
A Framework for Software Architecture Refactoring using
Model Transformations and Semantic Annotations∗

Igor Ivkovic and Kostas Kontogiannis
Dept. of Electrical and Computer Engineering

University of Waterloo
Waterloo, ON N2L3G1 Canada

{iivkovic, kostas}@swen.uwaterloo.ca

Abstract

Software-intensive systems evolve continuously under
the pressure of new and changing requirements, generally
leading to an increase in overall system complexity. In
this respect, to improve quality and decrease complexity,
software artifacts need to be restructured and refactored
throughout their lifecycle. Since software architecture arti-
facts represent the highest level of implementation abstrac-
tion, and constitute the first step in mapping requirements
to design, architecture refactorings can be considered as
the first step in the quest of maintaining system quality dur-
ing evolution. In this paper, we introduce an approach
for refactoring software architecture artifacts using model
transformations and quality improvement semantic annota-
tions. First, the conceptual architecture view is represented
as a UML 2.0 profile with corresponding stereotypes. Sec-
ond, instantiated architecture models are annotated using
elements of the refactoring context, including soft-goals,
metrics, and constraints. Finally, the actions that are most
suitable for the given refactoring context are applied after
being selected from a set of possible refactorings. The ap-
proach is applied to a simple example, demonstrating refac-
toring transformations for improved maintainability, per-
formance, and security.

Keywords: software evolution, software architecture refac-
toring, model transformations, UML profiles, quality-
driven re-engineering

1. Introduction

Software evolves in reaction to various environmental
stimuli including variations in business and technical re-
quirements, and changes in market demands and condi-

1 This work is funded in part by the IBM Canada Ltd. Laboratory,
Center for Advanced Studies (CAS) in Toronto.

tions. Within the context of model-driven software evolu-
tion, changes can be applied to software models at different
levels of abstraction and detail, such as architecture design
or source code models. As a result to these changes, the
complexity and brittleness of software grows, and inconsis-
tency between related models and their elements may arise.
To decrease complexity and ensure integrity of the different
artifact models, it is necessary to create a controlled envi-
ronment for software evolution where model transformation
and model refactoring mutations can be performed system-
atically.

Refactoring in a traditional sense refers to restructur-
ing the source code of the system. In model-driven archi-
tecture (MDA) and encompassing model-driven develop-
ment (MDD), refactoring can be performed on any MOF-
compliant artifact model, and is generally viewed as a pro-
cess of improving the internal structure of a software system
without disrupting its external behavior [10]. We refer to a
refactoring mutation as a neutral software evolution cycle
that is based on specific quality goal that does not affect
external system behavior. Based on this view, refactoring
also refers to interpreting quality goals, defined as nonfunc-
tional requirements, in terms of structural changes of arti-
facts models under specific preconditions (e.g., existence of
a specific design pattern) and postconditions (e.g., must not
change specific interaction scenario).

In forward engineering, software architecture artifacts
represent the first step in mapping requirements models to
design elements. Similarly, from the reverse-engineering
perspective, software architecture is among the highest level
source code abstraction models that can be extracted. Con-
sequently, in a top-down approach to software refactor-
ing, architectural refactoring can be considered as the first
step in changing system implementation to match specific
quality-improvement goals. Changes to architectural mod-
els must, however, be performed carefully and systemati-
cally, as they may impact the elements of more specific

design and implementation models. Nevertheless, if per-
formed correctly and accurately, changes at the architectural
level may lead to more significant, and positive improve-
ments in the structure of a software system.

In this paper, we introduce an approach for refactor-
ing of software architecture models using semantic anno-
tations and UML 2.0 profiles. We use profiles instead of
domain models or metamodels to create a unified method
for refactoring of different models and views that allows
preservation of metamodel properties, such as types and re-
lations, but that also allows expression of refactoring trans-
formations in a generic way. As a first step in realizing
this goal, software architecture views are represented us-
ing UML 2.0 profiles, where specific view elements are
denoted by restrictive stereotypes. These stereotypes ex-
tend or modify the abstract syntax of language elements,
and define the usage and semantics for the newly added ele-
ments [2] (e.g., <<component>> and <<connector>>).
Similarly, the soft-goals, metrics, and constraints associ-
ated with a particular refactoring quality goal are denoted
by the refactoring context UML profile, and made part of
the <<semanticHead>> stereotype to represent a set of
related soft-goals and metrics. A semanticHead instance is
linked to a refactoring transformation to indicate its effect
on soft-goals and applicable metrics. Next, using an ap-
proach to quality-driven refactoring as introduced by My-
lopoulos et al. [6], a specific refactoring goal is represented
as a soft-goal interdependence graph (SIG) of soft-goals
and related quality metrics. Using the refactoring context,
the elements of SIG are mapped to architectural refactoring
transformations. Finally, based on a query of semantic an-
notations, the most suitable refactoring transformations are
selected and applied.

1.1. Motivation

By introducing the proposed framework, we aim to ad-
dress the following:

1. Standardize and formalize quality-driven refactoring
using UML. We formalize existing refactoring meth-
ods through the refactoring context and model trans-
formations.

2. Use UML profiles to represent different architecture
modelling views in a standardized format. As a proof
of concept, we have created a profile for the conceptual
architecture view.

3. Show a method for encoding refactoring transforma-
tions and use them as part of the framework to refactor
an existing system. We provide a comprehensive ex-
ample on which we illustrate encoding, selection, and
application of transformations.

This paper is organized as follows: Section 2 outlines
related research in the areas of architectural repair and
refactoring and model transformations. Section 3 discusses
the representation of software architecture and architectural
refactoring using UML 2.0 profiles. Section 4 introduces
our approach to software architecture refactoring using soft-
goals and defined UML profiles and applies it to a detailed
example, with Section 5 that provides our conclusions and
directions for future research.

2. Related Research

Mens [17] has conducted a detailed survey of software
refactoring. As part of the survey, the general approach to
refactoring was identified to include: (1) identify the loca-
tion for refactoring, directly on the source code or on one of
the more abstract artifacts; (2) determine which refactorings
should be applied for the given location, for instance, refac-
toring bad smells such as code duplication to improve main-
tainability [10]; (3) guarantee that the refactoring changes
that are considered preserve external behavior, for example,
using preconditions and postconditions defined on the same
set of input and output values [19]; (4) apply selected refac-
torings, (5) assess the effect of the refactoring on the quality
(e.g., complexity, or performance) or the process (e.g., cost,
or effort) using metrics, controlled experiments, and statis-
tics; and (6) maintain the consistency between the refac-
tored elements and other software artifacts using different
consistency management techniques such as mSynTra [13]
or Fujaba [9]. In this paper, we adopt the abstract model
of refactoring, and we create the refactoring context to rep-
resent the key elements for model-driven software refactor-
ing. For example, the refactoring location is identified as the
source rule for the refactoring model transformation while
specific behavioral constraints are encoded as pre- and post-
conditions.

The structure of individual refactoring transformations is
based on a classification of model transformations by Czar-
necki and Helsen [8]. That is, each transformation rule is
composed of two parts: a source rule and a target rule, ex-
pressed as patterns of strings or graph elements, or logic
constraints. Transformations can also be endogenous, if
they transform models in the same language, or exogenous,
if they transform models between different languages. We
define refactoring transformations as the mapping of the
source and target graph patterns represented in UML.

Other approaches to refactoring include quality-driven
reengineering approaches [22], where basic transformations
are used to compose more complex ones based on their re-
lation to specific soft-goals. We extend these approaches by
creating a formalism for representing and selecting generic
refactorings, and relating them in a structured manner to
specific quality goals. We also note UML-based refactor-

<<profile>>
Refactoring Context

 goals[1..*] : SoftGoal
 metrics[1..*] : QualityMetric

«stereotype»
SemanticHead

 subgoals[*] : SoftGoal

«stereotype»
SoftGoal

 type : MetricType
 startValue
 endValue

«stereotype»
QualityMetric

 ProductMetric
 ProcessMetric
 ProjectMetric

«enumeration»
MetricType

«metaclass»
Class

 sh[1] : SemanticHead
 source[1] : Rule
 target[1] : Rule
 preconditions[*] : Constraint
 postconditions[*] : Constraint
 context[1] : Profile

«stereotype»
ModelRefactoring

Figure 1. Refactoring Context Profile

ing approach [21], and previously defined UML profiles for
requirements [11], and product lines [24].

3. Defining the Refactoring Context for Soft-
ware Architecture using UML Profiles

In this section, we first introduce and describe elements
of a general refactoring context for software evolution. We
then use a metamodel for describing software architecture
views as introduced by Hofmeister et al. [12] to create UML
profiles for different architectural views, namely the con-
ceptual architecture view profile. Finally, we apply the cre-
ated profiles to define the refactoring context for software
architecture artifacts.

3.1. Generic Refactoring Context

To define a generic refactoring context for software evo-
lution, we make use of a refactoring process based on multi-
ple soft-goals [23], which represent nonfunctional require-
ments and factors that may affect them.

The steps in this process are:

• Step 1. Starting with a set of refactoring goals, repre-
sent the reasoning model for refactoring as a soft-goal
interdependence graph (SIG), which represents depen-
dencies between soft-goals. Use the SIG to quantify
acceptance or rejection attributes of each soft-goal as a
[0, 1] metric.

• Step 2. Measure quantifiable properties of soft-goals
to decide the ordering of relevance in the soft-goal hi-
erarchy, and select the one that should be applied first.

• Step 3. Pick the most suitable refactoring transforma-
tion based on their contribution to the chosen soft-goal.

• Step 4. Apply the selected refactoring. If there are
still soft-goals that were not addressed, return to Step
2 and repeat the evaluation, ordering, and selection.
Else, terminate the process.

Based on the above process and related research [11, 17],
we propose the following elements as stereotypes to be part
of the semantic representation of a refactoring context. Fig-
ure 1 illustrates the resulting Refactoring Context as a UML
profile.

• <<stereotype>> ModelRefactoring

Description
Represents a semantically annotated refactoring
transformation.

Attributes
sh[1] : SemanticHead — semantic annotation
source[1] : Rule — a source pattern
target[1] : Rule — a target pattern
preconditions[*] : Constraint — the conditions
that must be satisfied for a refactoring to apply
postconditions[*] : Constraint — the conditions
that must be satisfied for a refactoring to termi-
nate successfully
context[1] : Profile — a corresponding refactor-
ing perspective

Semantics
Each ModelRefactoring represents one semanti-
cally annotated refactoring transformation. Se-
lection of refactorings is based on the values
stored in the SemanticHead attributes.

• <<stereotype>> SemanticHead

Description
Represents semantic annotation for ModelRefac-
toring.

Attributes
goals[1..*] : SoftGoal
metrics[1..*] : QualityMetric

Semantics
Refactoring transformations are associated with
corresponding SemanticHead instances. Selec-
tion of refactorings is based on the values stored
in the SemanticHead attributes.

• <<stereotype>> SoftGoal

Description
Represents quality goals for refactoring. One or
many SoftGoal instances are a part of the Seman-
ticHead for the refactoring context.

Attributes
subgoals[*] : SoftGoals — subordinate Soft-
Goals

Semantics
A refactoring context is represented through a set
of soft-goals derived from SIG. To satisfy the
refactoring goals, each of the soft-goals has to
be iteratively mapped to a corresponding Model-
Refactoring, which is then applied.

• <<stereotype>> QualityMetric

Description
Represents quality metrics for refactoring. One
or many QualityMetric instances are a part of the
SemanticHead for the refactoring context.

Attributes
type : MetricType
startValue — computed metric value for the
source pattern
endValue — computed metric value for the target
pattern

Semantics
Each of the refactoring context soft-goals is mea-
sured using an appropriate quality metric. De-
pending on the differences between starting and
ending values, which represent metric values for
the source and target graph patterns respectively,
the chosen soft-goals are matched to individual
refactorings.

• <<enumeration>> MetricType

Description
Represents different quality metric categories,
namely ProductMetric, ProcessMetric, and Pro-
jectMetric, as defined in [15].

Semantics
Each of the QualityMetric is typed using an in-
stance of MetricType.

3.2. Conceptual Architecture View Profile

To define a UML profile for software architecture, we
treat each software architecture view type individually. That
is, we consider the following architectural views as defined
in [12]:

• Conceptual architecture view — contains components,
connectors, ports, roles, and protocols, where ports,
roles, and protocols may be abstracted as parts of spe-
cific interfaces [7].

• Module architecture view —- encompasses models,
subsystems, layers, and interface protocol.

<<profile>>
Refactoring Context

<<apply>>

<<profile>>
Conceptual Architecture View

<<profile>>
Refactoring Context

<<profile>>
Software Architecture Refactoring Context

<<apply>> <<apply>>

«stereotype»
Concrete

«metaclass»
Class

Figure 3. Refactoring Context for the Concep-
tual Architecture View

• Execution architecture view — with run-time images,
communication paths, and communication protocols.

• Code architecture view — including source files, inter-
mediate files, executable files, and directories.

In this paper, we focus on the conceptual architecture
view, and define a UML profile for it using the previ-
ously published metamodel and semantics [12]. Based on
the UML 2.0 specifications, association relations between
stereotypes in a profile are not allowed. However, there
is no constraint on showing associations as stereotype at-
tributes, so we have used attributes to represent associations
between stereotypes to create the profile shown in Figure 2.
The full semantic description of the profile is not provided,
as it is analog to the description for the original Hofmeister
et al. metamodel. Instead, we provide an extension to this
metamodel to account for the differences between the “as-
designed architecture”, which refers to the conceptual archi-
tectural model created during the architectural design stage,
and the “as-implemented architecture”, which refers to the
architectural model that was recovered from the implemen-
tation artifacts [3]. The differences between these two views
are indicative of possible architectural drift that may arise
due to evolution of software artifacts, and are detrimental to
maintainability.

From the described UML profiles, now we can define
the refactoring context for software architecture. Figure

<<profile>>
Conceptual Architecture View

 subcomponents[*] : Component
 subconnectors[*] : Connector
 roles[*] : Role

«stereotype»
Component

 binding[*] : Port
 obeys[1] : Protocol
 connection[*] : Role

«stereotype»
Port

«metaclass»
Class

 subcomponents[*] : Component
 subconnectors[*] : Connector
 ports[*] : Port

«stereotype»
Connector

 incoming
 outgoing

«stereotype»
Protocol

 binding[*] : Role
 obeysConjugate[1] : Protocol
 connection[*] : Port

«stereotype»
Role

{connection can only connect
ports and roles for which
the enclosing components and
connectors are contained by
the same element}

{connection can only connect
ports and roles when they
obey compatible protocols}

{binding can only connect
ports and roles, or roles
and ports of the enclosing
component or connector,
respectively}

Figure 2. Conceptual Architecture View Profile

3 illustrates the refactoring context for conceptual archi-
tectural view as a combination of the generic refactoring
context and conceptual architectural view profiles. Ac-
cording to this view, individual refactorings are stereo-
typed and annotated based on the refactoring context, that
is, each transformation is represented as a combination
of the <<source>> and <<target>> stereotyped rules,
along with an instance of <<semanticHead>> stereo-
type. Elements that are used in the source and target pat-
terns are stereotyped according the elements of the Con-
ceptual Architecture View profile (e.g., <<component>>
and <<connector>>). The rule elements may be addition-
ally stereotyped as <<concrete>> to annotate those ele-
ments that are identified (or confirmed) through software
architecture recovery. Refactoring contexts for other views
are defined in the same manner, as a combination of the
generic refactoring context and a specific architectural view
profile. The resulting profile is used to represent specific
model refactorings, as shown in Section 4.

4. A Framework for Software Architecture
Refactoring

In this section, we make use of the refactoring context
to create a framework for software architecture refactoring.
First, we introduce the steps in the refactoring process, from
identifying refactoring context elements to validating the
applied transformations and terminating. We then demon-
strate the approach on a comprehensive example of archi-
tectural refactoring.

4.1. Software Architecture Refactoring Process

Using the elements of the refactoring context and the
multiple soft-goals refactoring from [23], we identify the
following steps in our approach.

Step 1. Identify Soft-Goal Hierarchy
Identify the semantic annotation elements including a
hierarchy of soft-goals. Denote the hierarchy as a soft-
goal interdependence graph (SIG).

Step 2. Identify Architectural Refactoring
Derive a set of candidate architectural refactorings for
the particular architectural view, with soft-goal hierar-
chy as guidance. For instance, apply suitable Fowler’s
refactorings [10] to software models, and identify
those that lead to expected improvements in specific
soft-goals, such as increased performance. Represent
each refactoring as a model transformation rule, with
the source and target patterns, preconditions and post-
conditions constraints, and specific architectural view
to which they are applied.

Step 3. Associate Refactorings with Semantic Heads
Annotate derived refactorings with compatible met-
rics, and compute their values. Use differences in
source and target metric values to establish applicable
soft-goals. For instance, a decrease in a coupling met-
ric would indicate a positive effect on modularity.

Step 4. Select Primary Soft-Goal and Apply Refactorings

Choose the next primary soft-goal based on the

«component»
StudentManagement

«port»
UserInput

«connector»
MethodInvocation

«component»
UserInterface

«component»
AccountManagement

«port»
Output

«role»
Client

«role»
Server

«protocol»
UserData

Obeys

Connection

«port»
MethodInput

Connection

«port»
MethodInput

Connection

«component»
RecordsStack

«component»
RecordsHashTable

Figure 4. Architectural Refactoring Example: Original Configuration

soft-goal hierarchy. Select and apply the refactorings
with the greatest contribution towards the selected
goal. For possible collisions in selection, select the
refactoring with the highest positive effect on the
largest number of soft-goals. Before selecting the
transformation, verify that the preconditions hold,
and before committing the change, validate the
transformation using postconditions.

Step 5. Process Next Soft-Goal or Terminate
If there are still soft-goals that were not addressed, go
to Step 4. Otherwise, report success and terminate.

4.2. Applying the Refactoring Framework

As a demonstrative example, let us consider the follow-
ing case of architectural refactoring of a software system
responsible for management of student accounts in a uni-
versity or college organization (see Figure 4). The sys-
tem contains two main components: StudentManagement
and AccountManagement, reflecting two main use cases for
the system: manage student information, and manage ac-
count information. Both components store their data into
individual, internal databases using internal data compo-
nents: RecordsStack for storing student data, and Record-
sHashTable for storing account data. Under the increasing
loads on the database to retain information about old stu-
dents for up to ten years, and due to increasing needs of the
university to accommodate more students every year, the
performance of the system has degraded significantly.

To improve the performance of the system, it is neces-
sary to replace the internal data components with either an
optimized external data structure component, or a modern
database-management system. Moreover, to improve the
maintainability of the system, it is desirable to decrease
component coupling, and apply a model-view-controller
(MVC) architecture style. Finally, access to both databases
is not controlled, and there is no access authentication. To

improve security, it is desirable to institute role access poli-
cies to alleviate security concerns. To address these goals,
we apply our software architecture refactoring framework.

4.2.1 Step 1. Identify Soft-Goal Hierarchy

From the considered soft-goals, we identify the following
sample soft-goal hierarchy as shown in Figure 5.

As the first soft-goal, we have identified maintainability
— aptitude of the system to undergo maintenance and evo-
lution [1] — based on the combined views of [22]. The
top-level goal of high maintainability is interpreted as high
changeability in the context of this example. We have
further identified two subgoals: high modularity, and low
change complexity, which we have mapped through sub-
goals to corresponding metrics. As a general resource for
metric identification, we have used a metric categorization
from [15]. Specifically for modularity, we have used Cou-
pling Between Object (CBO), as the number of classes to
which a given class is coupled, and Lack of Cohesion on
Methods (LCOM), as the number of disjoint sets of local
methods, metrics that we introduced by Chidamber and Ke-
merer (CK) as part of their CK metrics suite [5].

For the second goal, we have derived performance —
the ability of a system to allocate different computation re-
sources to respond to service requests while satisfying tim-
ing requirements [7] — using the soft-goal graph from [22].
The top-level goal of high performance is interpreted as
high time and high space performance, and mapped through
subgoals to corresponding metrics. Given that the focus
of performance-driven refactoring in this example is the
database system component, we have hence chosen corre-
sponding database performance metrics: number of queries
processed per time unit for low response time, and the
amount of data read per time unit for high throughput [18].

For the third goal, we have identified security — pro-
tection of system data from disclosure, modification, or de-
struction — based on the corresponding security hierarchy

High
Throughput

Low
Response

Time

High Maintainability High Security

High
Changeability

High
Reusability

High
Modularity

Low Change
Complexity

High
Cohesion

Low
Coupling

Low
Complexity

(1) CBO (2) LCOM (3) LOC

High Performance

High Time
Performance

High Space
Performance

High
Confidentiality High Integrity

High
Authentication

High
Encryption

(5) # Queries
per Time Unit

(4) Amount of
Data Read per

Time Unit

(7) Attack
Surface
Metric

(6) Attack
Complexity

Metric

Figure 5. Derived Soft-Goal Graph

[1]. The top-level goal of high security is interpreted as
high confidentiality and high integrity, and mapped through
subgoals to corresponding metrics. For high authentication,
we have chosen attack complexity metric [4], which esti-
mates the complexity of effort invested by attacker to cause
a security breach, including different attack mechanisms.
For high encryption, we have selected attack surface met-
ric [16], which indicates the number of system resources of
selected type available for attack from the outside.

4.2.2 Step 2. Identify Architectural Refactoring

Based on the analysis of the given system, we have iden-
tified desired refactoring actions, and compared them to
Fowler’s classification of source-code refactorings [10]. As
a result of the comparison, we have identified the following
desired transformations for the system:

• (Rule1) Separate Database from Component (see Fig-
ure 6), where a target database component is coupled
and internally contained by its parent. To improve
modularity, this complex transformation (1) removes
the component from the parent, (2) instantiates it as
a new optimized component with an appropriate con-
nector, and (3) reestablishes the connection between
the target and the parent. One of the important precon-
ditions is for the source rule to be correctly matched
against a pattern in the source model to which it is ap-
plied. Based on the stereotypes, a pattern of two com-
ponents, a parent that contains a child component, is
identified. However, it is important to apply the pattern
to only those child components that provide database
functionality.

To solve this mapping problem, we have used an
approach to matching model elements using seman-
tic annotations [14]. The matching rules can also
be expressed as OCL constraints on features defined

<<rule>>
Target

<<rule>>
Source

«component»
Parent

«modelRefactoring»
SeparateDatabasefromComponent

«component»
InternalDatabase

«component»
Parent

«component»
DatabaseManager

«port»
DatabaseQuery

«role»
Client

«role»
Server

«connector»
DatabaseAccess

«protocol»
DML

Obeys

Obeys

«port»
QueryInput

«semanticHead»
sh

«precondition»
{Parent component uses internal
data structure to store data}

«postcondition»
{Parent component uses external
data structure to store data}

Figure 6. Separate Database from Component
Rule

<<rule>>
Source

«modelRefactoring»
ConsolidateDuplicateConnectors

«semanticHead»
sh

«role»
InputRoleA

«role»
OutputRoleA

«connector»
ConnectorA

«protocol»
Protocol

Obeys

«role»
InputRoleB

«role»
OutputRoleB

«connector»
ConnectorB

Obeys

<<rule>>
Target

«role»
InputRoleC

«role»
OutputRoleC

«connector»
ConnectorC

«protocol»
Protocol

Obeys

«precondition»
{ConnectorA and
ConnectorB have
equivalent
functionality
and roles}

«postcondition»
{Created ConnectorC
provides equivalent
functionality to
replaced components
and contains
equivalent roles
}

Figure 7. Consolidate Duplicate Connectors
Rule

through a feature map. The source pattern would then
be matched with a location in the applied model only
if the child component of the connector implements
the same feature (i.e., database access). A similar ap-
proach that uses feature models and information re-
trieval techniques was proposed in [20]. However, the
topic of feature mapping and element matching is out
of the scope of this paper, and will be addressed in
more detail in future research.

• (Rule2) Consolidate Duplicate Components / Connec-
tors (see Figure 7), where duplicate components or
connectors are unified into one. To decrease change
complexity by decreasing the size of the system, this
complex transformation (1) identifies functionality-
equal components or connectors, (2) removes the re-
dundant instances, and (3) reconnects the connectors
or components to the now unified component or con-
nector, respectively.

• (Role3) Implement Role Access Policies (see Figure
9), where access to a resource is controlled through a
specific connector that implements a role access pol-
icy. To improve security by increasing the complexity
of attack through authentication, this complex refac-
toring (1) identifies a connector that provides access
to one or more components without role authentica-
tion, (2) creates different roles within the connector
with separate roles and role access policies for each re-
source, and (3) reconnects the connected components
to newly created roles.

4.2.3 Step 3. Associate Refactorings with Semantic
Heads

For each of the defined transformation rules, we now in-
stantiate corresponding semantic heads. For each rule, we
measure values for each of the metrics identified in Step 1.
The results are interpreted as positive, neutral, or negative
effects that each refactoring has on a specific soft-goal.

• For Rule1, we observe (1) a decrease in the CBO met-
ric for the database component from one to zero; (2)
decrease from two to one in the LCOM metric for the
parent of the database component, but no change in
the relative LCOM value since a new component was
created; (3) undeterminable or no significant effect on
the LOC metric; (4 and 5) increase in the amount of
data read per time unit and number of queries per time
unit, by exact values that depend on the optimization
of the new component; (6) increase in the attack com-
plexity metric, since an attacker now cannot access the
database by only compromising the parent component;
and (7) undeterminable or no effect on the attack sur-
face metric, since no additional protection was speci-

fied. The results of the observations are significantly
positive effects on (++) maintainability and (++) per-
formance, and some positive effects on (+) security.

• For Rule2, (1 and 2) no effect on the CBO and LCOM
metric since the connecting protocols did not change
(for CBO) and since only a connector was removed
(for LCOM); (3) decrease in the LCOM metric since a
redundant component was removed; (4 and 5) no effect
on the performance metrics since the individual data
flows did not changes; (6 and 7) no effect on the secu-
rity metrics since no additional protection was speci-
fied. The results of the observations are a positive ef-
fect on (+) maintainability, and no determinable effect
on performance and security.

• For Rule3, (1) no effect on the CBO metric since the
connecting protocols did not change; (2) increase in
the LCOM metric from one to two with addition of an-
other set of local methods for handling the second ac-
cess policy; (3) increase in the LOC metric with code
for handling additional roles and role access policies;
(4 and 5) decrease in the performance metrics since ad-
ditional authentication processing was added; (6) in-
crease in the attack complexity metric by adding au-
thentication; and (7) decrease in the attack surface met-
ric, since resources protected by authentication are not
directly exposed. The results of the observations are
negative (or very negative, depending on specific au-
thentication scenarios) effects on maintainability (-/–)
and performance (-/–), and very positive effects on se-
curity (++).

In the given annotation analysis, we have not focused
on specific metric values but instead on trends in their
change to determine the relations between model refactor-
ings and soft-goals. This approach simulates practical cir-
cumstances, where due to time constraints it may not be
possible to accurately define and apply each metric. More-
over, the analysis of each metric may need to include not
just the trends in the refactoring transformation but also
effects on the system to which the transformation is ap-
plied. Hence, it would be desirable if specific metrics could
be associated as part of UML profiles for specific refac-
toring types (e.g., performance metrics for performance-
improving transformations), and automatically computed
when specific transformations are selected and applied. Ex-
tending profiles with specific metric sets is part of our future
research.

4.2.4 Step 4. (Iteration 1) Select Primary Soft-Goal
and Apply Refactorings

In this first iteration of applying selected refactorings, we
use modifiability as our primary soft-goal. From Step 3, re-

«component»
StudentManagement

«port»
UserInput

«connector»
MethodInvocation

«component»
UserInterface

«component»
AccountManagement

«port»
Output

«role»
Client

«role»
Server

«protocol»
UserData

Obeys

Connection

«port»
MethodInput

Connection

«port»
MethodInput

Connection

«port»
DatabaseQuery

«role»
Client

«role»
Server

«connector»
DatabaseAccess

«protocol»
DML

Obeys

Obeys

«port»
QueryInput

«port»
DatabaseQuery

Obeys

Figure 8. Architectural Refactoring Example:
Intermediate Configuration

lated transformations are Rule1 and Rule2, where Rule1 has
more significant effect on modifiability (++). Therefore, we
apply (1) Separate Database from Component transforma-
tion once, and (2) Consolidate Duplicate Connectors trans-
formation twice (once for duplicate component, and once
for duplicate connector) to achieve improvement in modi-
fiability. The result of applying the three transformations
to the system, without showing intermediate steps for space
consideration, is shown in Figure 8.

4.2.5 Step 4. (Iteration 2) Select Primary Soft-Goal
and Apply Refactorings

In the second iteration, we select performance as our pri-
mary soft-goal. However, we determine that performance
was already significantly improved through the effects of
Rule1. Additional constraints (postconditions) on perfor-
mance metrics could be used to quantifiable verify that this
soft-goal is satisfied.

4.2.6 Step 4. (Iteration 3) Select Primary Soft-Goal
and Apply Refactorings

In the third iteration, we select security as our primary soft-
goal. We determine that security was already addressed par-
tially through the effects of Rule1. From Step 3, we now
identify Rule3 as having significant effect on security (++),
and we apply it to the configuration from Figure 8. The re-
sulting structure after applying this rule is shown in Figure
10.

<<rule>>
Source

«component»
AccesstoResourceA

«modelRefactoring»
ImplementRoleAccessPolicies

«semanticHead»
sh

«role»
GenericRole«precondition»

{GenericRole provides
unrestricted access
service to both
InputPortA and
InputPortB}

«postcondition»
{RoleA and RoleB provide
role-restricted access
to InputPortA and
InputPortB, respectively
} «component»

AccesstoResourceB

«port»
InputPortA

«port»
InputPortB

<<rule>>
Target

«component»
AccesstoResourceA

«role»
RoleB

«component»
AccesstoResourceB

«port»
InputPortA

«port»
InputPortB

«role»
RoleA

Figure 9. Implement Role Access Policies
Rule

4.2.7 Step 5. Process Next Soft-Goal or Terminateg

Since all of the primary soft-goals were address, we declare
success with the final configuration shown in Figure 10, and
terminate.

«component»
StudentManagement

«port»
UserInput

«connector»
MethodInvocation

«component»
UserInterface

«component»
AccountManagement

«port»
Output

«role»
Client

«role»
StudentAccess

«protocol»
UserData

Obeys

Connection

«port»
MethodInput

«port»
MethodInput

«role»
AccountAccess

«port»
DatabaseQuery

«role»
Client

«role»
Server

«connector»
DatabaseAccess

«protocol»
DML

Obeys

Obeys

«port»
QueryInput

«port»
DatabaseQuery

Obeys

Figure 10. Architectural Refactoring Example:
Refactored Configuration

5. Conclusions and Future Research

In this paper, we have presented an approach to
refactoring of software architecture artifacts using model
transformations and semantic annotations related to sys-
tem quality improvements. We have defined a generic
refactoring context using UML 2.0 profiles, including

<<semanticHead>> stereotype for denoting semantic an-
notations. We have also instantiated a profile for the con-
ceptual architecture view, as an example of a unified method
for representing different architectural view notations. Fi-
nally, we have used the refactoring context and the concep-
tual architecture view profile to define specific refactoring
transformations.

In future research, we plan to extend the framework by
applying it to more complex case studies. The extensions
will address additional semantic elements for representing
individual model annotations to allow more precise trans-
formation rule expression, and quantification through met-
rics of the quality improvements presented in SIGs. We also
intend to apply the approach to refactoring of other software
artifacts, including software requirements and concrete de-
sign, and define specific UML profiles for different artifact
views.

6. Acknowledgements

This work is supported and performed in collaboration
with the IBM Canada Ltd. Laboratory, Center for Advanced
Studies (CAS) in Toronto.

References

[1] M. Barbacci, M. Klein, T. Longstaff, and C. Weinstock.
Quality attributes. Technical Report CMU/SEI-95-TR-021,
Software Engineering Institute (SEI), Carnegie Mellon Uni-
versity, Pittsburgh, PA, December 1995.

[2] S. Berner, M. Glinz, and S. Joos. A classification of stereo-
types for object-oriented modeling languages. In Proceed-
ings of the Second International Conference on The Uni-
fied Modeling Language (UML 1999), Fort Collins, CO, Oct
1999.

[3] I. T. Bowman, R. C. Holt, and N. V. Brewster. Linux as a
case study: Its extracted software architecture. In Proceed-
ings of the International Conference on Software Engineer-
ing (ICSE 1999), Los Angeles, CA, May 1999.

[4] S. Brocklehurst, B. Littlewood, T. Olovsson, and E. Johsson.
On measurement of operational security. In Proceedings of
the Annual Conference on Computer Assurance, 1994.

[5] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object-oriented design. IEEE Transactions on Software En-
gineering (TSE), 20, 1994.

[6] L. K. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-
Functional Requirements in Software Engineering. Kluwer
Publishing, 2000.

[7] P. Clements, R. Kazman, and M. Klein. Evaluating Software
Architectures: Methods and Case Studies. Addison-Wesley,
Indianapolis, IN, 2002.

[8] K. Czarnecki and S. Helsen. Classification of model trans-
formation approaches. In Proceedings of the 2nd OOPSLA
Workshop on Generative Techniques in the context of Model
Driven Architecture, Anaheim, CA, Oct 2003.

[9] T. Fischer, J. Niere, L. Torunski, and A. Zndorf. Story dia-
grams: A new graph rewrite language based on the unified
modeling language. In Proceedings of the 6th International
Workshop on Theory and Application of Graph Transforma-
tion (TAGT 1998), Paderborn, Germany, Nov 1998.

[10] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, Upper Saddle River, NJ, 2000.

[11] W. Heaven and A. Finkelstein. Uml profile to support re-
quirements engineering with kaos. Software, IEE Proceed-
ings, 151(1), Feb 2004.

[12] C. Hofmeister, R. Nord, and D. Soni. Applied Software Ar-
chitecture. Addison-Wesley, Reading, MA, 2000.

[13] I. Ivkovic and K. Kontogiannis. Tracing evolution changes
through model synchronization. In Proceedings of the 20th
IEEE International Conference on Software Maintenance
(ICSM 2004), Chicago, IL, Sep 2004.

[14] I. Ivkovic and K. Kontogiannis. Towards automatic estab-
lishment of model dependencies. Accepted to the Interna-
tional Journal of Software Engineering and Knowledge En-
gineering (IJSEKE), Sep 2005.

[15] S. H. Kan. Metrics and Models in Software Quality Engi-
neering. Addison Wesley, Boston, MA, 2003.

[16] P. Manadhata and J. M. Wing. An attack surface met-
ric. Technical Report CMU-CS-05-155, School of Com-
puter Science, Carnegie Mellon University, Pittsburgh, PA,
Jul 2005.

[17] T. Mens. A survey of software refactoring. IEEE Transac-
tions on Software Engineering (TSE), 30(2), Feb 2004.

[18] B. B. Mortensen. Beyond response time: Detailed database
performance analysis. Master’s thesis, University of Copen-
hagen, 2004.

[19] W. Opdyke. Refactoring: A Program Restructuring Aid in
Designing Object-Oriented Application Frameworks. PhD
thesis, University of Illinois at Urbana-Champaign, 1992.

[20] I. Pashov, M. Riebisch, and I. Philippow. Supporting archi-
tectural restructuring by analyzing feature models. In Pro-
ceedings of the Eighth European Conference on Software
Maintenance and Reengineering (CSMR04), Tampere, Fin-
land, Mar 2004.

[21] C. Riva, P. Selonen, T. Syst, and J. Xu. Uml-based re-
verse engineering and model analysis approaches for soft-
ware architecture maintenance. In Proceedings of 20th IEEE
International Conference on Software Maintenance (ICSM
2004), Chicago, IL, Sep 2004.

[22] L. Tahvildari and K. Kontogiannis. A software trans-
formation framework for quality-driven object-oriented re-
engineering. In Proceedings of the IEEE International Con-
ference on Software Maintenance (ICSM 2002), Oct 2002.

[23] Y. Yu, J. Mylopoulos, E. Yu, J. C. Leite, L. L. Liu, and
E. D’Hollander. Software architecture styles as graph gram-
mars. In Proceedings of the The First International Work-
shop on REFactoring: Achievements, Challenges, Effects
(REFACE 2003), Victoria, Canada, Nov 2003.

[24] T. Ziadi, L. Helouet, and J. Jezequel. Towards a uml pro-
file for software product lines. In Proceedings of the 5th
International Workshop on Software Product-Family Engi-
neering (PFE 2003), Siena, Italy, Nov 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

