also use a code
fragment as the model and find other code fragments
that match it. The gain is that (a) we create similar-
ity clusters of instances of a plan (even if this plan is
not yet defined) and (b) we facilitate system modular-
ization and code reuse.

For a more concrete example, consider the follow-
ing instances of the TRAVERSAL plan for walking
through a linked list:

Pi: fact_ptr = get_next_fact(((void #)0));
P2: while
P2.1 (fact_ptr !'= ((void *)0))

P2.2: show_fact("wdisplay",fact_ptr);
P2.3: cl_print("wdisplay","\n");
P2.4: fact_ptr = get_next_fact(fact_ptr);
}
and

Q1: test_ptr = (new_fctn_args->arg_list);
Q2: vwhile
Q2.1: (test_ptr != ((void *)0))
{
Q2.2: total *= numget(test_ptr,"s");
Q2.3: test_ptr = (test_ptr->next_arg);
}

The nested dynamic programming matching for
testing similarity between the code fragments P (used
as model) and Q (used as input) is illustrated in Figure
3. Statements P; and Q; match under the variables-
updated criterion and create the first binding {fact_ptr
/ test_ptr}. The second statement P is a compos-
ite statement and triggers a new D.P matching, with
the composite statement @Q,. The condition parts of
statements P; and Q2, P2, and Q2; match under
the variables-used similarity criterion and by applying
the previously defined binding {fact-ptr / test_ptr}.
Similarly the while-bodies P33 to P4 and Q25 to
Q2.3 match under variables-updated criterion at posi-
tions P 4, @23, after applying the binding {fact_ptr
/ test_ptr}. The nested D.P matching is illustrated in
the lower part of Figure 3.

4.5 State of Practice

Within the framework presented above, we are
working towards

o the selection of program features that allow for
optimal performance of the pattern matcher

e the definition of methodologies to handle imple-
mentation variations between different instances
of programming plans

Our objectives apply to three main directions
o Plan localization and recognition

e Code cloning detection

A
Cost=a+b < threshoid for similarity
o
t L}
\ \
Cost=a ! i
oy froemn) s ;r
\ H
. .
Ql QZ
A
Cost= b
Paa foooopooes rem e
o
Pas [--- et S
Pag [~~"f-"" R
1 »
Pax [~ et el el
1 1] 1]

22

Figure 3: The matching process between two code
fragments instances of the TRAVERSAL plan. The
upper part of the figure illustrates the overall D.P
matching while the lower part illustrates the nested
D.P matching.

o Reuse and modularization

So far we have performed experiments using pro-
gram features based on (a) measurements on control
and data flow program properties (such as fanout,
complexity measures, number of I/O operations etc.)
and (b) operations on the sets of variables set/used per
statement (e.g. subset / superset relations, cardinality
of set intersections etc.).

Two examples include the application of the system
on 50 KLOC and 40 KLOC C programs where we were
able to detect a number of instances of code cloning.
Applying simple pattern matching techniques as the
ones defined above to the first program composed of
approximately 750 functions distributed in 40 files, we
obtained 68 clusters containing potential clones with
approximately average size 3.6 functions per cluster.
The second program analyzed consists of 233 functions
distributed in 57 files. We obtained 9 clusters with the
average size 2.5 functions per cluster. This system has
been incorporated in a larger reverse engineering en-
vironment aiming for clustering and redocumentation

421

of sizable C programs (400 KLOC) [11], [12].

Moreover, we are working on devising methodolo-
gies allowing for pattern matching between code frag-
ments with implementation variations. We focus our
efforts on two areas: (a) implementation variations
due to different data types, and (b) implementation
variations due to control and data flow. For the first
category of variations we use an hierarchical descrip-
tion of basic data types used (e.g., double linked lists,
linked lists, arrays, etc.). In such a framework a linked
list and an array are subclasses of a list structure. The
hierarchy of the data types is defined as an extension
of the domain model of the language constructs. The
second category is more complex and includes prob-
lems such as order of execution of statements and data
dependencies between program components. In such
a case the model described above fails because it han-
dles only insertions and deletions of program state-
ments between the model and the input. Currently, we
are experimenting with dynamic programming models
that maintain a set of statements per state instead of
just a statement per state. A state then is defined by
a collection of program statements that are accessible
at this program point based on data and control de-
pendencies. Once a match has been achieved at state
i of the input then the corresponding matching state-
ment is deleted from the set at state i as well as from
all the other sets that contain it. For example (assum-
ing normal conditions), statements i = 1; j = 2 can
be interchanged without affecting program behaviour.
The sequential model will not recognize such a vari-
ation but the extended model will succeed. The key
point though is to recognize statements which do not
have data dependencies and to update the states of
the model in order to contain as accurately as possi-
ble the correct sets of control and data flow indepen-
dent statements. For this reason we are working on
incorporating compiler technology and flow analysis
techniques [8].

5 Integration

The integration of different environments and tools
in a distributed environment can be achieved by allow-
ing a local workspace for each individual tool in which
specific results and artifacts are stored. A transla-
tion program generates appropriate images of objects
from each local workspace to the central repository,
and vice versa. The central repository is responsible
for normalizing these representations, making them
available to other tools, and linking them appropri-
ately with the other relevant artifacts already stored

A
Case Tool Case Tool i
Local Local Local
Workspace Workspace Workspace
~ el
w | i Server
Schema
. Repository
Datz Inbgralon Object Base Tool

Figure 4: The architecture of a distributed reverse en-
gineering environment. Dashed lines distinguish dif-
ferent machines, or computing environments.

in the repository (e.g. the corresponding nodes in the
AST).

A system architecture for such an integrated re-
verse engineering environment which is currently in-
vestigated by the participants of the project? is shown
in Fig. 4.

6 Conclusion

Within the framework presented in this paper, we
are working towards the development of a practical re-
verse engineering environment that supports not only
the identification of system components and depen-
dencies but also the extraction of higher-level system
abstractions, including design and requirements infor-
mation.

Insights about low-level abstractions can be gath-
ered about the overall system (reverse engineering in
the large), while detection of higher-level concepts re-
quires a more narrow range of focus (reverse engineer-
ing in the small). The tools we are developing are de-
signed to work under the direction of the maintenance

2University of Toronto, Dept. of Computer Science - Univer-
sity of Victoria, Dept. of Computer Science - McGill University,
School of Computer Science, and IBM Canada Ltd.

422

programmer, who can use the results of analyses per-
formed to direct further queries.

Comparison between plans and code fragments is
achieved by using dynamic programming and dis-
tances between program features. Comparison crite-
ria for this level of plan recognition include structural
similarity, control flow similarity, and relations defined
on uses and definitions of variables (e.g., the type of
variables used, updated, or passed as parameters, pre-
conditions, data bindings, and common references).

We are currently using the techniques described in
this paper to perform a) system clustering and &) clone
detection on small to medium sized programs (50-400
KLOC).

Our further research objectives include introduc-
tion of compiler technology (alias analysis, static data
flow analysis etc.), refinement of the code features used
to identify plan instances, refinement of the plan rep-
resentation formalism, and experimentation on larger-
scale commercial systems in conjunction with IBM
Canada Ltd. Center for Advanced Studies.

References

[1] Arango, “Maintenance and Porting of Software
by Design Recovery,” IEEE Conf. on Sofiware
Maintenance, 1985, pp. 42.

[2] Biggerstaff, T. J., “Design Recovery for Mainte-

nance and Reuse,” IEEE Computer, July 1989,

pp- 36.

(8] Bush, “The Automatic Restructuring of
COBOL,” IEEE Conf. on Software Maintenance,
1985, pp. 35.

(4] Buss, E., Henshaw, J., “Experiences in Program
Understanding,” In Proceedings of CASCON 92,
IBM Centre for Advanced Studies, November 9 -

12, Toronto, Vol.2, pp. 157 - 189.

Chikofsky, E.J. and Cross, J.H. II, “Reverse En-
gineering and Design Recovery: A Taxonomy,”
IEEE Software, Jan. 1990, pp. 13 - 17.

(5]

(6] Engberts, A., Kozaczynski, W., Ning, J., “Au-
tomating Software Maintenance by Concept
Recognition Based Program Transformation,” In
CSM’91 : Proceedings of the 1991 Conference on
Software Maintenance, October 1991.

[7] Fickas, S., Helm, R., B., “Knowledge Represen-
tation and Reasoning in the Design of Composite

(8]

(9]

(10]

(11]

[12]

[13]

(14]

(15]

[16]

(17]

Systems”, IEEE Transactions on Software Eng-
neering, Vol. 18, No.6, June 1992, pp. 470-482.

Hendren, L., Donawa, C., Emami M.,, Gao, G.,
Justiani, Sridharan, B. “Designing the McCAT
Compiler Based on a Family of Structured Inter-
mediate Representations” LCPCS5, pp. 261 - 275

J. Hartman, “Understanding Natural Programs
Using Proper Decomposition” 13th Interna-
tional Conference on Software Engineering, 1991,
Austin, Tezxas, pp. 62-78.

Johnson, H., “Identifying Redundancy in Source
Code Using Fingerprints” In Proceedings of CAS-
CON 93, IBM Centre for Advanced Studies, Oc-
tober 24 - 28, Toronto, Vol.1, pp. 171 - 183.

Kontogiannis, K., Bernstein, M., Merlo, E., De-
Mori, R., “The Development of a Partial Design
Recovery Environment for Legacy Systems” In
Proceedings of CASCON ’93, IBM Centre for Ad-
vanced Studies, October 24 - 28, Toronto, Vol.1,
pp- 206 - 216.

Kontogiannis, K., Tilley, S., DeMori, R., M uller,
H., “ A Reverse Engineering Environment for
Legacy Systems” ICSE 16, Workshop on Soft-
ware Engineering and Artificial Intelligence, Sor-
rento, [taly, May 16 - May 22 1994.

Kotik, G.B. and Markosian, L.Z., Automating
Software Analysis and Testing Using a Program
Transformation Sysiem, Reasoning Systems Inc.,
1989.

Merlo, E., McAdam, 1., De Mori, R., “Source
code informal information analysis using connec-
tionist models,” In Proceedings of 13th. Interna-
tional Joint Conference on Artificial Intelligence,
Vol. 2 pp. 1339 - 1344.

Merlo, E., De Mori, R., Kontogiannis, K., “A
Process Algebra Based Program and System Rep-
resentation for Reverse Engineering,” In Proceed-
ings of Second Workshop on Program Compre-
hension, July 8 - 9, Capri, Italy, pp. 17 - 25.

Mylopoulos, J., “Telos : A Language for Repre-
senting Knowledge About Information Systems,”
University of Toronto, Dept. of Computer Science
Technical Report KRR-TR-89-1, August 1990,
Toronto.

J. Q. Ning, M. T. Harandi, “Knowledge-Based
Program Analysis,” IEEE Software, January
1990, pp74-81

423

(18]

(19]

20]

(21]

(22)

Parnas, D., L., “Predicate Logic for Software En-
gineering”, IEEE Transactions on Software Engi-
neering, Vol. 19, No.9, September 1993, pp. 856-
862

Paul, S., Prakash, A., “Generating Programming
Language-based Pattern Matchers” In Proceed-
ings of CASCON ’93, IBM Centre for Advanced
Studies, October 24 - 28, Toronto, Vol.1, pp. 227
- 243,

Rich, C. and Wills, L.M., “Recognizing a Pro-
gram’s Design: A Graph-Parsing Approach,”
IEEE Software, Jan 1990, pp. 82 - 89.

Selby, R., Basili, V., “Analyzing Error Prone Sys-
tem Structure” IEEE Transactions on Software
Engineering, vol 17, No. 2, February, 1991, pp.
141 - 152.

Tilley, S., Muller, H., Whitney, M., Wong, K.,
“Domain-retargetable Reverse Engineering”, In
CSM’93 : Proceedings of the 1998 Conference on
Software Maintenance, September 1993, pp. 142-
151.

