
Towards a Requirements-Driven Framework for Detecting

Malicious Behavior against Software Systems

Hamzeh Zawawy
University of Waterloo
Waterloo, Canada

hzawawy@engmail.uwaterloo.ca

Kostas Kontogiannis
Natl. Technical University of Athens

Athens, Greece
kkontog@softlab.ntua.gr

John Mylopoulos
University of Toronto
Toronto, Canada
jm@cs.toronto.edu

Serge Mankovskii
CA Labs

Markham, Canada
Serge.Mankovskii@ca.com

June 27, 2011

Abstract

Root cause determination for software failures
that occurred due to intentional or uninten-
tional third party activities is a difficult and
challenging task. In this paper, we propose a
new technique for identifying the root causes
of system failures stemming from external in-
terventions that is based first, on modeling the
conditions by which a system delivers its func-
tionality utilizing goal models, second on mod-
eling the conditions by which system function-
ality can be compromised utilizing anti-goal
models, third representing logged data as well
as, goal and anti-goal models as rules and facts
in a knowledge base and fourth, utilizing a
probabilistic reasoning technique that is based
on the use of Markov Logic Networks. The
technique is evaluated in a medium size COTS
based system and the DARPA 2000 Intrusion
Detection data set.

Copyright c© 2011 Hamzeh Zawawy, Kostas Konto-
giannis, John Mylopoulos and Serge Mankovskii. Per-
mission to copy is hereby granted provided the original
copyright notice is reproduced in copies made.

1 Introduction

Root cause analysis refers to the identification
of errors that lead to failures in a software sys-
tem. By the term failure we mean the deviation
of the system’s observed behaviour from the ex-
pected one, while by the term error we refer to
a system bug or internal misconfiguration.

Overall, the root cause analysis problem is
a difficult and challenging task to solve, due
to the complexity of interdependencies between
the systems components, the often incomplete
logged data that could fall short explaining the
cause of a failure and, the lack of models that
could be used to denote conditions and require-
ments under which a failure could be mani-
fested. The problem becomes even more com-
plex when the failures are not due to internal
system errors, but due to external actions by
third parties that intentionally or unintention-
ally cause the failure of a software system. The
software engineering community has responded
by proposing different types of techniques for
addressing the root cause determination prob-
lem. One type of techniques is based on the
association of event patterns with known sys-
tem errors when a failure is observed. Another
type of techniques is based on collections of
rules that apply diagnostic expert knowledge.

15

A third type of techniques is based on model
driven root cause diagnosis where the a model
of the system is built and an analysis process
attempts to identify the components or the con-
ditions which may explain an observed failure.

In this paper, we take a complementary ap-
proach where we attempt to combine the best
features of the aforementioned types of tech-
niques. More specifically, we first utilize model
driven approaches to denote not only the condi-
tions, constraints, actions and tasks, a system
is expected to enact in order to deliver its func-
tionality but also, the conditions, constraints,
actions and tasks that can be taken by an ex-
ternal user to invalidate or threaten a given sys-
tem action or task. We refer to the first types
of models as goal models and, the second types
of models as anti-goal models. Second, we uti-
lize pattern based approaches to limit the size
of the logs that can be considered to satisfying
or denying a specific system goal, model ac-
tion, or task. Third, we utilize rule based ap-
proaches to denote goal and anti-goal models as
diagnostic rules that can be enacted in a prob-
abilistic reasoning framework provided in the
form of a Markov Logic Network. More specifi-
cally, once a failure is observed, the correspond-
ing goal model is analyzed to identify the tasks
and actions that may explain the observed fail-
ure and the anti-goal model is investigated to
increase the confidence of the goal model analy-
sis. The confidence increase is manifested when
a goal model task or action fails while its corre-
sponding anti-goal succeeds. Confidence levels
are computed using Markov Logic Network in-
ference as a function of the reasoning process
combined with past observations that provide
a level of training for the reasoning process.

The paper is organized as follows. Sec-
tion 2 covers the research baseline and related
work. Section 3 presents the log data repre-
sentation and filtering approaches. In section
4, we present the overall architecture and pro-
cesses of the proposed framework. Section 5 de-
scribes the diagnostics process using a running
example. Section 6 presents a COTS-based
case study and a scalability evaluation for the
framework. Section 7 concludes the paper and
presents directions for further research.

2 Related Research

This section presents related work in the
areas of requirements modeling, root cause
diagnostic reasoning, and malicious behavior
detection.

Goal Modeling

Goal Models are tree based formalisms that
can be used to represent and denote not only
the conditions and the constraints under which
functional and non-functional requirements of
a system can be delivered but also, to repre-
sent and denote positive and negative contribu-
tions, a requirement or a design decision may
have on other requirements. In this respect,
functional requirements are represented as hard
goals, while non-functional requirements are
represented as soft goals [3]. A goal model is
a tree structure including AND/OR decompo-
sitions of goals into subgoals and tasks (leaf
subgoals). When a goal G is AND (OR) de-
composed into subgoals G1, . . . , Gn, then all
(at-least-one) of G′s subgoals must be satisfied
for G to be satisfied. Goals and tasks can im-
pact each other’s satisfaction using contribu-

tion links:
++S−−−→,

--S−−→,
++D−−−→ and

--D−−→.

More specifically, given two goals G1 and

G2, the link G1
++S−−−→ G2 (respectively G1

--S−−→
G2) denotes that if G1 is satisfied, then G2 is
strongly (++) satisfied (respectively denied).

The meaning of links
++D−−−→ and

--D−−→ are

dual w.r.t. to
++S−−−→ and

--S−−→ respectively, by

inverting satisfiability and deniability. The
class of goal models used in our work has
been formalized by Giorgini et al. [5], where
appropriate algorithms have been proposed for
inferring whether a set of root-level goals are
satisfied or not.

Anti-Goal Modeling

Anti-goals represent the tasks and actions
of an intruder with the intention to threaten
or compromise specific security goals. Simi-
larly to goal models, anti-goal models are also
denoted as AND/OR trees built through sys-
tematic refinement until leaf nodes are derived.
Leaf nodes represent tasks (actions) an intruder
can perform to fulfill an anti-goal, and conse-

16

Figure 1: Logical Architecture of the Malicious Behavior Detection Framework.

quently deny a stakeholder’s goal for the sys-
tem. Anti-goal models were initially proposed
by Lamsweerde [12] to model security concerns
during requirements elicitation. Formally, anti-
goals are defined as follows: let G be a goal and
Dom a set of domain properties. An assertion
O is said to be an obstacle (anti-goal) to G in
Dom if and only if the following hold:

1. {O, Dom} |= ¬ G (O)

2. {O, Dom} | falseDom

Condition (1) states that the negation of a goal
is a logical consequence of the obstacle specifi-
cation and the set of domain properties avail-
able; condition (2) states that the obstacle may
be logically consistent with the domain of the
logs and the goal models.

The technique proposed by Lamsweerde
et al. (2000) to build and refine anti-goals,
involves building two models interactively
and concurrently that is, a) a goal model
representing the functional and non-functional
requirements of the system-to-be, and; b) an
anti-goal model derived from the requirement
goal model that specifies how assets of the
application-to-be can be compromised. The
process of elaborating anti-goal models can be
either done informally by asking HOW/WHY
questions or formally by regression through
the goal model and the domain theory or by
use of refinement and obstruction patterns as
discussed in [13, 14].

Monitoring & Diagnosis
An interesting recent work in log analysis

and reduction is the paper by Al-Mamory et al.
[1] where the focus is to reduce false positives
in root cause analysis results. That approach

uses data mining to group similar alarms into
generalized alarms and then analyze these gen-
eralized alarms and classify them into true and
false alarms. Consequently, the generalized
alarms can be used as rules to filter out false
positives.

Wang et al. [15] proposed a framework to
monitor the satisfaction of software require-
ments and provide a diagnosis in case of failure.
Wang’s framework is limited to monitoring re-
quirement satisfaction and in particular failures
due to system function or task failures.

Souza et al. extended Wang’s framework [15]
to detect failures caused by malicious attacks
[10]. In addition to monitoring the satisfac-
tion of goal models, Souza et al. added sup-
port for a richer goal model that can represent
not only stakeholder needs (goals), but also at-
tacker intentions (anti-goals). Security require-
ments and anti-goal models can be derived by
analyzing past cases, utilizing libraries of at-
tack or threat trees, or derived systematically
as presented by Lamsweerde in [13].

Thus, if a goal or task a is one of the targets
of anti-goal ag and we know that the attack
ag has occurred between timesteps ts and
te and that the goal/task a has been denied
during that same time interval, we can infer
that ag has been satisfied. We can also infer
that there is a chance that a is not faulty,
but the attack ag successfully prevented it
from working properly. In other words, if it
weren’t for the successful execution of the
attack, the goal/task a would have succeeded.
Since we cannot be sure the target goal/task
hasn’t failed by itself, both fd(a, s) (action is
denied) and fs(ag, s) (anti-goal has succeeded)
diagnoses are proposed.

17

Markov Logic Networks for Probabilis-
tic Reasoning

Markov Logic Networks (MLNs) have been
recently proposed in the research literature as
a way of providing a framework that combines
first order logic and probabilistic reasoning [4].
In this context, a knowledge base denoted by
first-order logic formulae represents a set of
hard constraints on the set of possible worlds
that is, if a world violates one formula, it
has zero probability of existing. Markov logic
softens these constraints by making a world
that violates a formula to be less probable
but still, possible. The more formulas it
violates, the less probable it becomes. More
information and detailed discussion on Markov
Logic Networks can be found in the paper by
Domingos [4].

Malicious Behavior Categorization
In this study, we adopt the taxonomy of

attacks based on the work by Lippmann et al.
[9]. This taxonomy includes the following 4
classes of attacks:

Probe (scan attacks): active port ex-
ploitation for a known vulnerability of the cor-
responding service.
Denial of service (DoS): disruption of a

host or network service by making a computer
resource unavailable to its intended users.
Remote to Local (R2L): attempt to gain

access in order to extract files and modify data
in transit on the attacked machine.
User to root (U2R): elevation of privileges

of a local user to ones normally reserved for the
super user or the administrator.

In Figure 2, we show anti-goal models for at-
tacks classified according to their category as
per the categorization described above. We
also show a goal model for a sample service
(files services) being targeted by these attacks.

3 Log Data Representation

3.1 Storing Log Data

In a large system which is composed of many
subsystems and where each subsystem is mon-
itored by a different logging mechanism, it is

possible that the logged data are represented
in different formats and schemas. To address
the problem of different log data formats and
schemas, we consider mappings from the na-
tive schema of each logger into a common log
schema. In general, most industry log data con-
tain only a subset of this schema. Even though
the identification of the mappings between the
native log schema of each monitor component
and the unified schema is outside of the scope
of this paper, such mappings can be compiled
using semi-automated techniques discussed in
detail in the paper by Alexe et al. [2] or com-
piled manually by domain experts. For the pur-
poses of this study, we have implemented the
mappings manually, as tables. Figure 3 shows
the mappings between the unified schema and
the schema of two systems from the test envi-
ronment. The unified schema we utilize for this
work contains 10 fields (please see Table 1) clas-
sified into four categories: general, event spe-
cific, session information and environment re-
lated. This proposed schema represents a com-
prehensive list of data fields that we consider
to be useful for diagnosis purposes.

4 Hypothesis Modeling

The framework proposed in this paper (Figure
1) aims at detecting malicious behavior against
software systems. It consists of the following
processes: goal and anti-goal models represen-
tation/compilation, log data storing, log filter-
ing, ground atom generation and diagnostics.

4.1 Goal and Anti-Goal Model
Annotations

The proposed framework is built on the premise
that the monitored system′s requirements goal
and anti-goal models are available by system
analysts or can be reverse engineered from
source code using techniques discussed by Yu
et al. [16] and Lamsweerde [13]. In this paper,
we consider that leafs in a goal model relate to
operations of simple system components, that
can be delivered as black boxes for the purposes
of monitoring and diagnosis. Furthermore, for
this work we adopt the formalizations for goal
modeling as proposed by Giorgini et al. [5].

18

Figure 2: Anti-Goal Attacks against (g1) the Goal Model for Files Services (center).

In this context, goal and anti-goal models
used in this framework are extended by annota-
tions in the form of SQL-like string pattern ex-
pressions such as the ones illustrated in Figure
6. These expressions describe the conditions
under which goals/anti-goals instances can be
fulfilled. In particular, tasks (leaf nodes) are
associated with preconditions, occurrence and
postconditions, while goals (non-leaf nodes) are
associated with preconditions and postcondi-
tions only.

The annotations are expressed using string
regular pattern expressions as described in the
UNIX specifications [6]. An example of such
an expression is Windows.*starting.up which is
used to match strings that contain the word
Windows followed by an unspecified number
of characters, followed by the word starting,
followed by a single unspecified character, fol-
lowed by up. An annotation example for goal
g1 in Figure 2 is shown below:

Description like ’Windows.*starting.up’ AND

Source Component like ’hume.eyrie.af.mil’

The matching process that aims to yield a
subset of the logged data according to the an-
notation i.e. query is based either on string
matching or on Latent Semantic Indexing (LSI)
type of retrieval and is presented by Zawawy
et al. [17]. The result of the matching (fil-
tering) process is a list of Matched subsets[] of
logged events that relate to the specific anno-
tation specification.

Figure 3: Mappings from Windows Event
Viewer and IBM’s MQ Log into Unified
Schema.

4.2 Goal and Anti-Goal Models
Predicates

We use first order logic to represent semantic
information on goal/anti-goal models. A pred-
icate is intensional if its truth value can only
be inferred (i.e. cannot be directly observed).
A predicate is extensional if its truth value can
be directly observed. A predicate is strictly
extensional if it can only be observed and not
inferred for all its groundings [11].

We use the extensional predicates ChildAND
(parent node, child node), ChildOR (par-
ent node, child node) to denote the AND/OR
goal decomposition. Goals g1 and g2 shown
in Figure 2 are examples of AND and OR
decompositions. Similarly for anti-goals, ag1
in Figure 2 represents an example of AND
decomposed anti-goal.

We use the extensional predicates Pre(node,

19

Figure 4: Transforming Filtered Log Data Subsets into Ground Atoms.

Table 1: Unified Schema for Log Data
Field Name Category
Report Time General
Description General
Event ID Event Specific
Event Type ID Event Specific
Event Severity Event Specific
Session ID Session Information
Correlation ID Session Information
Source Component Environment Related
Logon ID Environment Related
Physical Address Environment Related

timestep), Occ (node, timestep), and Post
(node, timestep) to represent preconditions,
tasks’ occurrences and postconditions (respec-
tively) at a certain timestep. We use the ex-
tensional predicate Targets(anti-goal, node) to
denote the relationship between an anti-goal
model and the targeted task or goal.

Finally, we use the intensional predi-
cates Occ(goal, timestep, timestep) and Satis-
fied(node, timestep) to represent the goals oc-
currences and the goals/anti-goal/tasks satis-
faction. The predicate Satisfied is predomi-
nantly intensional except for the top goal which
satisfaction is observable (i.e. the observed sys-

tem failure that triggers the root cause analysis
process). If the overall service/transaction is
successfully executed, then the top goal is con-
sidered to be satisfied, otherwise it is denied.

4.2.1 Ground Atoms Generation

In this section, we discuss the process to in-
terpret and transform the (filtered) log subsets
into a set of ordered ground atom literals. Fig-
ure 4 illustrates the basic steps of the transfor-
mation process with an example.

There are two inputs to this process: first,
the log data stored in a common database
as described in Section 3.1 and; second, the
goal model for the monitored system with pre-
condition, postcondition and occurrence pat-
terns annotating each node of the model.
The output is a totally timestep-ordered set
of literals (ground atoms) of the form lit-
eral(node,timestep).

Step 1: by applying the filtering and match-
ing techniques outlined in section 4.1, we
extract from the log database, a collection
(Matched subsets[]) of partially ordered log en-
tries sets (the order is based on the timestamp
in the Report time field (please see Table 1)).
Each subset corresponds to one annotation in

20

the goal model. An example of this process
is shown in Figure 4 where each goal or task
node annotation is associated with a set (can be
empty) of log data produced by the matching
process. In this respect, each annotation (pre-
condition, postcondition, occurrence), is consid-
ered as a query applied to the log data base
that returns a subset of the logged data that
may relate to the specific annotation and goal
model node. Once all the annotations for a goal
model node return a non empty result, we con-
sider that the corresponding goal model node
has succeeded. An empty log data set means
that no evidence can be found in the log data
to indicate that this event has occurred during
the observation period.

Step 2: for each log entry in each
log subset in the set Matched subsets[], we
create a literal in the form annotation(node,
log entry.timestamp), where annotation repre-
sents precondition, occurrence or postcondition.
An example based on the goal model in Figure
2 is to transform a log entry (1999-08-07 1999-
08-07 10:33:26.0 DARPA Security Windows
is starting up ... Process ID: 2155070784)
that matches the pattern of the precondition
of goal g1 into an atom (pre(g1, 1999-08-07
10:33:26.0)). As a result of this step, the sub-
sets of log data are converted into subsets of
literals (see step 2 in Figure 4).

Step 3: the subsets of ground atoms gener-
ated earlier are merged in one set representing
all the matched log data from all the goal model
nodes. A total ordering is accomplished by
sorting all ground atoms based on their times-
tamps (see step 3 in Figure 4). To guarantee
the uniqueness of each timestamp, each times-
tamp is appended with the corresponding pro-
cess/session id.

Step 4: the timestamp in each atom is
replaced by a timestep. The timestep is an
integer initialized at 1, and incremented for
each subsequent atom. Thus precondition(g1,
1999-08-07 10:33:26.0) is transformed into
precondition(g1,4).

The outcome of this process is a set of or-
dered ground atoms that are used in the subse-
quent inference phase as one source of system
observation.

4.3 Goal Model Rules

Relationships in the goal model are also rep-
resented using first order logic expressions.
Goals/tasks’ satisfaction is expressed using the
truth assignment of the Satisfied(node) predi-
cate which, in turn, is inferred as follows: A
task a with a precondition {Pre} and a post-
condition {Post} is satisfied at time t+1 if and
only if {Pre} is true at time t − 1 just before
the task a occur at time t, and {Post} is true
at time t+ 1 (see Equation 1).

Pre(a, t− 1) ∧Occ(a, t) ∧ Post(a, t+ 1)

⇒ Satisfied(a, t+ 1) (1)

A goal g with precondition {Pre} and postcon-
dition {Post} is satisfied at time t2 if and only
if the goal occurrence finishes at time t2, and
{Pre} is true when goal occurrence starts at t1
where (t1 < t2) and {Post} is true when goal
occurrence is completed at t2 (please see Equa-
tion 2).

Pre(g, t1) ∧G Occ(g, t1, t2) ∧ Post(g, t2))

⇒ Satisfied(g, t2) (2)

The truth values of the predicate Occ(goal)
(used in Equation 2) can only be inferred based
on the satisfaction of all its children in the case
of AND-decomposed goals (Equation 3) or at
least one of its children in the case of OR-
decomposed goals (Equation 4).

∀a, Satisfied(a, t1) ∧ ChildAND(g, a) ∧
(t2 < t1 < t3)⇒ Occ(g, t2, t3) (3)

∃a, Satisfied(a, t1) ∧ ChildOR(g, a) ∧
(t2 < t1 < t3)⇒ Occ(g, t2, t3) (4)

Contribution links of the form node1
++S−−−→

node2 are represented in Equation 5. (Simi-
larly for ++D,--S,--D).

Satisfied(node1, t1)⇒ Satisfied(node2, t2)
(5)

As shown in Equations 3 and ORgoaloccur-
rence, the contribution of a child to its parent’s
satisfaction is a function of time. For instance,
the occurrence (and consequently the satisfac-
tion) of gaol g1 at (timestep = 11) in Figure

21

2 is impacted by the satisfaction of task a1 at
(timestep = 3), goal g2 at (timestep = 5) and
task a2 at (timestep = 7). If for example task
a1 is denied or satisfied at (timestep = 2) then
this has no impact on the satisfaction of parent
goal g1 at (timestep = 7).

4.4 Anti-Goal Model Rules

Similarly to goal models, anti-goal models also
consist of AND-OR decompositions, therefore
anti-goal model relationships with their chil-
dren nodes are represented using the same
first order logic expressions as for goal models
(Equations 3 and 4). The satisfaction of tasks
(leaf nodes) in anti-goal models follows the
same rule as in Equation 1. The satisfaction of
anti-goals is expressed using the truth assign-
ment of the Satisfied(node) predicates which,
in turn, is inferred as follows:

Pre(ag1, t1) ∧Occ(ag1, t1, t2) ∧ Post(ag1, t2)

⇒ Satisfied(ag1, t2) (6)

The satisfaction of an anti-goal ag1 at time-
step t1 presents a negative impact on the sat-
isfaction of a target task ai if ag1 occurred just
before the denial of the target task ai

Satisfied(ag1, t1) ∧ Targets(ag1, ai)
∧(t1 < t2)⇒!Satisfied(ai, t2) (7)

4.5 Uncertainty Representation

The proposed framework relies on log data
as evidence for proving the occurrence of the
events of interest. However, the selection
of events of interest (e.g. using LSI) is not
perfect and is plagued by False Positive and
False Negative entries. For this reason, we
allow for user-defined weights representing the
confidence a domain expert has on an observa-
tion for a given case. We address uncertainty
in observations using a combination of logical
and probabilistic models as follows:

A) The domain knowledge representing the
interdependencies between systems/services is
modeled using weighted first order logic state-
ments. The strength of each relationship is rep-
resented with a real-valued weight set based on
domain knowledge and learning from a training

log data set and reflects. The weight of each
rule represents our confidence in this rule rel-
ative to the other rules in the knowledge base.
Consequently, the probability inferred for each
atom depends on the weight of the competing
rules where this atom occurs. For instance, the
probability of the satisfaction of task a2 in Fig-
ure 2 (Satisfied(a4,t)) is inferred based on the
Equation 8 with weight w1,

w1 : Pre(a4, t) ∧Occ(a4, t+ 1) ∧
Post(a4, t+ 2)⇒ Satisfied(a4, t+ 2) (8)

On the other hand, the contribution link based
on Equation 9 with weight w2 contributes to
the denial of task a4,

w2 : !Satisfied(g2, t1)⇒!Satisfied(a4, t2)
(9)

Consequently, the probability assignment
given to Satisfied(a4, t) is determined by the
rules containing it as well as the weight of
these rules in MLN inferencing.

B) Applying an open world assumption to
the observation where a lack of evidence does
not absolutely negate an event’s occurrence but
rather weakens its possibility.

4.6 Weight Learning and Markov
Logic Network Construction

Weight learning for rules and observations is
done semi-automatically by first using discrim-
inative learning based on a training set of past
cases as discussed in the paper by Domingos
[4] and then manually refined by a system ex-
pert. During automated weight learning, each
formula is converted to CNF, and a weight is
learned for each of its clauses from past cases.
The weight of a clause is used as the mean of
a Gaussian prior for the learned weight. The
learned weight can be modified to reflect our
confidence in the rules. For example, in Fig-
ure 2, a rule indicating that the denial of the
top goal g1 implies that at least one of its AND-
decomposed children (a1, g2, and a2) have been
denied, should be given higher weight than a
rule indicating that g1 is satisfied based on log
data showing that pre(g1), occ(g1) and post(g1)
are true. This example relates to the case
where he administrator has without any doubt

22

witnessed the failure of the system, even if the
observed log data do not agree (due to missing
or inaccurate data). Consequently, the Markov
Logic Network is constructed using an exhaus-
tive scheme of rules and predicates as discussed
earlier as well as, grounding predicates with all
possible values, and connecting them if they
coexist in a grounded formula.

5 Diagnostics

The flowchart in Figure 5 represents the pro-
cess of detection of malicious behavior using
the proposed framework. This process starts
when an alarm is raised indicating a system
failure, and completes when a list of root causes
of the observed failure is identified. In or-
der for the diagnostic reasoning process to pro-
ceed, we consider that the annotated goal/anti-
goal models for the monitored systems and
their corresponding Markov networks and logi-
cal predicates have been generated as described
in section 4. The diagnostic reasoning process
is composed of seven steps as discussed in detail
below:
Step 1: The investigation starts when an

alarm is raised or when the system administra-
tor observes the failure of the monitored ser-
vice, which is the denial of a goal g.
Step 2: Based on the knowledge base KB

that consists of all goal models and all observa-
tions (filtered log data and visual observation of
the failure of the monitored service), the frame-
work constructs a Markov Network that in turn
is applied to generate a probability distribution
for all the Satisfied(node, timestep) predicates
for all nodes in the goal tree rooted at the de-
nied goal g and the nodes of all other connected
to it trees. This probability distribution is used
to indicate the satisfaction or denial of tasks
and goals at every timestep of the observation
period. More specifically, if the probability of
satisfaction of a task ai at a timestep t is higher
than α then we conclude that ai is satisfied at
t (i.e. Satisfied(ai, t) > α ⇒ ai is satisfied at
t). Typically the timestep t starts at 0, and α
is chosen to be 0.5. An example of the outcome
of this step is the following based on Figure 2:{

Satisfied(a1, 3) : 0.36
Satisfied(a3, 7) : 0.45

⇒
{

1 : a1
2 : a3

.

Step 3: The outcome of the previous step
is a ranked list of denied tasks/goals where the
first task represents the node that is most likely
to be the cause of the failure. In step 3, the
framework iterates through the denied list of
tasks identified in step 2, and loads the anti-
goal models targeting each of the denied tasks.
Step 4: for each anti-goal model selected

in Step 3, we generate the observation literals
from the log data by applying the ground atoms
generation process described in Section 4.2.1.
Note that a task may have zero, one or multiple
anti-goal models targeting it. The goal model
in Figure 2 contains task a2 which has no anti-
goal models targeting it, task a1 which has one
anti-goal (ag1) targeting it, and task a3 which
has two anti-goals (ag3 and ag5) targeting it.

Step 5: this step is similar to step 2 but
instead of evaluating a goal model, the frame-
work evaluates the anti-goal model identified
in step 4 using the log data-based observation
and determines if the top anti-goal is satisfied,
i.e., has been successfully executed. This is
done by constructing a Markov Network based
on the anti-goal model relationships (see sec-
tion 4.4) and inferring the probability distribu-
tion for the Satisfied(anti-goal, timestep) pred-
icate for the nodes in the anti-goal model. In
particular, we are interested in the probabil-
ity assigned to Satisfied(agj , t) where t repre-
sents the timestep at which agj is expected to
complete. Using the example in Figure 2, ag1
takes 11 steps to complete execution, while ag3
takes 7 steps. In this case, we are interested in
Satisfied(ag1, 11) and Satisfied(ag2, 7).
Step 6: Based on the value of

Satisfied(agj , t) identified in step 5, we
distinguish the following two cases:

1. If Satisfied(agj , t) >= α (typically α =
0.5): this indicates that agj is likely to
have occurred and caused ai to be denied.
In this case, we add this information (anti-
goal and its relationship with the denied
task) to the knowledge base KBg. This
knowledge base enrichment is done at two
levels: first, a new observation is added to
indicate that anti-goal agj has occurred;
second, equation 7 is added to the set of
rules.

2. If Satisfied(agj , t) < α: this indicates

23

Figure 5: Malicious Behavior Detection Pro-
cess

that agj did not occur, thus we exclude
it as a potential cause of failure for ai.

Before getting to next step, the framework
checks whether the denied task ai is targeted
by any other anti-goal models. If so, it iterates
through the list of other anti-goals agj that are
targeting ai by going back to Step 4. Once all
anti-goals targeting a denied task ai are evalu-
ated, the framework checks whether there are
more denied tasks and if so, it repeats step 2.

Step 7: Based on the new knowledge ac-
quired from evaluating the anti-goal models,
we re-evaluate the satisfaction of tasks based
on the enriched knowledge based KB, and pro-
duce a new ranking of the denied tasks. The
fact that an attack is likely to have occurred
targeting a specific task that has failed in-
creases the chances that this task is actually
denied due to the intrusion leading to the over-
all system failure. This overall process helps
improve the diagnosis but also provides inter-
pretation for the denial of tasks.

6 Experimental Evalua-
tions

To evaluate the proposed framework, we con-
ducted the following set of experiments. The
first case study aims examine the diagnostic
effectiveness of the framework using a sample
application utilizing COTS components. The
objective of the second set of experiments is to
evaluate the scalability and measure the perfor-
mance of the framework using large data sets.

The framework’s filtering and interpretation
components were implemented using the Java
Programming language (version 1.5). The
diagnosis/inference was conducted using the
Alchemy system developed at the University of
Washington [7]. We also used Microsoft SQL
Server 2008 to host the log database.

6.1 Credit Service Scenario

In the first case study for the proposed frame-
work, we use the monitoring and detection of
attacks on the execution of a credit evaluation
business process implemented by a number of
different services and COTS components.

24

Figure 6: Goal and Anti-Goal Models for the Credit History Service

Figure 7: Layout of the Test Distributed Envi-
ronment

6.1.1 Experiment Setup

The test environment (Figure 7) includes 4 sys-
tems/services: the front end application (soa-
pUI), a message broker (IBM WebSphere Mes-
sage Broker v7.0), the credit check Web Ser-
vice and an SQL server (Microsoft SQL Server
2008).

The credit evaluation process starts upon re-
ceiving a Web Service request. If already avail-
able, the credit rating of the applicant is re-
trieved from the credit history table. For new
applicants, the score is calculated and used to
update the credit table. A Web Service reply
containing the credit score is sent back to the
front end application. In case one (or more) of
the systems supporting the credit service fails,
requests sent from the front end application
will get no reply and will time out.

The experiment is conducted from the per-
spective of the system administrator where a
system failure is reported and an investigation
is triggered. The case study scenario consists

of running an attack while executing the credit
history service (see the goal model of the credit
service in Figure 6) that is deployed on the
distributed system shown in Figure 7 and de-
scribed in section 6.1.

The anti-goal ag1 is executed by first probing
the active ports on the targeted machine, and
then the attacker attempts to login but uses
a very long username (16000 characters) dis-
rupting the service authentication process, and
denying legitimate users from accessing the ser-
vice. Traces of this attack can be obtained in
the Windows Event Viewer.

The anti-goal ag2 models an SQL injection
attack that aims at dropping the table contain-
ing the credit scores. One way to implement
such an attack is to send two subsequent legit-
imate credit history web service requests that
contain embedded malicious SQL code within
a data value. In particular, we embed an SQL
command to scan and list all the tables in the
data value of the field ID as follows:

<ID>12345; select from SYSOBJECTS where

TYPE = ’U’ order by NAME</ID>

The system extracts the credential data
value (e.g. ID) and uses it to query the
database thus inadvertently executing the ma-
licious code. The scan is followed by a second
WS request that contains a command to drop
the Credit History table:

<ID>12345; Drop Table Credit History </ID>

Traces of the credit service sessions are found
in the SQL Server audit log data and the mes-
sage broker (hosting the credit service). The

25

first anti-goal ag1 represents the attacker’s plan
to deny access to the credit service to keeping
busy the port used by that service. The second
anti-goal ag2 aims at injecting an SQL state-
ment that destroys the credit history data.

6.1.2 Experiment Enactment

We run a sequence of credit service requests
and in parallel we perform an SQL injection
attack. The log database table contained 1690
log entries generated from all systems in our
test environment.

The first step in the diagnosis is to use the
filtered log data to generate the observation
(ground atoms) in the form of Boolean literals
representing the truth values of the node anno-
tations in the goal (or anti-goal) model during
the time interval where the log data is collected.
The Planfile1 model segment below represents
the observation corresponding for one credit
service execution session:

Planfile1 : Pre(g1 , 1); Pre(a1, 1); Occ(a1,
2); Post(a1, 3); Pre(a2, 3); Occ(a2, 4);
Post(a2, 5); Post(g2, 5); ?Pre(a5, 5); ?Occ(a5,
6); ?Post(a5, 7); Pre(a6, 5); ?Occ(a6, 6);
?Post(a6, 7); ?Post(g2, 7); ?Pre(a3, 7);
?Occ(a3, 8); ?Post(a3, 9); ?Pre(a4, 9);
?Occ(a4, 10); ?Post(a4, 11); ?Post(g1, 11),
!Satisfied(g1, 11)

In the case where we don’t find evidence for
the occurrence of the events corresponding to
goals/anti-goals/tasks execution (precondition,
postcondition, etc.), we don’t treat this as a
proof that these events did not occur but we
consider them as rather uncertain. We rep-
resent this uncertainty by preceding the cor-
responding ground atoms with interrogation
mark (?). In cases where there is evidence
that an event did not occur, the corresponding
ground atom is preceded with an exclamation
mark (!).

By applying inference based on the observa-
tion in Planfile1 (Step 2 in flowchart in Figure
5), we obtain the following probabilities for
the ground atoms using the Alchemy tool:

Satisfied(a1, 3) :0.99, Satisfied(a2, 5) :0.99,
Satisfied(a5, 7) :0.30, Satisfied(a6, 7) :0.32,
Satisfied(a3, 9) :0.34, Satisfied(a4, 11) :0.03

Using step 2 in the diagnostics flowchart
(Figure 5), we deduce that a4, a5, a6 and a3
are the root causes for the failure of the top
goal g1.

Using step 3 and 4 in the diagnostics
flowchart, we first generate the observation for
anti-goal ag1 (Planfile2) and apply inference
based on the anti-goal model ag1 relationship
and the generated observation.

Planfile2 : Pre(ag1, 1), ?Pre(t1, 1), ?Occ(t1,
2), ?Post(t1, 3), ?Pre(t2, 3), ?Occ(t2, 4),
?Post(t2, 5), ?Pre(t3, 5), ?Occ(t3, 6),
?Post(t3, 7), ?Post(ag1, 7)

In Step 5, the outcome of the inference
indicates that ag1 is denied (satisfaction
probability is 0.0001). We iterate through step
3, and the next denied task a5 is targeted by
anti-goal ag2. The observation generated for
the anti-goal ag2 is in Planfile3 below:

Planfile3 : Pre(ag2, 1), Pre(t4, 1), Occ(t4, 2),
Post(t4, 3), Pre(t5, 3), Occ(t5, 4), Post(t5, 5),
Pre(t6, 5), Occ(t6, 6), Post(t6, 7), Post(ag2,
7)

The outcome of the inference indicates
that ag2 is satisfied (satisfaction probability
is 0.59). Using step 6, we add the result to
the goal model knowledge base. In step 7, we
re-evaluate the goal model based knowledge
base and generate a new diagnosis as follows:

Satisfied(a1, 3) : 0.95, Satisfied(a2, 5) : 0.98,
Satisfied(a5, 7) : 0.23, Satisfied(a6, 7) : 0.29,
Satisfied(a3, 9) : 0.11, Satisfied(a4, 11) : 0.26

The new diagnosis ranks a3 as the most likely
root cause for the failure of the top goal g1.
Next, a5, a4 and a6 are also possible root causes
but less likely. This new diagnosis is an im-
provement over the first one generated in step
2 since it accurately indicates a3 as the most
probable root cause. We know that this is cor-
rect since the SQL injection attack ag2 targeted
and dropped the credit table.

6.1.3 Inference Case Study

A case study of the inference was performed
using Ubuntu Linux running on Intel Pentium

26

Figure 8: Impact of goal model size on infer-
ence time.

2 Duo 2.2 GHz machine. We used 3 sets of
extended goal models representing the credit
service goal model. The 3 extended goal mod-
els contained 50, 80 and 100 nodes respectively.
In addition, we used a set of 5 anti-goal models
with a total of 40 anti-goals nodes. In particu-
lar, we are interested in measuring the impact
of the size of goal and anti-goal models on the
inference component. Figure 8 illustrates that
the number of ground atoms/clauses, which di-
rectly impacts the size of the resulting Markov
model, is linearly proportional to the goal/anti-
goal models total number of nodes. Figure 8
shows that the inference time ranged from 42
seconds for a goal model of 50 nodes (10 goal
nodes and 40 anti-goal nodes), up to 124 sec-
onds for a model of 140 nodes (100 goal nodes
and 40 anti-goal nodes). These results show
that our approach can be applied to industrial
software applications with small to medium-
sized requirement models.

6.1.4 Threshold Alpha Impact

In the experiment above, we set the threshold
value α as 0.5. In this experiment, we vary
the value of the threshold α and analyze the
impact on the diagnostic process, in particular,
on steps 2 and 5 (Figure 5).

In the first case, we set α to 0.75. This has
no impact on step 2, but it impacts step 5.
Since both the anti-goals ag1 and ag2 have a
probability of satisfaction below 0.75 and then
they are considered to have not occurred and
have no impact on the goal model evaluation.
the result is that step 7 does not cause any

Figure 9: Impact of goal model size on ground
atoms/clauses for inference.

modification to the original diagnosis.
In the second case, we set α to 0.25. The

α value change impacts the decision on what
tasks are denied (step 2). In this case, the di-
agnosis in step 2 indicates that only a4 is de-
nied. Similarly, a4 is targeted by ag1 which has
no trace in the observation and thus has no im-
pact on the overall diagnosis process. The fi-
nal result is that the diagnosis in step was not
modified in step 7.

As shown in the two experiments above, the
threshold parameter α affects the overall diag-
nosis process and has to be tuned accordingly
either by the user or by considering past cases.

6.2 Performance and Scalability

The second experiment evaluates the perfor-
mance and scalability of the framework. We
use the publicly available DARPA (Advanced
Research Projects Agency) intrusion data sets,
which is collected and provided by the IST
Group at MIT [9]. In particular, we use the
Windows NT Data Set for DARPA 2000 [8].
When stored in our common log database, the
data set amounted to 153829 entries and took
up to 600 MB of disk space. We use annotated
anti-goal models to model the set of the attacks
(see Figure 2) that are known to have traces in
the DARPA 2000 Windows NT data set (see
Table 2).

6.2.1 Filtering Performance

This experiment measures the performance of
log filtering. To do so, we apply the detection
framework on the NT event viewer log data in

27

Table 2: Performance Measures for Normalization and Filtering (Milliseconds)
Normalization LSI Filtering Grep Filtering

Processing Time
(145855 entries)

178422 708876 181299

Average Time per
Log Entry

1.22 4.86 1.24

the DARPA dataset, and measure the time re-
quired (in milliseconds) to perform the compu-
tationally demanding steps mainly the normal-
ization and filtering.

First, the normalization process parses the
log data files which is in the comma sepa-
rated value format (CSV) which was exported
from the Windows NT event viewer (evtx) for-
mat. Next, the log data is transformed into
the unified schema format and stored in the log
database. Last step consists of indexing the log
table based on the timestamp field.

Second, the filtering was done using two tech-
niques: Grep and LSI. As expected, the perfor-
mance of the filtering process varied depending
on the technique used. The first step in the
filtering is common for the two approaches and
it consists of parsing the goal/anti-goal mod-
els stored as local XML files, and collecting the
nodes and their associated queries. For Grep
based filtering, the second step is to transform
the collected queries into regular expressions
and find matching log entries. Based on the
processing rates shown in Table 2, the frame-
work can handle few hundred log entries per
second thus it scales up to an industrial envi-
ronment.

7 Conclusions

This paper discussed a root cause analysis tech-
nique that can be used to identify the causes of
failures induced by third party actions. The
technique is based first, on modeling with goal
models the conditions, constraints, tasks, and
actions that are required for the system to de-
liver its functionality, second on modeling with
anti-goal models the different ways an intru-
sive third party action can be manifested, third
on a knowledge base that represents as rules
and facts the aforementioned models and the
logged events and, fourth a probabilistic rea-

soning technique that is based on Markov Logic
Networks, that allows for the evaluation of pos-
sible and alternative ways to explain the failed
behavior of the system. More specifically, the
proposed approach upon the observation of a
failure not only computes the alternative ways
this failure is supported but also, computes
whether these alternative ways can be man-
ifested as results of known intrusive actions.
Consequently, the proposed approach best fits
to detect the class of known (as opposed to
mutating or new) intrusive behavior that can
be documented using anti-goal AND-OR tree
model. The probabilistic reasoning framework
increases the probability of an identified root
cause when the corresponding root cause can
be supported by an intrusive behavior. The
framework has been evaluated in a medium size
system that is composed of COTS components,
and in the identification of known intrusions in
the DARPA intrusion dataset. The results in-
dicate that the approach can be used for root
cause analysis in medium size systems and for
systems that generate a few hundred events per
second. Future work involves the extension of
the log filtering process so that the framework
will have to examine fewer events without los-
ing accuracy, and performance enhancements
required to deal with systems that generate a
few thousand events per second. The work is
supported by an NSERC CRD grant and the
CA Labs of CA Technologies.

References

[1] Safaa O. Al-Mamory and Hongli Zhang.
Intrusion detection alarms reduction using
root cause analysis and clustering. Com-
put. Commun., 32(2):419–430, 2009.

[2] Bogdan Alexe, Laura Chiticariu, Renee J.
Miller, and Wang Chiew Tan. Muse: Map-

28

ping understanding and design by exam-
ple. In Proceedings of the 24th Interna-
tional Conference on Data Engineering,
ICDE 2008, April 7-12, 2008, Cancn, Mx-
ico, pages 10–19, 2008.

[3] Anne Dardenne, Axel van Lamsweerde,
and Stephen Fickas. Goal-directed
requirements acquisition. In Science
of Computer Programming, pages 3–50,
1993.

[4] Pedro Domingos. Real-world learning with
markov logic networks. In Jean-Franois
Boulicaut, Floriana Esposito, Fosca Gian-
notti, and Dino Pedreschi, editors, Ma-
chine Learning: ECML 2004, volume 3201
of Lecture Notes in Computer Science,
pages 17–17. Springer Berlin / Heidelberg,
2004.

[5] Paolo Giorgini, John Mylopoulos,
Eleonora Nicchiarelli, and Roberto
Sebastiani. Reasoning with goal models.
pages 167–181. Springer, 2002.

[6] The Open Group. ”regular expressions”.
the single unix specification, version 2.
http://pubs.opengroup.org/onlinepubs/0-
07908799/xbd/re.htm, 1997.

[7] S. Kok, M. Sumner, M. Richardson,
P. Singla, H. Poon, D. Lowd, and
P. Domingos. The alchemy system for
statistical relational ai. technical report,
dept. of computer science and engineer-
ing, university of washington, seattle, wa.
http://alchemy.cs.washington.edu, 2007.

[8] Jonathan Korba and Arthur C. Smith.
Windows nt attacks for the evaluation of
intrusion detection systems. Master’s the-
sis, MIT, 2000.

[9] Richard Lippmann, Joshua Haines, David
Fried, Jonathan Korba, and Kumar Das.
Analysis and results of the 1999 darpa
off-line intrusion detection evaluation. In
Herv Debar, Ludovic M, and S. Wu, ed-
itors, Recent Advances in Intrusion De-
tection, volume 1907 of Lecture Notes
in Computer Science, pages 162–182.
Springer Berlin / Heidelberg, 2000.

[10] Vitor Estevao Silva Souza and John My-
lopoulos. Monitoring and diagnosing mali-
cious attacks with autonomic software. In
Alberto H. F. Laender, Silvana Castano,
Umeshwar Dayal, Fabio Casati, and Jos
Palazzo Moreira de Oliveira, editors, ER,
volume 5829 of Lecture Notes in Computer
Science, pages 84–98. Springer, 2009.

[11] Son Dinh Tran and Larry S. Davis. Event
modeling and recognition using markov
logic networks. In European Conference on
Computer Vision, pages 610–623, 2008.

[12] A. Van Lamsweerde, R. Darimont, and
P. Massonet. Goal-directed elaboration
of requirements for a meeting scheduler:
problems and lessons learnt. In RE ’95:
Proceedings of the Second IEEE Interna-
tional Symposium on Requirements Engi-
neering, page 194, Washington, DC, USA,
1995. IEEE Computer Society.

[13] A. van Lamsweerde and E. Letier. Han-
dling obstacles in goal-oriented require-
ments engineering. Software Engineering,
IEEE Trans. on, 26(10):978–1005, 2000.

[14] Axel van Lamsweerde. Elaborating secu-
rity requirements by construction of in-
tentional anti-models. Software Engineer-
ing, International Conference on, 0:148–
157, 2004.

[15] Yiqiao Wang, Sheila A. McIlraith, Yijun
Yu, and John Mylopoulos. An automated
approach to monitoring and diagnosing
requirements. In ASE ’07: Proceedings
of the twenty-second IEEE/ACM interna-
tional conference on Automated software
engineering, pages 293–302, New York,
NY, USA, 2007. ACM.

[16] Yijun Yu, Alexei Lapouchnian, Sotirios
Liaskos, John Mylopoulos, and Julio Leite.
From goals to high-variability software de-
sign. pages 1–16, 2008.

[17] Hamzeh Zawawy, Kostas Kontogiannis,
and John Mylopoulos. Log filtering
and interpretation for root cause analy-
sis. In ICSM ’10: Proceedings of the 26th
IEEE International Conference on Soft-
ware Maintenance, 2010.

29

