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Abstract

Computer Assisted Program Understanding sys-
tems take input primarily in the form of source code
and produce output representing system concepts in
some useful form. This paper discusses the develop-
ment of a program design recovery environment based
on structural and behavioral recognition of program-
ming plans . Our research investigates program an d
plan representation methods and the issues related t o
the detection of code fragments using pattern match-
ing techniques. In particular, we consider the integra-
tion of diverse tools allowing selection from a choice
of strategies. Our investigation focuses on technique s
to allow partial design recovery when complete recog-
nition is not feasible . Finally, we discuss the underly-
ing process paradigm, called "Goal-Question-Analysis -
Action".

1 Introduction

Reverse engineering is concerned with the develop -
ment of tools and techniques for understanding unfa-
miliar code to facilitate system maintenance [5] . De-
sign recovery, a fundamental task for software mainte-
nance and reverse engineering, refers to the process i n
which a program is analyzed in order to be understood
as a whole with respect to

• functional specifications ,

• input parameters ,

• expected output ,

• performance, and

*This work is funded by IBM Canada Ltd . Laboratory -
Center for Advanced Studies (Toronto) . Parts of this paper
appear at "Program Representation and Behavioural Matchin g
For Localizing Similar Code Fragments " paper of CASCON '93
Proceedings .

• the software and hardware environment in which
the system runs .

The objective is to discover features such as the or-
ganization of program structure (how procedures or
submodules are organized), run-time functionality of
the program (how and in what order modules are in-
voked), parameter passing, aliases, side effects, an d
meaningful system abstractions .

The primary input is source code which is repre-
sented usually as a flat text file. The file may con-
tain a variety of forms of informal information such
as comments, I/O commands (e .g ., print statements) ,
indentation, and meaningful variable names . Unfortu-
nately, informal information provides insufficient dat a
for analyzing complex program features. It is neces-
sary to apply other techniques which operate on th e
level of abstract syntax trees (AST) or other progra m
representation schemes .

In the past few years several research groups have
focused their efforts on the development of tools and
techniques for program understanding and progra m
restructuring. Research issues include the develop-
ment of formalisms for representing program struc-
ture, control and data flow analysis, and technique s
for visualizing program execution . Design recovery re-
search has been concentrated mostly on program rep-
resentation and plan localization .

For real applications, however, additional issue s
must be addressed . Practical problems include th e
limited number of programming plans (templates) ,
the difficulty of analyzing unstructured code, and th e
complexity of plan localization algorithms . Together ,
these problems make program understanding applica-
tions rigid and unable to cope with large-scale systems .
We take an approach in which methods and tools fo r
design recovery are conceived based on a set of strate-
gic but specific objectives .

We introduce the idea of Goal Directed Design Re-
covery in which the representation method, the leve l
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of abstraction, the appropriate analysis tool, and the
control strategy are dictated by the objectives an d
program attributes that the maintainer wishes to re-
cover. Depending on the particular design recovery
objective, specific techniques include

• program flow analysis ,

• program equivalence relations (using forma l
methods), an d

• knowledge-based techniques (heuristics for com-
plexity reduction, domain knowledge) .

At lower levels of abstraction, the analysis proces s
examines features derived directly from the static cod e
structure . Issues considered at this level of abstrac-
tion include problems such as syntactic variations, im-
plementation variations, overlapping implementation ,
unrecognizable code (or partial recognition), and dif-
fuse structures . In general, they are issues regard-
ing the identification of relationship among code frag-
ments .

At higher levels of abstraction, behavioral analysis
is used to recognize abstract functionalities in progra m
fragments . Approaches for understanding behaviora l
aspects of a program are derived primarily from lan-
guage semantics . Denotational and operational se-
mantics provide a formal description of program be-
havior and can be used as a basis to represent an d
recognize semantic cliches .

In this research project a number of different re-
verse engineering tools and methodologies must be in-
tegrated into a single reverse engineering environment .
The environment must be able t o

• perform clustering,

• represent the program's structural relationships ,

• allow for the definition of useful metrics, and

• perform selection operations based on user -
defined criteria .

This yields a number of research issues that must b e
addressed, including the development of program rep-
resentation schemes, the development of compariso n
algorithms, the development of repositories for soft -
ware components, and the integration of user-interface
technology to browse, navigate, and search large col-
lections of software artifacts .

Within this framework, we investigate technique s
for performing partial program design recovery. Be-
cause of the complexity of the problem, partial de -
sign recovery is a more realistic objective than com-
pletely automated design recovery and can be very

useful when used by an experienced maintainer. The
techniques we investigate focus on three major issues :

1. program representation schemes using language
semantics and information obtained from the pro-
gram's abstract syntax tree ;

2. comparison methods based on structural and be-
havioral program properties ; and

3. interface programs for integrating different re-
verse engineering tools and environments in on e
operational system using a common software
repository .

In the following sections we discuss the structure
and functionality of such an integrated reverse engi-
neering environment and we investigate the relevan t
research issues .

2 An Integrated Reverse Engineering
Environment

Reverse engineering is a process that produces high-
level descriptions of software from lower-level repre-
sentations . Usually this means extracting design fro m
a program's source code. Once design decisions ar e
recognized, they are then organized into a form that
is convenient for the developer . This process requires
the integration of different technologies, environments ,
and analysis tools . In developing an integrated revers e
engineering environment, it is necessary to address is -
sues of

1. program representation ,

2. definition of algorithms and methodologies to ex-
tract system abstractions ,

3. design of software repository systems ,

4. user-interface technology to browse, navigate, and
search large collections of software artifacts, and

5. the definition of process models for reverse engi-
neering .

Current reverse engineering research focuses on th e
development and integration of several different tech-
niques and methodologies. There exist a few reverse
engineering environments on the market and in re -
search laboratories which support reverse engineering
functions that are limited in scope to syntactic and
lexical analysis of the source code. The objective i n
our research is to extend the range of available ap-
proaches for reconstructing design requirements . In
particular, we are considering
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• program abstraction schemes ,

• approximate pattern matching (with respect t o
stored code descriptions) ,

• interactive sessions with programmers ,

• graph theoretic properties [14], an d

• repositories for storing software components and
results of software analysis .

Techniques based on compiler technology, such as
parsers, flow analysis methods, slicing, and dicing ar e
used to build abstract syntax trees and for performin g
a number of analysis tasks (e .g ., constant propagatio n
analysis, value range analysis) .

Database technology is used to develop softwar e
repositories that are used for storing code descriptions ,
documentations, test data, results of previous analy-
sis, and other relevant information .

Reverse Engineering environments such as REFIN E
are used to provide a prototyping framework and a

programming environment for developing reverse en-
gineering applications. These environments can b e
very flexible, incorporating a variety of programmin g
paradigms (such as object oriented, logic, and func-
tional programming) and facilitating the constructio n
of appropriate user interfaces .

Finally, pattern matching technology is used to de-
tect common programming plans in source code frag-
ments .

Within this framework we are working towards th e
development of a reverse engineering environment tha t
supports not only the identification of system's com-
ponents and their dependencies but also the extractio n
of system abstractions, including design and require-
ments information .

Some of the issues that must be address when de-
signing a reverse engineering environment include

• communication among the different tools ,

• definition of recoverable design features and thei r
approprate level(s) of abstraction ,

• development of representation schemes for high-
lighting software attributes, an d

• the development of appropriate comparison tech-
niques .

Abstract Syntax Trees provide the basic structur e
for program representation because they serve as in-
puts of a number of flow analysis algorithms and can
be annotated with higher-level semantic information .

1 REFINE is a trademark of Reasoning Corp .

The process of discovering and identifying system
abstractions involves the development of a mental
model describing the function of the system at dif-
ferent views. In [8] four different levels of program
views are identified :

1. Implementation, represented as an Abstract Syn-
tax Tree (AST) and a symbol table of program
tokens ;

2. Structural, which gives an explicit representatio n
of the dependencies among program components ,

3. Functional, which relates parts of the program by
their functions and shows logical relations among
them; and

4. Domain, which replaces items in the functiona l
view by concepts specific to the application do-
main .

The implementation-level program view in ou r
system is achieved by the use of a powerful
parser/generator [12] which creates an AST stored as
a collection of objects in a software repository. The
system includes a very high level language (VHLL) for
querying and updating the object base and for manip-
ulating the tree.

The structural view is implemented using tools [14 ]
which :

1. parse the target program to extract relevant sys-
tem components and dependencies, storing them
in a repository ,

2. allow the user to generate hierarchies of subsys-
tems ,

3. determine interfaces among the subsystems, and

4. evaluate subsystem structures using established
software engineering principles .

The functional view can be achieved by using lan-
guage semantics to annotate AST representations .
Examples of contributions from language semantics in -
clude denotational semantics [19, 20] and operational
semantics [10] [16] . Denotational and operational se-
mantics have been quite effective in achieving math-
ematical understanding of the dynamic behaviour o f
programs .

The domain-level view can be achieved by adding
specific annotations to the AST using project-specifi c
semantics (such as programming standards) an d
domain-specific information such as integrity con-
straints .

208



Figure 1 : A possible architecture for a distributed re-
verse engineering environment . Dashed lines distin-
guish different machines, or computing environments .

At lower levels of abstraction, the focus is mainl y
on structural recognition and uses information de-
rived from the code . Questions asked at this leve l
include analysis of resource usage between modules
(e .g ., global variables, data structures, actual/formal
parameter lists, files) and the identification of depen-
dencies between program components (e .g ., precondi-
tions/postconditions, data dependencies) . Structural
recognition involves the analysis of control and dat a
flow properties, system organization, and data depen-
dencies .

At higher levels of abstraction, behavioral recogni-
tion is used to recognize abstract functionalities in pro -
gram fragments . Code features for behavioral recog-
nition include the investigation of the effects of a com-
putation in terms of initial and final values induced ,
how a computation is performed in terms of transi-
tion systems, and the definition of meaningful rela-
tionships between different program parts (e.g., which
computations affect which program parts) . Behavioral
recognition implies the analysis of the semantics of th e
exchanged resources between program modules (e.g. ,
how exchanged resources are used, what effects they
have), the operations which change the imported re -
sources into their exported values, and, finally, the

concepts, relationships, and actions that occur in a
module.

From the preceding discussion, it is evident tha t
a number of different tools and environments mus t
work together order to produce the effect of a Goa l
Directed Design Recovery Environment . Moreover, we
would like to have the whole environment distributed
across different machines and available to multipl e
users . These requirements suggest a system architec-
ture in which each tool has its own local workspace an d
all communicate through a central software repositor y
that stores the results of analysis, design concepts ,
links to graph structures, and any other information
needed for the different tools to operate . A possible
system architecture for such an integrated reverse en-
gineering environment is shown in Fig . 1 2 .

Finally, the nature and the dynamics of the pro-
cess used for design recovery suggest a model that is
based on a Goal-Question-Analysis-Action paradigm .
This strategy focuses on the improvement of the soft-
ware process by considering the specific project goal s
and environments . In such a way, project objective s
and the domain specific information in the develop-
ment environment guide the selection of appropriate
models, methods, and tools in the software process .

In this model, the maintainer operates within a
framework of top-level goals . These goals provide th e
framework and the justification for a series of ques-
tions that must be addressed to satisfy the top-leve l
goals . Specific goals give rise to specific question s
which require the use of specific analysis strategies
and tools . Once the strategy and tool have been se-
lected, an action is recommended to achieve the goal .
The maintainer may require additional information
and can set new goals, reapplying the whole model a s
shown in Fig. 2. Some relationships between Goals ,
Questions, Analysis Tools, and Actions are shown in
Fig. 3 .

3 Partial Design Recovery

In order to recover the design of a program, several
issues must be addressed .

1 . A code representation formalism must be cho-
sen. This formalism should allow for represent-
ing both structural and behavioral code feature s
and for the application of a different of analysi s
algorithms .

2 This architecture was suggested by the participants of the
Program Understanding project (University of Toronto, Univer-
sity of Victoria, McGill University, and IBM) .
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2. A comparison algorithm must be devised t o
match the source code representations with pro-
gramming plans that represent commonly used al-
gorithms and programming structures . Compar-
ison algorithms depend heavily on the progra m
and on the selected representation method an d
they do not always involve simple pattern match-
ing .

3. A top-level control strategy must be defined . Top -
level control methods focus on techniques to se-
lect program parts and programming plans fo r
comparison in order to achieve plan instance lo-
calization .

Partial recognition deals with the problem of rec-
ognizing plan instances even when these plans are in-
terleaved with other types of information in the code
or are scattered throughout the program. Multiple,
failed, or incomplete plan recognition must be take n
into consideration . Multiple recognition occurs when a
single programming plan matches more than one pro-
gram part . Ambiguities can be resolved using needs ,
domain knowledge, or other external information . On
the other hand, failed recognition should produce fail-
ure information explaining the cause of failure . How-
ever, the most common case occurs when no success o r
failure can be proven . In this case incomplete bindings
should be produced for explanation and control .

3.1 Program Representation

One of the central issues to be addressed for design
recovery is the definition of a program representation
formalism that encompasses design information at a
higher level than the source code . Most of the research
approaches focus on the development of mathematica l
formalisms and techniques which can facilitat e

1. representation of program functions in a more ab-
stract way than source code ,

2. the representation of the behaviour of a program ,

3. search techniques (borrowed from A .I, or graph
theory) ,

4. ways to reflect information on the problem and
the application domain ,

5. user friendliness, in terms of how program desig n
is presented to the programmer ,

6. adaptability, in terms of how easily one represen-
tation can be transformed into another more ab-
stract one (in case of reverse engineering) or les s
abstract (in case of forward engineering), and

Figure 2: The overall functionality of a Reverse
Engineering Environment using the "Goal-Question -
Analysis-Action" paradigm.

7. portability to a computer environment (be abl e
to define data structures for encoding the formal -
ism) .

Most approaches use internal representations that
are based on structural and lexical properties, but i t
is also necessary to find representations based on be-
havioral code properties. A popular internal repre-
sentation of code is the Abstract Syntax Tree (AST )
which is (a) language independent (b) represents th e
functionality of the system as a whole, and (c) can b e
used in a a variety of software engineering activities .

Our approach distinguishes between structural and
functional code recognition . For structural code recog-
nition AST program representations are considered .
For functional code recognition, representations base d
on language semantics are investigated . This paper
focuses on structural code recognition in which AST s
are annotated with information on system structur e
(call graphs), data flow (data flow graphs), the result s
of previous analysis, and links to informal information .
Annotations are defined as needed, and thus we main-
tain the capability to change or add annotations as
the system evolves. Moreover, Annotated Text (AT )
representations of the code can be created using suc h
a schema. Annotated Text representations link sourc e
code fragments with meaningful concepts, comments ,
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and abstractions so that design recovery can be as-
sisted .

The main idea is to parse source code, creating an
Abstract Syntax Tree that uses a domain model t o
show the structure and the hierarchies between th e
different language constructs . Once such an AST i s
created [4], analysis can be performed to annotate the
nodes of the tree . Annotations take the form of map -
pings from AST nodes to other AST nodes or other
entities . The REFINE environment is used to create
such an Abstract Syntax Tree and its correspondin g
domain model . The resulting AST is stored in an ob-
ject base and can be retrieved using a query language
and a specialized programming language . Abstract
Syntax Trees have been used extensively [1] for rep -
resenting structural properties and serving as a basi s
for a several analysis methods .

Examples of reverse engineering environments us-
ing ASTs include the RECORDER system [3], the
REFINE system [12], and the Programmer's Appren-
tice Project [18] .

Once the representation of the basic components o f
a program by plans, cliches, or other formalisms ha s
been studied, representation and comparison method s
for controlling plan detection in complex application s
must be considered .

3.2 Comparison Methods

Comparison methods are used to perform simpl e
plan instance recognition by proving equivalence or
showing a partial order relationship between two sim-
ple programming plans . A simple programming plan
is a plan that has no other plans interleaved . In our
approach such simple plan instance recognition will be
performed by applying equivalence relations on som e
behavioral representation of the program .

Plans can be described at different levels of abstrac -
tion . The most abstract level is the one correspond-
ing to the most concise description of a very complex
system . With new representations, plan fragment s
at higher levels of abstraction could be detected an d
described. The most common plan-code comparison
methods include :

• simple pattern matching ,

• similarity metrics ,

• graph matching, and

• body structure .

Some systems (e .g ., PROUST) [11], [7] match syn-
tax trees with syntax tree templates . A plan matches

a program statement if its unified template matches
the statement's syntax tree and its constraints and
subgoals are satisfied . TALUS [15] compares student
and reference functions by applying a heuristic simi-
larity measure . In CPU [13], programs are represented
as lambda calculus expressions and procedural plans .
Comparisons in CPU are performed by applying a uni -
fication and matching algorithm on lambda calculu s
expressions . In UNPROG [9], program control flo w
graphs and data flow relations are compared with the
programming plan's control flow graph and data flo w
relations . Quilici [17] matches frame schema repre-
sentations of C code and if they structurally matc h
then data flow graphs are compared too . GRASP
[21, 22] uses attributed data flow sub-graphs to repre-
sent programs and programming plans . Comparisons
are performed by matching subgraphs and by checkin g
constraints involving control dependencies and other
program attributes .

We consider two types of comparison methods :
structural and behavioral . In structural comparison ,
the dominant program representation scheme is the
Annotated AST . The objective is to locate code frag-
ments based on structural/lexical properties, contro l
and data flow properties, and communication proper -
ties .

Comparison criteria for this level of design recov-
ery include structural similarity, control and data flo w
similarity, and relations defined on uses of variable s
(e .g ., initial and final values, uninitialized data, value
ranges) .

In behavioral comparison, the dominant represen-
tation scheme is again the Annotated Abstract Syntax
Tree emphasis placed on the annotations representing
the effects of a computation andhow a computation i s
performed . The objective is to locate code fragments
based on equivalence and partial order relations de -
fined over Annotated Abstract Syntax Trees and o n
logic relations that structural properties of language
constructs with their corresponding semantics . In-
formation obtained from Annotated Abstract Syntax
Trees, language semantics (denotational, operational) ,
the domain model, flow analysis results, and slicing
techniques can help for perfoming behavioral compar -
ison of simple programming plans and code fragmen-
nts .

3.3 Top-Level Control

Program parts and programming plans represente d
at higher levels of abstraction are selected using a top -
level control strategy and are used as input to a com-
parison module . The output of such comparisons are
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Goal Question Analysis Action
Code Correction Data Type Mismatch Type Inferencing Update declarations
Code Performance Detection of Inefficient Code Refine programs Normalize and Replace Cod e
Code Correction Memory Allocation Flow Analysis Eliminate Memory Leak s
Code Performance Equivalent Code Language Semantics , Pattern matching Perform Abstractions
Code Performance Find Specific Algorithms Language Semantics, Pattern matching Perform Abstractions
Code Correction Unitialized data Flow Analysis Initi alize Data
Code Correction Change/Impact Analysis Slices, Dependency Ana lysis Localize Erroneous Code

Figure 3 : Basic relationships for the Goal-Question-Analysis-Action paradigm

recognized concepts and program parts satisfying the
specifications of a programming plan . Control can be
guided by the needs of the particular application an d
the results of previous comparisons . Search algorithms
are used to select from the program representation dif -
ferent programming parts for comparison . Bottom-
up search strategies systematically select all progra m
parts covering the program representation, while top-
down search strategies seek single parts that can b e
used to satisfy a given expectation (subgoal) . Pro-
gramming plans and program parts are not always
represented using the same formalism . Moreover, dur-
ing the recognition process, comparisons must be per-
formed between already recognized concepts and origi -
nal program material . Hierarchical recognition contro l
strategies focus on such multi-leveled representation s
and are used for compositional recognition where com-
plex concepts are recognized in terms of their subcom -
ponents .

Program decomposition can be used . to guide the
selection process . Performance is best when decom-
position produces program parts that correspond t o
plans in the library. Program decomposition can b e
performed a priori before the selection process start s
or in a dynamic way, based on previous recognition
results and the current needs of the application as th e
selection process is performed .

For the control strategy, we focus on investigating
an island driven opportunistic search in which searc h
subgoals are set around some well-recognized point i n
the program. The idea is to use this positively identi-
fied point as an anchor and then try to satisfy subgoals
around it .

Islands are obtained by starting with design deci-
sions that have been positively (or with high evidence )
identified and are of particular semantic relevance, an d
then proceeding outward, extending the analysis i n
both directions . Irrelevant and intermixed plans can
be ruled out by allowing recognition gaps and partia l
recognition of plans .

As an example, consider intermixed plans or parts
of plans which do not share data dependencies . Such
plans can be distinguished irrelevant ; the island-driven
search will skip them and proceed towards what i t
considers the current goal to be .

Such an island-driven search starts by establishin g
a top-level goal which, in practice, is the satisfactio n
of some programming plan . The top-level goal is es-
tablished by examination of the properties of the well -
identified program part and the properties of the plan s
in the plan base . The search continues by trying t o
prove the existence in the code of other parts of th e
plan as these exist in the generic plan. Throughout
the process, incomplete and partial satisfaction of th e
plan properties causes the search to jump in an oppor-
tunistic way in an attempt to satisfy whatever it can .
Island-driven opportunistic search will not fail if the
plan and the code representation do not match exactly.
In this case the island- driven search will jump to an -
other point with high likelihood of recognition and wil l
start again from this point . The search will termi-
nate when no further plan recognition can take place .
Thus, even partially matched plans will be reported by
such an algorithm. Failure occurs only when none of a
plan's subparts can be positively recognized. The in-
fluence of constraints between nonadjacent fragment s
can be investigated in the case where other fragment s
are left as uninterpreted gaps . These concepts can be
used to specify interactive tools that propose an in-
terpretation of a fragment to the maintainer who ma y
not be interested in every fragment or who may pro -
vide a personal interpretation of some uninterpreted
fragments .

4 Research issues

Large legacy systems represent significant assets
for the companies that use them. These systems
have evolved over time and tend to require continu-
ous maintenance . The definition of the objectives for
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a design recovery process is based both on a generic
list of desired design attributes to be recovered (suc h
as call graphs, data types, value ranges, control flow ,
data flow) and on domain-specific design attributes of
a specific product or specific language .

Within the framework of this project, maintenance
objectives were identified during a sequence of con-
textual interviews with the Program Understandin g
Group (PUG) at IBM's Centre for Advanced Studies .
The top-level objectives of the Program Understand-
ing Project (PUP) address problems related to

a) code correctness and ;

b) performance enhancement .

The research issues which arise in such a framework
and constitute the objectives of our work include :

• selection, incorporation, and use of an appropri-
ate process model ;

• development of code representation schemes and
plan localization techniques that are appropriate
for mechanical manipulation and allow for th e
analysis of structural and behavioral propertie s
of the code ;

• normalization and correction of erroneous code
(e.g ., removing dead code, simplifying or remov-
ing redundant expressions, localizing erroneou s
communication points) ; and

• integration and use of different technologies (flo w
analysis, language semantics, pattern matching ,
search and control strategies) in a reverse engi-
neering environment .

Existing Program Understanding systems attempt
to recognize plan instances by comparing program rep-
resentations against programming plans . A common
theme in these approaches is to use a program repre-
sentation formalism, a plan repository, a plan localiza-
tion control strategy , and a comparison algorithm .

The major problems associated with the program
understanding systems built so far can be summarize d
as follows :

• Repository completeness: it is not possible to en-
code and store all possible plans occurring in a n
application, and usually the ones encoded are
trivial cases (e .g ., sorting algorithms, list traver-
sals) .

• High complexity : most understanders perform
well only in small and medium-sized (approx .

5000 lines) programs. In large programs com-
plexity makes design recovery an extremely dif-
ficult and time-consuming process . Difficulties
are caused by interleaved and scattered plans an d
syntactic or implementation variations .

• Structural and lexical matching: in most appli-
cations, plan-program similarity or equivalence i s
determined by testing structural and lexical in -
formation from both the code and the plan . This
causes a problem when the code fragment con-
tains other plans, irrelevant statements, or when
the plan is scattered among different parts of th e
application, because the structural and lexical -
based representations of the code and the plan
cannot be matched . Moreover, the behaviour of
a program can not be encoded and represented .

• Graph-based matching: not all approaches use
program representations that are based on struc-
tural and lexical information . Several pro-
gram understanders use specific graph-based for-
malisms which incorporate data and control flow .
Graph grammars are used to perform abstrac-
tions and to perform plan instance recognition .
The problem in these applications is that grap h
transformations are usually very expensive t o
compute and graph pattern matching algorithm s
can have high complexity. This imposes a seri-
ous problem when large programs are analyzed
because their corresponding graph representatio n
can be very large and complex .

The approach taken in this project focuses on min-
imizing the drawbacks of other existing approaches .
Below, we examine the basic views that we have
adopted and the points of difference with respect t o
existing approaches .

• Use of a development strategy. In our ap-
proach we use a strategy for performing a Re-
verse Engineering (Design Recovery) task. This
strategy was inspired by the "Goal-Question -
Metrics" (GQM) strategy described by Basili i n
[2] . Our strategy, the " Goal-Question-Analysis-
Action" strategy, is task oriented, goal driven ,
and focuses on decomposing the task of desig n
recovery into a number of interrelated but dis-
tinct subtasks. This can be justified in two ways .
Firstly, it is a natural way to perform design re-
covery. In practice, human maintainers do not tr y
to understand the whole program at once but, in-
stead, they gather different pieces of informatio n
and then they relate them using their expertise
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and their programming skills . Secondly, main-
tainers gather this information in a goal-drive n
way. At the beginning, they establish an objective
(e .g ., "find what this procedure returns and ho w
it computes its returned values" , "Is it a sorting
algorithm?"), and then they gather informatio n
(e .g ., "find where this variable is updated" , "when
does this loop terminate?"), which they believe i s
relevant for meeting the specific objective . Infor-
mation gathering is not a random process but i s
guided by the experience and the programming
skills of the maintainer . We believe that this ex-
perience is valuable and that a Reverse Engineer -
ing environment should give the programmer th e
flexibility to specify his own queries and provid e
him with the tools to gather the information he
thinks is important and relevant. Thus, the ques-
tion the maintainer asks is the key to selectin g
the right analysis tool and the required actions to
be performed .

• Use of behavioral program representation model .
This approach uses a program representation
method which reveals the behavioral aspects of
the represented program. Specifically, instead
of using a representation method based only on
structural and lexical properties of the program ,
we use information which is based on language
semantics and focuses on how a computation i s
performed, on what is the effect of a compu-
tation after its termination. The advantage o f
this approach is twofold . Firstly, it is based on
a well-established formalism which is supporte d
by a solid mathematical theory (language seman-
tics) . Secondly, the mathematical theory sup-
porting the model serves as a foundation fo r
defining equivalence and partial order relation s
which can then be used to relate plans and pro-
grams . Most program understanding applica-
tions use program representations that incorpo-
rate control flow, data flow, and structural infor-
mation . The drawbacks of these representatio n
schemes are that plan-program equivalence ha s
no mathematical foundation and that they ar e
based on simplistic pattern-matching algorithms .
The complexity of these formalisms is high, whic h
makes the design recovery of realistically large
programs difficult . Our approach, which uses lan-
guage semantics, has not been investigated yet o n
complexity issues, but it definitely gives an ad -
vantage on plan-program matching, which can be
achieved based not only on structural and syn-
tactic properties, but also on semantic and be-

havioral properties of programs .

• Use of an ef ficient and flexible plan localizatio n
strategy . Plan localization is a key issue in mos t
program understanders . Plan localization algo-
rithms must cope with problems due to syntac-
tic variations, interleaved plans, implementatio n
variations, overlapping implementations, and un-
recognizable code . Some of the most common
plan localization algorithms used in existing ap-
plications are top-down goal agendas, depth-first
search, best-first search, repeated traversals, an d
exhaustive search . The drawbacks in most appli-
cations are (a) the complexity issues and (b) fail-
ure to produce any results if perfect localization
can not be achieved. Our approach has the com-
plexity of an island-driven parser [6] and has th e
advantage that if the plan localization algorith m
fails to recognize a plan completely it still recog-
nizes parts of it, so that partial plan-program lo-
calization can be performed. In most cases, then ,
the maintainer can use his experience to recognize
the rest of the plan himself.

• Use of an integrating environment . As indi-
cated above, the view adopted in this project
favours programmer-assisted program under -
standing over automatic program understanding .
Our approach considers plan localization onl y
as a subgoal of design recovery. Plans should
be instances of principles and not simply in-
stances of abstracted code fragments . Principle s
could be high-level descriptions of concepts oc-
curring in the code (something that we believe
it is not feasible with the current technology)
or practical properties of the code itself (e .g . ,
data dependencies, control dependencies, precon-
ditions, and postconditions) with which program-
mers are familiar . Within this framework, a pro-
grammer may set high level-objectives with ab-
stracted concepts . In order to address these ob-
jectives, he examines practical properties of th e
program such as control and data flow, depen-
dencies, partial correctness properties, communi-
cation points, and informal information . A Re-
verse Engineering environment should provide t o
the maintainers tools for addressing these prac-
tical questions and not rely exclusively on auto-
matic plan recognition using a static plan library.
This approach fits well with the Goal-Question-
Analysis-Action" process model, and has not been
incorporated in any of the existing program un-
derstanders .

214



5 Conclusion

In this paper we gave an overview of a research
project whose goal is the development of a revers e
engineering environment . Reverse engineering and i n
particular design recovery are complex tasks and re -
quire the application of a number of diverse method-
ologies and techniques ranging from compiler technol-
ogy to artificial intelligence and language semantics .
Our research focuses on (a) the definition of a strat-
egy for specifying the design recovery process, (b) th e
identification of a repertoire of design recovery objec-
tives useful to a typical system maintainer, (c) th e
definition of program representation and plan repre-
sentation schemes, (d) the development of a control
strategy for localizing programming plans, (e) the de-
velopment of a comparison technique for relating plan s
and code representations, and (f) the integration of
analysis results from a diverse tools such as graph ed-
itors, parsers, and repositories .

Within this framework we have discussed a strategy
for describing the design recovery process, the "Goal -
Question-Analysis-Action" model . In this model top-
level objectives give rise to specific questions whic h
in turn require the application of specific analysi s
tools and actions. We have looked at a list of top-
level objectives identified from contextual interview s
with IBM researchers and software engineers . Ob-
jectives include: (a) data type mismatch in expres-
sions (PL/AS related data type mismatch problem s
not handled by the compiler) (b) appropriateness o f
data structures used (e.g., all fields of a structure ar e
used) ; (c) localization of equivalent or similar cod e
fragments (code reduction) ; (d) localization of specific
algorithms in the code (plan localization) ; (e) detec-
tion of inefficient and error prone code (high complex-
ity, high and complex module interaction) ; (f) Code
flow analysis and unitialized data (control/data flow ,
value ranges, constant propagation), and, finally ; (g)
change / impact analysis (slicing, dicing, module de-
pendencies)

The program representation scheme chosen to meet
these objectives is the Abstract Syntax Tree annotate d
with information accommodating links to concepts, re-
sults of previous analysis, references to control flow ,
data flow and structure graphs as well as representa-
tions of program behaviour and functionality by using
formalisms borrowed from the area of language seman-
tics. The advantage of this representation scheme i s
that it incorporates both a well-established model fo r
representing software structure (AST) with formal an -
notations borrowed from the well-defined and formal
area of programming language semantics for represent-

ing program functionality.
Comparison methods are used to relate plans an d

code representations . We distinguish between com-
parisons for structural and functional design recovery.
Comparisons for structural design recovery are base d
on control and data flow properties, system organiza-
tion properties, and data dependencies . On the othe r
hand, comparisons for functional design recovery are
based on the semantics of the exchanged resources be-
tween different program parts, the operations whic h
change imported resources into their exported values ,
and the attributes, relations, and actions that manip-
ulate program's components . Within this framewor k
plan localization control strategies must be defined
so that comparison can be performed even when in-
terleaved plans, implementation variations, and scat-
tered plans exist in the code . Island-driven search al-
gorithms may contribute towards the partial design
recovery objective .

Finally, the integration of different environments
and tools in a distributed environment can be achieved
by allowing a local workspace for each individual too l
in which specific results and artifacts are stored, a
global repository for storing information and data use d
in all applications and tools, and, finally, a translatio n
program for transforming tool specific software enti-
ties into a common and compatible in all environment s
entities stored in the global repository.

The target system is currently in its design phase
and it will be applied for recovering the design of large
complex legacy systems such as the SQL/DS package .
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