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Abstract. Root cause analysis for software systems is a challenging
diagnostic task, due to the complexity emanating from the interactions
between system components and the sheer size of logged data. This diag-
nostic task is usually assisted by human experts who create mental mod-
els of the system-at-hand, in order to generate hypotheses and conduct
the analysis. In this paper, we propose a root cause analysis framework
based on requirement goal models. We consequently use these models to
generate a Markov Logic Network that serves as a diagnostic knowledge
repository. The network can be trained and used to provide inferences
as to why and how a particular failure observation may be explained by
collected logged data. The proposed framework improves over existing
approaches by handling uncertainty in observations, using natively gen-
erated log data, and by providing ranked diagnoses. The framework is
illustrated using a test environment based on commercial off-the-shelf
software components.

Keywords: goal model, markov logic networks, root cause analysis.

1 Introduction

Software root cause analysis (RCA) is the process by which system administra-
tors analyze symptoms in order to identify the faults that have led to system
application failures. More specifically, for systems that comprise of a large num-
ber of components encompassing complex interactions, root cause analysis may
require large amounts of system operation data to be logged, collected and an-
alyzed. It is estimated that forty percent of large organizations generate more
than one terabyte of log data per month, whereas eleven percent of them generate
more than ten Terabytes of log data monthly [10].

In this context, and in order to maintain the required service quality levels,
such IT systems must be constantly monitored and evaluated by analyzing com-
plex logged data emanating from diverse components. However, the sheer size
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Fig. 1. Diagnostic Process

of such logged data often makes human analysis intractable and consequently,
requires the use of algorithms and automated processes.

For this paper, we adopt a hybrid approach based on modeling the diagnostic
knowledge as goal trees and on a probabilistic reasoning methodology based on
Markov Logic Networks (MLNs). More specifically, the process is based on three
main steps as illustrated in Fig. 1. In the first step, the diagnostic knowledge is
denoted as a collection of goal models that represent how specific functional and
non-functional system requirements can be achieved. Each goal model node is
consequently annotated with pre-condition, post-condition and occurrence pat-
terns. These patterns are used to filter and generate subsets of the logged data
in order to increase the performance of the diagnostic process. The second step
of the process is based on the use of a diagnostic rule knowledge base that is
constructed by the goal models and the generation of ground atoms that are
constructed by the logged data. The third and final step of the process is based
on the use of the knowledge base and the ground atoms to reason on the validity
of hypotheses (queries) that are generated as a result of the observed symptoms.

This paper is organized as follows. Section 2 covers the research baseline.
Section 3 presents a motivating scenario. Section 4 describes the architecture
and processes in the proposed framework. A case study is presented in section
5. Section 6 reviews related work. The conclusions are in section 7.

2 Research Baseline

2.1 Goal Models

Goal models have been for long proven to be effective in capturing large numbers
of alternative sets of low-level tasks, operations, and configurations that can
fulfill high-level stakeholder requirements [15]. Fig. 2 depicts a (simplified) goal
model for a loan application. A goal model consists of goals and tasks. Goals−the
squares in the diagram−are defined as states of affairs or conditions that one
or more actors would like to achieve, e.g., loan evaluation. On the other hand,
tasks−the oval shapes−describe activities that actors perform in order to fulfill
their goals, e.g., update loan database.

Goals and tasks can impact each other’s satisfaction using contribution links:
++S, --S, ++D, --D. More specifically, given two goals G1 and G2, the link
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Fig. 2. Loan Application Business Process Goal Model

G1
++S−−−→ G2 (respectively G1

--S−−→ G2) means that if G1 is satisfied, then G2

is satisfied (respectively denied). The meaning of links ++D and --D are dual
w.r.t. to ++S and --S respectively, by inverting satisfiability and deniability.
The class of goal models used in our work has been originally formalized in [6],
where appropriate algorithms have been proposed for inferring whether a set of
root-level goals are satisfied or not.

For this paper, we use the loan application goal model originally presented in
[16] as a running example to better illustrate the inner workings of the proposed
approach (see Fig. 2. The example goal model contains three goals (rectangles)
and seven tasks (circles). The root goal g1 (loan application) is AND-decomposed
to goal g2 (loan evaluation) and tasks a1 (Receive loan web service request) and
a2 (Send loan web service reply), indicating that goal g1 is satisfied if and only
if goal g2, tasks a1 and a2 are satisfied, and so on. Also, the contribution link
++D from goal g3 to tasks a4 and a5 indicates that if g3 is denied then tasks
a4 and a5 should be denied as well. Similarly, the contribution link ++S from
g2 to task a1 indicates that if g2 is satisfied then so must be a1.

Furthermore, as illustrated in Fig. 2, we annotate goals and tasks with pre-
condition, occurrence and postcondition expressions. A task/goal is satisfied if it
has occurred and its preconditions (postconditions) are true before (respectively
after) its occurrence. Occurrence as well as, preconditions and postconditions are
evaluated by a pattern matching approach that is discussed in detail in [17]. In
practice, finding the expressions used in the annotations is done by users that are
familiar with the monitored systems and the contents of the generated log data,
or can be generated by data analysis techniques such as data mining and gener-
alised sequence pattern algorithms. The techniques have been presented in the
literature and are outside the scope of this paper. Experimentally, we followed
an iterative approach in finding the expressions for the annotations of the goal
model in Fig. 2. This process consists of assigning expressions, generating and
evaluating the observation. When false positives are identified, the corresponding
expression(s) are updated accordingly, and the process is restarted.
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2.2 Markov Logic Networks

MLNs have been recently proposed as a way of providing a framework that
combines first order logic and probabilistic reasoning [5]. A knowledge base con-
sisting of first-order logic formulae represents a set of hard constraints on the set
of possible worlds that it describes. In probabilistic terms, if a world violates one
formula, it has zero probability of being an interpretation of the knowledge base.
Markov logic softens these constraints by making a world that violates a formula
to be less probable but still, possible. The more formulas a world violates, the
less probable it becomes. In MLNs, each logic formula Fi is associated with a
positive real-valued weight wi. Every grounding (instantiation) of Fi is given the
same weight wi. In this context, a Markov Network is an undirected graph that
is built by an exhaustive grounding of the predicates and formulas as follows:

– Each node corresponds to a ground atom xk (an instantiation of a predicate).
– If a subset of ground atoms x{i} = {xk} are related to each other by a

formula Fi with weight wi, then a clique (subset of the graph where each
two vertices in the subset are connected by an edge) Ci over these variables
is added to the network. Ci is associated with a weight wi and a feature
function fi defined as follows,

fi(x{i}) =

{
1 Fi(x{i}) = True,

0 otherwise
(1)

First-order logic formulae serve as templates to construct the Markov Network.
Each ground atom, X , represents a binary variable in a Markov network. The
overall network is then used to model the joint distribution of all ground atoms.
The corresponding global energy function can be calculated as follows,

P (X = x) =
1

Z
exp(

∑
i

wifi(x{i})) (2)

where Z is the normalizing factor calculated as,

Z =
∑
x∈X

exp(
∑
i

wifi(x{i})) (3)

where i denotes the subset of ground atoms x{i} that are related to each other
by a formula Fi. The Markov network can then be used to compute the marginal
distribution of events and perform inference. Since inference in Markov networks
is #P-complete, approximate inference is proposed to be performed using the
Markov chain Monte Carlo (MCMC), and the Gibbs sampling. More details on
the Markov Logic Networks and their use can be found in [11].

3 Motivating Scenario

We use as a running example the RCA for a failed execution of a loan evalu-
ation business process implemented by a service oriented system. The normal
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execution scenario for the system starts upon receiving a loan application in the
form of a Web Service request. The loan applicant′s information is extracted and
used to build another request that is sent to a credit evaluation Web Service.
The credit rating of the applicant is returned as Web Service reply. Based on
the credit rating of the loan applicant, a decision is made on whether to accept
or reject the loan application. This decision is stored in a table before a Web
Service reply is sent back to the front end application.

The requirements of the Loan application process are modeled in the goal
tree illustrated in Fig. 2. For our running example we consider that the operator
observes the failure of the top goal g1 of the goal model. Surprisingly, even with
this relatively simple scenario, the relationship between failures and their faults
is not always obvious due to cascading errors and incomplete log data as well
as due to intermittent connection errors, incorrect data entries that are hard to
debug when large number of requests are processed during a short time.

4 Root Cause Analysis Framework

4.1 Building a Knowledge Base

In this section, we discuss the first component of the framework which consists
of a process of building a diagnostic knowledge base from goal models.

Goal Model Annotations. We extend the goal models by annotating the goal
model’s nodes with additional information on the events pertaining to each of
these nodes. In particular, tasks (leaf nodes) are associated with pre-condition,
occurrence and post-condition patterns, while goals (non-leaf nodes) are associ-
ated with pre-condition and post-condition patterns only. These annotations are
expressed using string pattern expressions of the form,

[not] column name [not] LIKE ”match string”

where column name represents a field name in the log database and
match string can contain the following pattern matching symbols:

– %: Matches strings of zero or many characters.
– Underscore ( ): Matches one character.
– [...]: enclose sets or ranges, such as [abc] or [a− d].

These symbols are based on the SQL Server 2008 R2 specifications [9] so that
goal model annotations can readily be usable in an SQL query. Moreover, we
adopt all the predicates from the SQL specifications such as LIKE and CON-
TAINS. With respect to our running example, an annotation is the precondition
for goal g1 (Fig. 2) shown below:

Pre(g1): Description LIKE ’%starting%Database%eventsDB%’ AND source component

LIKE ’eventsDB’
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This annotation example is considered as a pre-condition pattern for goal g1
and succeeds when it matches event traces generated by the eventsDB database
system where trace logs have a description text containing the keyword start-
ing, followed by space, then followed by the keyword Database, then space then
followed by the keyword eventsDB (see Fig. 2 for more annotation examples).

Goal Model Predicates. We represent the states and actions of the moni-
tored system/service as first order logic predicates. A predicate is intensional if
its truth value can only be inferred (i.e. cannot be directly observed). A pred-
icate is extensional if its truth value can be directly observed. A predicate is
strictly extensional if it can only be observed and not inferred for all its ground-
ings [13]. We use the extensional predicates ChildAND(parent node, child node),
ChildOR(parent node, child node) to denote the AND/OR goal decomposition.
For instance, ChildAND (parent, child) is true when child is an AND-child of
parent (similarly for ChildOR). Examples of AND goal decomposition are goals
g1 and g2 (see Fig. 2). An example of OR decomposition is goal g3. In Fig. 2,
goal g1 is the AND parent of a1, g2 and a2. Such parent-child relationships are
represented by assigning truth values to the ground atoms: ChildAND(g1, a1),
ChildAND(g1, g2) and ChildAND(g1, a2). We use the extensional predicates
Pre(node, timestep), Occ(node, timestep), and Post(node, timestep) to represent
tasks’ preconditions, occurrences and postconditions (respectively) at a certain
timestep. For our work, we assume a total ordering of events according to their
logical or physical timestamps [4]. Finally, we use the intensional predicates
G Occ(node, timestep, timestep) and Satisfied(node, timestep) to represent the
goals occurrences and the goals/tasks satisfaction. The predicate Satisfied is pre-
dominantly intensional except for the top goal which satisfaction is observable
(i.e. the observed system failure that triggers the RCA process). If the overall
service/transaction is successfully executed, then the top goal is considered to
be satisfied, otherwise it is denied.

Rules Generation. The goal model relationships are used to generate a knowl-
edge base consisting of a set of predicates, ground atoms and a set of rules in
the form of first order logic expressions.

As presented above, the predicates ChildAND(a,b) and ChildOR(c,d) repre-
sent the AND and OR decomposition where a is the AND parent of b, and c is
the OR parent of d (respectively).

A task a with a precondition Pre(a, t− 1) and a postcondition Post(a,t+ 1)
is satisfied at time t + 1 if and only if {Pre} is true at physical or logical time
t− 1 that is before task a occurs at time t, and {Post} is true at time t+1 (see
Equation 4 below).

Pre(a, t− 1) ∧Occ(a, t) ∧ Post(a, t+ 1) ⇒ Satisfied(a, t+ 1) (4)

Unlike tasks which occur on a specific moment of time, goal occurrences span
over an interval [t1, t2] that encompasses the occurrences times of its chil-
dren goals/tasks. We represent the occurrence of a goal g using the predicate
G Occ(g,t1, t2) over the time interval [t1, t2]. Thus, a goal g with precondition
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Fig. 3. Mappings from Windows Event Viewer and MQ Log into Unified Schema

Pre(g,t1) and postcondition Post(g, t2) is satisfied at time t2 if and only if g’s
occurrence completes at t2, and its precondition is true before its occurrence
started at t1 (t1 < t2) and finally, if its postcondition is true when its occurrence
is completed at t2 (see Equation 5 below).

Pre(g, t1) ∧G Occ(g, t1, t2) ∧ Post(g, t2)) ⇒ Satisfied(g, t2) (5)

The truth values of the intensional predicate G Occ(goal, t1, t2) (used in
Equation 5) are inferred based on the satisfaction of all its children in the case
of AND-decomposed goals (Equation 6) or at least one of its children in the case
of OR-decomposed goals (Equation 7).

∀a, Satisfied(a, t1) ∧ ChildAND(g, a) ∧ (t2 < t1 < t3) ⇒ G Occ(g, t2, t3) (6)

∃a, Satisfied(a, t1) ∧ ChildOR(g, a) ∧ (t2 < t1 < t3) ⇒ G Occ(g, t2, t3) (7)

Contribution links of the form node1
++S−−−→ node2 are represented in Equation 8.

(Similarly for ++D,--S,--D ).

Satisfied(node1, t1) ⇒ Satisfied(node2, t2) (8)

4.2 Observation Generation

This section describes the second component of the framework as illustrated in
Fig. 1.

Goal Model Compilation. This framework is built on the premise that the
monitored system′s requirements goal model is available by system analysts or
can be reverse engineered from source code using techniques discussed in [15].

Storing Log Data. In a system such as the loan application system, each com-
ponent generates log data using its own native schema. We consider mappings
from the native schema of each logger into a common log schema as shown in
Fig. 3. We consider a unified schema for this work containing ten fields classified
into four categories: general, event specific, session information and environment
related. This proposed schema represents a comprehensive list of data fields con-
sidered to be useful for diagnosis purposes. In practice, many commercial monitor
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environments contain only a subset of this schema. The identification of the map-
pings between the native log schema of each monitor component and the unified
schema is outside the scope of this paper. Such mappings can be compiled using
semi-automated techniques discussed in detail in [2] or compiled manually by
subject matter experts. For the purposes of this study, we have implemented the
mappings as tables using the Java programming language.

Log Data Interpretation. Once logged data are stored in a unified format,
the pattern expressions annotating the goal model nodes are used to generate
SQL queries that are applied to collect a subset of the logged data pertaining to
the analysis. This matching process is discussed in detail in [17]. The Pre(g1)
expression in section 4.1 can match the log data entry shown below:

Report Time Description Physical Address

2010-02-05 17:46:44.24 Starting database eventsDB... DATABASE

In the case where Pre(g1) returns log entries when applied to the log data
store, we conclude that there is evidence that the event associated with this
query (goal model annotation) has occurred. If this query does not return any
log entries, then we can’t conclude that the event did not occur but rather that
we are uncertain about its occurrence.

Ground Atoms Generation. The truth assignment for the extensional predi-
cates is done based on the pattern matched log data. We show below a subset of
the ground atoms that could be generated from the goal model depicted in Fig. 2,

pre(g1,1), ?pre(a1,1), !occ(a1,2), post(a1,3), . . . , ?post(g1,13), !satisfied(g1,13)

The set of literals above, represents the observation of one failed loan appli-
cation session. For some of the events corresponding to goals/tasks execution,
there may be no evidence of their occurrence which can be interpreted as either
they did not occur or they were missed from the observation set. We use this
uncertainty by preceding the corresponding ground atoms with interrogation
mark (?). In cases where there is evidence that an event did not occur, the cor-
responding ground atom is preceded with an exclamation mark (!). For example,
in Fig. 2 the observation of the system failure is represented by !Satisfied(g1,15)
which indicates top goal g1 denial at timestep 15. Note in the above example, the
precondition for task a3 was denied and the occurrence of a1 was not observed
leading to the denial of task a1, which led to goal g1 not to occur and thus be
denied (see Fig. 2). In turn, the denial of goal g2 supports the observation goal
g1 did not occur and consequently satisfied.

Note that goal models are independently analyzed. For example, the ground
atoms shown above are generated with respect to goal model in Fig. 2. The same
log data may be analyzed by another goal model leading to a different stream
of ground atoms. The two streams could have common ground atoms if the two
goal models have tasks (or even annotations) in common. In the case of large
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number of goal models, the value of the atoms can be cached in order to optimize
the framework’s performance.

The filtering of the predicate with timesteps of interest is done using
Algorithm 1. Algorithm 1 consists of two steps: first, a list of literals is generated
(see example above) by depth-first traversing the goal model tree and generat-
ing a list of literals from the nodes annotations (precondition, occurrences and
postconditions); second, sequentially go through that list and look for evidence
in the log data for the occurrence of each literal within a certain time interval.
This time interval is specified as sliding window that is centered around the time
when the system is reported to have failed. The size of the window depends on
the monitored applications and type of transactions.

Algorithm 1. Observation Generation

Input: goal model : goal model for the monitored system

log data: log data stored in central database

Output: literals: set of literals of the form [?,!] literal(node,timestep)

Procedure [literals] generate literals(goal model) {
Set Curr Node = top node in goal model //start at the top of the goal tree

Set g counter = 0 //set global counter to zero

[literals].addLast(pre(Curr Node, node.precondition annotation, g counter))

While Curr Node has children,

find leftmost not-visited child of Curr Node

recursively call generate literals(child)

If all children of Curr Node are visited return [literals] ;

If Curr Node has no children (task),

g counter++

[literals].addLast(occ(Curr Node, node.occurrence annotation, g counter))

g counter++

[literals].addLast(post(Curr Node, node.postcondition annotation, g counter))

return [literals] ;}}
Procedure [literals] assign logical values(log data, [literals]) {
for each variable literal(node, annotation, counter) in the set [literals]

filter the log data based on the pattern expression in the annotation;

if no log data found matching the pattern expression:

replace literal(...) by ( ? literal(node, counter) ) else skip

if system is reported to have failed:

literals.addLast( ! satisfied(top, counter) );

return [literals];}}
main(goal model, log data)

[literals] = generate literals(goal model);

assign logical values(log data, [literals])

return [literals];}
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The following is an example of Algorithm 1 based on Fig. 2: the log en-
try (2010-02-05 17:46:44.24 Starting up database eventsDB ... DATABASE )
matches the pattern of the precondition of goal g1 thus representing an evidence
for the occurrence of this event (precondition in this case). For other logical
literals that don’t have evidence in the log data that they occurred, a (?) mark
is assigned to these literals, such as the precondition of a1. This process is also
exemplified in Fig. 4 below where the log data is filtered and used to assign
logical values to a set of ordered literals generated from the goal model.

Uncertainty Representation. This framework relies on log data as evidence
for the diagnostic process. The process of selecting log data (described in the
previous step) can potentially lead to false negatives and false positives which
in turn lead to a decreased confidence in the observation.

Fig. 4. Generating Observation from Log Data

We address uncertainty in observations using a combination of logic and
probabilistic models: First, the domain knowledge representing the interdepen-
dencies between systems /services is modeled using weighted first order logic
statements. The strength of each relationship is represented with a set of real-
valued weights that are generated using a learning process and a training log data
set. The weight of each rule represents our confidence relative to other rules in
the knowledge base (weight learning is discussed in section 4.3). Consequently,
the probability inferred for each atom (consequently the diagnosis) depends on
the weight of the competing rules where this atom occurs. For instance, the
probability of satisfaction of task a4 in Fig. 2 (Satisfied(a4,t)) is impacted by
the weight of Equation 9 with weight w1 and the weight of any other equation
containing a4,

w1 Pre(a4, t) ∧Occ(a4, t+ 1) ∧ Post(a4, t+ 2) ⇒ Satisfied(a4, t+ 2) (9)



360 H. Zawawy et al.

Second, uncertainty is also handled by applying an open world assumption to
the observation where a lack of evidence does not necessarily negate an event’s
occurrence but rather weakens its probability.

4.3 Diagnosis

The third component in the framework generates a Markov Logic Network
(MLN) based on the diagnostic knowledge base (Section 4.1) and then uses the
generated observation (Section 4.2) to provide an inference on the root causes
for the system failure.

Markov Network Construction. A Markov Logic Network is a graph con-
structed using an exhaustive list of rules and predicates as nodes as well as,
grounding predicates with all possible values, and connecting them with a link if
these predicates coexist in a grounded formula. The choice of possible values for
grounding the predicates can lead to an explosion in the number of ground atoms
and network connections if not carefully designed, in particular when modeling
time. For this purpose, we represent time using timesteps (integers) that denote
the time interval that one session of the service described by the goal model
takes to execute.

Weight Learning. Learning the weight of the rules is performed using a gen-
erative learning algorithm with the use of a training set [8]. During automated
weight learning, each formula is converted to CNF, and a weight is learned for
each of its clauses. The weight of a clause is used as the mean of a Gaussian
prior for the learned weight. On the other hand, the quality and completeness of
the training set impact the set of learned weights. We measure the completeness
of the training set used in our experiment with respect to the goal model repre-
senting the monitored application. In particular, the training set we considered
in our experiments contains at least one pair of evidence/expected output for
each node in the goal model. In addition, all the rules in the knowledge base are
exercised at least once in the training set. The learnt weight can be further mod-
ified by the operator to reflect his or her confidence in the rules. For example,
the rules that embed a fact such as when the system operator visually witness
the system’s failure (represented as the top goal being denied) should be given
more weight than the rules where goal/tasks satisfaction are inferred based on
“uncertain” log data.

Inference. Using the constructed Markov Network, we can infer the probability
distribution for the ground atoms in the KB given the observations. Of particular
interest are the ground atoms for the Satisfied(node, timestep) predicate which
represents the satisfaction or denial of tasks and goals in the goal model at a
certain timestep. Algorithm 2 below is used to produce a diagnosis for failure
of a top goal at timestep T. MLN inference generates weights for all the ground
atoms of Satisfied(task,timestep) for all tasks and at every timestep. Based on the
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MLN rules listed in section 3, the contribution of a child node’s satisfaction to
its parent goal’s occurrence depends on the timestep of when that child node was
satisfied. Algorithm 2 recursively traverses the goal model starting at the top goal
node. Using the MLN set of rules, the algorithm identifies the timestep t for each
task’s Satisfied(n,t) ground atom that contributes to its parent goal at a specific
timestep (t’). The Satisfied ground atoms of tasks with the identified timesteps
are added to a secondary list and then ordered based on their timesteps. Finally,
the algorithm inspects the weight of each ground atom in the secondary list
(starting from the earliest timestep), and identifies the tasks with grounds atoms
that have a weight of less than 0.5 as the potential root cause for the top goal’s
failure. The tasks with ground atoms at earlier timesteps are identified as more
likely to the source of failure. A set of diagnosis scenarios based on the goal
model in Fig. 2 is shown in Table 1 and discussed in section 5.

Algorithm 2. Diagnosis Algorithm

Input: mln: weighted rules r for the goal model (diagnostic knowledge base)

Satisfied(n,t): ground atoms for predicate Satisfied

T : timestep when the top goal satisfaction is investigated

Output: Γ : ranked list of root causes

Diagnose(mln, Satisfied(n,t), T) {
initialize Θ and Γ to be empty

add Satisfied(topgoal,T) to Φ

for each goal g corresponding to an atom in Φ {
set t = timestep in the Satisfied(g,t) ground atom

for each task a child of goal g {
load rule r that shows the contribution of Satisfied(a,t1) to G Occ(g,t)

identify the value of t1

add ground atoms Satisfied(a,t1) and its weight to Θ

}
remove Satisfied(g1,t) and add Satisfied ground atoms of all sub-goals of g to Φ

}
next, order the ground atoms in Θ based on timesteps

for each ground atom atom in Θ {
if weight of Satisfied(atom,t) ≤ 0.5) {
if a is an AND child ⇒ add a to Γ

if a is an OR child {
find siblings of a in goal model

if no sibling of a is satisfied in Θ ⇒ add a to Γ

if a has at least one satisfied sibling ⇒ CONTINUE.}}}
return Γ}
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5 Case Study

The objective of this case study is to demonstrate the applicability of the pro-
posed framework in detecting the root causes for failures in software systems
that are composed of various components and services. The motivating scenario
has been implemented as a proof of concept and includes 6 systems/services: a
front end application (soapUI), a process server (IBM Process Server 6.1), a loan
application business process, a message broker (IBM WebSphere Message Bro-
ker v7.0), a credit check Web Service and an SQL server (Microsoft SQL Server
2008). The case study consists of two scenarios. The two scenarios we present in
this study include one success and one failure scenario (see Table 1). Scenario
1 represents a successful execution of the loan application process. Please note,
that the denial of task a7 does not represent a failure in the process execution
since goal g3 is exclusive OR-decomposed into a6 (extract credit history for ex-
isting clients) and a7 (calculate credit history for new clients), and the successful
execution of either a6 or a7 is enough for g3’s successful occurrence (see Fig. 2).
During each loan evaluation and before the reply is sent back to the requesting
application, a copy of the decision is stored in a local table (a4 (Update loan
table)). Scenario 2 represents a failure to update the loan table leading to failure
of top goal g1. Using Algorithm 2, we identify a4 (Update loan table) as the root
cause for failure. Note that although a7 was denied ahead of task a4, it is not
the root cause since it is an OR child of g3, and its sibling task a6 was satisfied.

Table 1. Two scenarios for the Loan Application

Scenario Observed (& Missing) Events(s) Satisfied(task, timestep)

(a
1
,3
)

(a
3
,5
)

(a
6
,7
)

(a
7
,7
)

(a
4
,9
)

(a
5
,1
1
)

(a
2
,1
3
)

Successful
execution

Pre(g1,1), Pre(a1,1), Occ(a1,2), Post(a1,3),
Pre(g2,3), Pre(a3,3), Occ(a3,4), Post(a3,5),
Pre(g2,5), Pre(a6,5), Occ(a6,6), Post(a6,7),
?Pre(a7,5), ?Occ(a7,6), ?Post(a7,7),
Post(g3,7), Pre(a4,7), Occ(a4,8), Post(a4,9),
Pre(a5,9), Occ(a5,10), Post(a5,11),
Pre(a2,11), Occ(a2,12), Post(a2,13),
Post(g1,13), Satisfied(g1,13)

0.880.870.930.010.660.630.82

Failed
to up-
date loan
database

Pre(g1,1), Pre(a1,1), Occ(a1,2), Post(a1,3),
Pre(g2,3), Pre(a3,3), Occ(a3,4), Post(a3,5),
Pre(g3,5), Pre(a6,5), Occ(a6,6), Post(a6,7),
?Pre(a7,5), ?Occ(a7,6), ?Post(a7,7),
Post(g3,7), Pre(a4,7), ?Occ(a4,8),
?Post(a4,9), ?Pre(a5,9), ?Occ(a5,10),
?Post(a5,11), ?Pre(a2,11), ?Occ(a2,12),
?Post(a2,13), ?Post(g1,13), !Satisfied(g1,13)

0.880.870.900.010.010.010.01
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The probability values (weights) of the ground atoms range 0+ (highly de-
nied) to 0.99 (highly satisfied). The framework was evaluated on a Ubuntu Linux
running on Intel Pentium 2 Duo 2.2 GHz machine. We have used a set of ex-
tended goal models representing the loan application goal model to evaluate the
performance of the framework when larger goal models are used. The 4 extended
goal models contained 13, 50, 80 and 100 nodes respectively. Obtained results
indicate that the matching and ground atom generation algorithms performance
depends linearly on the size of the corresponding goal model and log data and
thus lead us to believe that the process can easily scale for larger and more
complex goal models. Our experiments have also suggested that the number of
ground atoms/clauses, which directly impacts the size of the resulting Markov
model, is linearly proportional to the goal model size, and that the number of
ground atoms and clauses increases linearly with the size of the goal model (see
Figure 5). Furthermore, results indicate that the learning and inference time
ranged from 2.2 and 5 seconds for a goal model of 10 nodes, up to 34.2 and 53
seconds respectively for a model of 100 nodes (see Figure 6). As a result, the
these initial case studies suggest that our approach in its current implementation
can be applied to industrial software applications with small to medium-sized
requirement models (i.e. 100 nodes).

Fig. 5. Number of Ground Predi-
cates/Clauses vs. Goal Model Size

Fig. 6. Learning and Inference
Time vs. Goal Model Size

6 Related Work

Our current study is based in part on earlier work by Wang [14] and our previous
work [16], [17]. Wang et al. [14] proposed annotated goal models to represent
monitored systems and transformed the diagnostic problem into a propositional
satisfiability (SAT) problem that can be solved using SAT solvers where evidence
supporting or denying the truth of individual ground predicates is collected by
instrumenting software systems. Zawawy et al. [16] enhanced the framework by
Wang et al. by matching natively generated log data and using it as evidence
which is less intrusive and more practical when analyzing off-the-shelf commer-
cial products. The current study extends our previous work by introducing a
diagnostic component based on MLNs allowing the handling of inaccuracies in
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modeling the monitored systems dependencies as well as missing and inaccurate
observations. Our approach uses weighted formulas instead of hard relationships
allowing for conflicts such as when a goal/task is satisfied and denied at the
same time. This is an advantage over [14] which depends on accurate observa-
tion. RCA approaches in the literature can be classified as based on probabilistic
approaches such as Bayesian Belief Networks [12], or based on machine learn-
ing such as decision trees and data mining [1], [3], or based on rule sets and
decision matrices [7]. Steinder et al. (2004) used Bayesian networks to represent
dependencies between communication systems and diagnose failures while us-
ing dynamic, missing or inaccurate information about the system structure and
state [12]. Our approach is similar in that we use Markov networks (undirected
graphs) instead of Bayesian networks in order to fit the evidence. The advantage
of our approach over [12] is that using first order logic; we are able to model
complex relationships between the monitored systems and not just simple one
to one causality relationships. A more recent work pertaining to log analysis and
reduction is the work by Al-Mamory et al. where RCA is used to reduce the
large number of alarms by finding the root causes of false alarms [1]. [1] uses
data mining to group similar alarms into generalized alarms and then analyze
these generalized alarms and classify them into true and false alarm. Later, the
generalized alarms can be used as rules to filter out false positives. Chen et al.
(2004) use statistical learning to build a decision tree which represents all the
paths that lead to failures [3]. The decision tree is built by branching for each
node based on the values of a specific feature and later on pruning subsumed
branches. The advantages of our approach over [1], [3] is that it is resilient to
missing or inaccurate log trace, adapts dynamically for new observations, and
can be used to diagnose multiple simultaneous faults.

7 Conclusions

This paper presents a framework that assists operators perform RCA in soft-
ware systems. The framework takes a goal driven approach whereby software
system requirements are modeled as goal trees. Once the failure of a functional
or non-functional requirement is observed as a symptom, the corresponding goal
tree is analyzed. The analysis takes the form of first, selecting the events to be
considered based on a pattern matching process, second on a rule and pred-
icate generation process where goal models are denoted as Horn Clauses and
third, a probabilistic reasoning process that is used to confirm or deny the goal
model nodes. The most probable combinations of goal model nodes that can
explain the failure of the top goal (i.e. the observed failure) is considered the
most probable root cause. Goal models for large systems can be organized in a
hierarchical fashion allowing for higher tractability and modularity in the diag-
nostic process. Initial results indicate that the approach is tractable and allows
for multiple diagnoses to be achieved and ranked based on their probability of
occurrence. This work is conducted in collaboration with CA Labs and is funded
by CA Technologies and the Natural Sciences and Engineering Research Council
of Canada.
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