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Abstract

Software models evolve at different levels of abstraction,
from the requirements specification to development of the
source code. The models underlying this process are related
and their elements are usually mutually dependent. To pre-
serve consistency and enable synchronization when models
are altered due to evolution, the underlying model depen-
dencies need to be established and maintained. As there is
a potentially large number of such relations, this process
should be automated for suitable scenarios. This paper in-
troduces a tractable approach to automating identification
and encoding of model dependencies that can be used for
model synchronization. The approach first uses association
rules to map types between models and different levels of
abstraction. It then makes use of formal concept analysis
(FCA) on attributes of extracted models to identify clusters
of model elements.
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1. Introduction

As software evolves, its main constituents, from more
abstract ones such as business workflows to very specific
ones such as source code, also evolve. The problem with
this behavior is in its complexity, that is, concurrently and
systematically updating all of the software models as some
of them change. This complexity is inherent and twofold.
First, models from different stages of development are cre-
ated by different stakeholders (e.g., source code is created
by developers, architectural design documents are created
by software architects) with differing rationale in mind.
Second, the models that are created can differ greatly; they
can be at significantly different levels of abstraction and
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they can exhibit varied levels of expressiveness and seman-
tics.

We have previously proposed and discussed this problem
in a form of a framework for incremental model synchro-
nization titled mSynTra [6, 14, 5]. Our framework follows
the Model-Driven Software Evolution (MDSE) paradigm
that is based on the theory of Model Driven Architecture
(MDA) [8, 9]. Within this framework, each change in soft-
ware is made on a model at a particular level of abstraction
within an iterative and incremental lifecycle such as the Ra-
tional Unified Process (RUP) [4]. To restore consistency
between models after changes are made, transformations
applied to one model are traced and recorded. Using iden-
tified model dependencies, the transformation trace is then
translated and applied to all affected models. Model depen-
dencies play a crucial role here, as they indicate what mod-
els and what model elements are effected and might need
to be changed to reflect a traced transformation. The syn-
chronization process is in the end validated and terminated
based on predefined equivalence relations.

In this paper, we aim to further extend the mSynTra
framework and define a basis for systematic identification
and establishment of dependencies among related models.
We propose the use of formal concept analysis (FCA) [3]
as an apparatus for identification of clusters of objects that
share common attributes. We view models and model ele-
ments as top-level objects that possess certain attributes. As
an attribute logic for mapping attributes from different con-
text (i.e., metamodels), we introduce an idea of attribute
association rules. These rules are defined at two levels: at
the metamodel level, where mappings between types are de-
fined; and at the model level, where mappings between at-
tributes and related annotations are defined.

To identify the semantic and abstraction-level differ-
ences, we also discuss the process of model extraction,
where related metamodels are first refined to enable a more
direct mapping between their types. These altered meta-
models are then used as a basis to extract intermediate mod-
els that are less semantically different and that are more



suited for establishment of model dependencies.
As an example of applicability and validity of our ap-

proach, we present a case study of establishing dependen-
cies between Business Process Models (BPMs) (i.e., busi-
ness workflows that include processes, tasks, decisions,
etc.) and the underlying source code (i.e., Java and Enter-
prise Java Beans (EJB)) that is used to enact represented
functionality.

The rest of the paper is organized as follows. Section
2 shows how our research relates to previously published
results in the area of software reuse and hierarchical data
management. Section 3 introduces our framework for iden-
tification and establishment of model dependencies using
FCA including the discussion of our approach to model ex-
traction. Section 4 presents a case study that demonstrates
the use of this framework in practice. Finally, Section 5
presents the conclusions and directions for future research.

2. Related Research

In the area of software reuse, Engels et al. in [1] have dis-
cussed the transformation of Unified Modelling Language
(UML) Class Diagrams and UML Collaboration Diagrams
[10] into Java code. They have shown how to deal with
both the structural and behavioral (e.g., flow) mapping prob-
lems between UML and Java using a pattern-based trans-
formation algorithm. The pattern used is an instance of a
metamodel from which one can identify parts of the source
diagram that is to be transformed. The pattern-based ap-
proaches depend on a predefined set of patterns that is not
trivial to extract and that has to be updated as new pat-
terns are introduced. Rich and Willis have used subgraphs
to recognize program design [11] while Spanoudakis and
Constantopoulos have used a distance metric as a similarity
measure to evaluate reuse potential of chosen artifacts [13].
In the area of hierarchical data management, Gianolli and
Mylopoulos describe a semantic approach where XML data
stores are mapped based using a common DTD schema [12]
while Faid et al. discuss how to use formal concept analysis
to discover concepts and rules from structured complex ob-
jects [2]. In our approach, we consider semantic mappings
of types from complex hierarchical data structures using in-
termediate models but we also address the problem of infer-
ence of relations between individual model elements based
on the mappings of related attributes.

3. A Framework for Establishing Model
Dependencies using FCA

In this section, we introduce our framework for estab-
lishing model dependencies using the theory of formal con-
cept analysis (FCA). As a part of the framework, we de-
scribe our approach to model extraction that is used to stem

the semantic and abstraction-level differences between re-
lated models. We also describe several attribute transfor-
mation techniques for establishing associations between at-
tributes that belong to different metamodels

This framework is presented within the context of our
mSynTra framework (Figure 1). Hence, its steps are (1)
definition metamodels, (2) extraction of intermediate mod-
els, (3) definition of dependency rules and establishment of
model dependencies based on those rules, and (4) validation
of established dependencies.
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Figure 1. mSynTra Framework

We shall demonstrate the usage of this framework in our
case study (Section 4) in the process of bridging the se-
mantic and abstraction-level differences between BPMs and
Java source code.

3.1. Defining Metamodels

For two models or sets of models that are to be synchro-
nized, it is first necessary to abstract and represent model
syntactics and semantics in a format of corresponding meta-
models or otherwise referred to as domain models. Gener-
ally, such metamodels are already available as part of the
design documentations but in some cases they have to be
extracted using a suitable domain-analysis technique, such
as Feature-Oriented Analysis Technique (FODA) [7].

The resulting domain models should be accurate repre-
sentations of the type and format of information represented
in their respective models (e.g., software design information
based on UML syntax), and should be stored in a format that
can be easily accessed and manipulated such as XML.

3.2. Extracting Intermediate Models

The relations between models are expressed either at the
metamodel or at the model level, where the higher-level re-
lations are used to infer the more specific ones. Establishing



relations at the metamodel level includes identification and
encoding of properties and features that are mutually depen-
dent. These relations are then used as a basis to establish
specific relations among models or among model elements.

For models that are based on different metamodels, es-
tablishing meaningful relations between model elements
includes identifying differences in model semantics and
underlying abstraction levels. We propose to overcome
this problem by generating intermediate models, which are
more closely related and for which the process of establish-
ing model dependencies is simplified.

We base our approach on a technique for model-driven
business process recovery [15], which deals with synchro-
nization of business workflows and the enacting source
code, and we extend this technique so that it can be used
within our mSynTra framework. Hence, we interpret the
process of model extraction as follows: (1) for two models
M and G and their respective metamodels MM and MG,
analyze the metamodels and recognize compatible struc-
tural properties (e.g., compatible events, metaclasses, data
types); (2) refine MM and MG into MM ’ and GM ’ by
omitting, grouping or breaking up incompatible properties
(e.g., metaclasses that cannot be mapped); and (3) useMM ’
andMG’ as schemas to extract M’ and G’ from M and G.

3.3. Applying FCA to Extract Model Dependencies

Depending on the type of information (e.g., structural,
behavioral, temporal) that is stored in the two models that
have to be synchronized, the amount of data available for
and the complexity of the mapping can differ significantly.
Moreover, depending on the information type, the level of
precision of the established relations also differs. For exam-
ple, mapping behavioral and structural properties together
would make more data available for the mapping but would
increase the complexity of the mapping process when com-
pared to mapping only structural properties.

In this paper, we focus on mapping a particular set of
structural and behavioral properties based on our case study
of mapping business workflows to underlying source code.

Within mSynTra, our conceptual view of all MOF-
compliant models used during the course of software evolu-
tion is as directed, labelled, attributed graphs. In this view,
all graph properties are expressed in terms of labels and
“attribute and value” pairs for individual nodes and edges.
All models also comply with their respective metamodels,
and their element types conform to corresponding meta-
classes. We also presume that models at a particular level of
abstraction (e.g., design, architecture) representing a soft-
ware from a particular domain (e.g., accounting, database
management) would be based on stable feature and domain
models, and would have convergent vocabularies and on-
tologies. Hence, within our approach to identification of

model dependencies, we would identify individual relations
starting at the level of matching metaclasses, then proceed
to match features and domain models, to finally match in-
dividual elements based on mappings of related vocabular-
ies and ontologies. If a dependency for a particular element
cannot be found, we would prompt for user’s input and if no
input was provided leave the dependency as undetermined.

As an apparatus for identifying and establishing model
dependencies, we apply the theory of formal concept anal-
ysis as defined in [3].

Context:

Concept Lattice:

Association Rules:

a1 a2 a3 a4
O1 x x x
O2 x x
O3 x
O4 x x

a2

a4
a1

a3
O3

O4

O1

O2

1 <2> a4 => a2;
2 <1> a3 => a1;
3 <1> a1 a2 => a4;

Figure 2. FCA Example

From this theory, a formal context K := (G, M, I) consists
of two sets G and M and a relation I between G and M.
The elements of the set G are called the objects and the
elements of the set M are called the attributes of the context.
To express that object g from G is in a relation I with an
attribute m from M, we write this as gIm and read it as ”the
object g has the attribute m. Hence, the relation I is also
called the incidence relation of the context K. [3]

We utilize this definition and interpret metamodels as
contexts MM := (G, M, I) that consist of a set of meta-
classes/types G, a set of related attributes M, and a set of
relations I that define associations between the types and
the attributes. We also interpret models as contexts M :=
(H, N, J) that consist of a set of model elements H, a set of
attribute values N, and a set of relations J that represent the
mapping of types and attributes of model elements instan-
tiated from respective metamodels to corresponding values
in N. We also define metamodelMM as a metacontext for a



model/context M that is instantiated fromMM . As we are
limiting our approach to binary contexts only, we map nary-
to-binary relations through combinatorial scaling of format
(o, ∅), (o, v1), (o, (v1 ∧ v2)), ... (o, (v1 ∧ v2 ∧ ... ∧ vn))
where o is an object and v1, v2... are n possible values.

To define a concept, we again follow the FCA theory.
Hence, it holds that for a set A ⊆ G of objects, let us define
A’ := {m ∈ M | gIm for all g ∈ A}, as the set of attributes
common to the objects in A. Also, for a set B ⊆ M of at-
tributes, let us define B’ := {g ∈ G | gIm for all m ∈ B}, as
the set of objects which have all the attributes in B.

A formal concept of the context (G, M, I) is a pair (A,
B) with A ⊆ G, B ⊆M, A’ = B and B’ = A, where A is the
extent and B is the intent of the concept (A, B).

An implication between attributes in M is a pair of sub-
sets of the attribute set M denoted A → B, which corre-
sponds to informal statement that every object with the at-
tributes in A also has the attributes in B. The concept lattice
can be inferred from implications between attributes as in
Figure 2. [3]

We refer to the rules for defining associations between
attributes of different contexts as attribute association rules.

To define our dependencies between models more for-
mally, let M and G be two models/contexts at differ-
ent levels of abstraction with corresponding metamod-
els/metacontexts MM and MG. Let OM and OG be the
objects stemming from these models and let AM and AG

be the attributes contained within those models, let AMG

:= {aM , aG | aM ⊆ AM ∧ aG ⊆ AG where aM ⇒ aG}
be a set of related attributes from AM and AG. The at-
tribute logic for defining attribute associations aM ⇒ aG

of attributes from different contexts is defined as a set Dr

of attribute association rules (i.e., dependency rules in the
mSynTra framework).

For nonempty sets OM ’ ⊆ OM and OG’ ⊆ OG of ob-
jects, let AMG’ := {m ∈ AMG | g1Im ∧ g2Im for all g1 ∈
OM ’ ∧ all g2 ∈ OG’}, as the set of attributes common to the
objects in OM ’ and OG’. Also, for a nonempty set AMG’
⊆ AMG, let BMG’ := {g1 ∈ OM ∧ g2 ∈ OG | g1Im ∧ g2Im
for all m ∈ AMG’}, as the set of objects which have all the
attributes in AMG’.

An inter-context concept of two contextsMM andMG

is a set (OM ’, OG’, AMG’) with OM ’ ⊆ OM , OG’ ⊆ OG,
AMG’ ⊆ AMG, and BMG = (OM ’ ∪ OG’).

Finally, a model dependency is an element d of a set
D (i.e., dependencies in the mSynTra framework) of inter-
context concepts for models M and G that have associated
attributes.

Establishment of model dependencies involves: (1) iden-
tifying a set of related AMG attributes from AM and AG;
(2) selecting and encoding corresponding attribute associa-
tion rulesDr; (3) extracting inter-context concepts using at-
tribute association rules as relations between attributes; and

(4) refining the extracted concepts by excluding the ones
that are irrelevant (e.g., include only the objects from one
context) or that are redundant (e.g., equivalent association
results based on different sets of attributes).

Attribute Association Rules
Using an assumption that individual contexts based on

particular domains would exhibit stable properties (e.g., fea-
ture maps, ontologies), the attribute association rules can be
viewed as functions that map recognized properties between
attribute with the goal of determining they are related.

The rules can be classified as follows:

Hierarchical Association Models are viewed as parts of
broader model hierarchies and corresponding feature
maps are extracted. Based on the feature mapping, the
two types of associations are recognized: direct (e.g.,
a model implements a particular feature) or implied
(e.g., a model implements a subfeature of a higher-
level feature).

Type-Based Association Metaclasses defined in meta-
models are matched based on structural compatibility,
and the association rules are created following these
mapping. Additional rules are added for recognized
compatible data types.

Spatial Association Parts of the flow in behavioral mod-
els are represented as attributes (e.g., element A pre-
cedes element B) and the associations are established
between the attributes using type-based associations
for resolving element or data type mappings.

Text-Based Association Attributes are viewed as strings
of text. The potential syntactic differences are aug-
mented through techniques such as thesaurus replace-
ments — recognizing different synonyms, stemming
— reducing each word to its root (e.g., allocation, allo-
cated, allocating to allocat), abbreviation expansion —
expanding recognized abbreviations,stop-word elimi-
nation — eliminating words with no semantic mean-
ing, word-matrix matching — recognizing clusters of
attributes that share semantically-relevant words, and
nGram matching — substring matching irrelevant of
position based on substrings of n size.

The given rules are not domain specific nor do they ex-
hibit properties that are related to a particular domain. Cre-
ating rules that are domain specific is implausible with re-
gards to their updating and expansion as it requires exten-
sive domain analysis that might have to be repeated every
time the underlying contexts are changed.



Attribute Association Rules in Practice
The conflict resolution for objects that belong to more

than one cluster is achieved through scoring, where the
number of cluster matches for any two objects represents
the score and the match is selected through the process of
maximizing that score. We also note that matches are tu-
ples and not only pairs, so that the relations between ob-
jects can be one-to-one, one-to-many, and many-to-many.
Hence, where there is more than instance of a match with a
maximum score, established dependency tuple would con-
tain all of the related objects from all of the instances that
exhibit the maximum score.

3.4. Validation of Established Dependencies

Validation of established dependencies can be auto-
mated, if there exists a set of previously encoded dependen-
cies in a suitable format such as XML, or semi-automated,
if no encoded dependencies exist and if developers and do-
main experts need to be queried for feedback. If the pre-
cision and recall levels obtained through validation are not
satisfactory, several categories of changes can be applied to
improve the overall results such as (1) including or exclud-
ing particular attribute association rules, (2) changing im-
plied attribute mappings and object granularity levels, and
(3) modifying threshold levels and other input parameters.

4. Case Study: Establishing Dependencies
between BPMs and Java Source Code

In our case study we are dealing with an industrial size
system that consists of a hierarchy of business process mod-
els (i.e., business workflows)and is enacted through a corre-
sponding set of Java and EJB source code. Through domain
analysis and discussion with developers, we found out that
business workflows were in some cases created based on
the information flow from the source code but were in most
cases built independently. We also found that design doc-
umentation specifying the mapping between the two was
incomplete and out of date, and that the precise dependen-
cies between the two sets were implied and only known by
developers and architects who worked on the system.

Our goal in this case study was to assist in the process
of systematically propagating change in both directions be-
tween business workflows and the source code. However,
before that could be accomplished, we first needed to iden-
tify and establish dependencies among those models that
were related.

4.1. Recovering Intermediate Models

This part of the process had two parts: simplifying and
annotating the BPMs, and abstracting and annotating the

source code models. We implicitly include the creation
of corresponding metamodels, as the preface to creation of
suitable intermediate models.

The simplification of the BPMs included the following:
(1) analysis of the business workflows represented in XML,
with identification of a simplified metamodel of objects and
attributes that have meaningful representation in the source
code; (2) augmentation of the metamodel with the annota-
tion attributes for those elements for which additional infor-
mation is available (e.g., notes explaining the meaning and
the usage context of particular workflow elements); and (3)
automatic extraction of the XML files based on the anno-
tated metamodel from the original BPM XML files.

The abstraction of the source code included the fol-
lowing: (1) analysis of the source code files and extrac-
tion of a suitable metamodel of source code elements that
have meaningful representation in the business workflows;
(2) augmentation of the metamodel with the annotation at-
tributes for those elements for which additional information
is available (e.g., top-level comments, comments proceed-
ing methods or individual statements); and (3) automatic
extraction of the XML files based on the annotated meta-
model from the source code files. More details about the
source code abstraction process are available in [15].

4.2. Extracting Dependencies using FCA

Based on the refined metamodels, we then proceeded to
apply the FCA to identify and establish model dependen-
cies. The first step in this process was creation of attribute
association rules and definition of corresponding FCA clus-
ters.

On the BPM side at the metamodel level, in addition to
type-based association rules, we have also made use of the
fact that business workflows are part of an overall workflow
hierarchy to create hierarchical association rules. On the
source code side, we could not establish hierarchical rela-
tions and at the metamodel level we have only established
type-based associations. At the model level, we have identi-
fied compatible attributes and annotations, and have defined
a suitable set of spatial and text-based associations through
experimentation on a selected (through domain analysis) a
set of workflows and related source code. Figure 3 shows
our mapping of the BPM and the source code attributes and
properties.

4.3. Validating Extracted Dependencies

The extracted dependencies could not be validated auto-
matically, as the previously established relations were not
accurate nor complete. Therefore, we have included feed-
back from system developers and architects as part of our
validation, and have performed several iterations of feed-



comparing Business Flow Source Code
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Figure 3. Attribute and Property Mappings

back solicitation and refinement. The initial approximated
recall levels that were obtained show a gradation of re-
sults that stem from almost perfect scores for our training
data set, which represents 0.15 of the complete data set,
0.8 for the average case, which represents approximately
0.60 of the complete data set, to approximately .60 in the
worst case, which represents 0.25 of the complete data set.
The differences in scores depend on several factors such
as the experienced attrition of information when clustering
less BPM-specific source code elements, the lack of confor-
mance of workflows to source code flows in certain subsets,
the fact that certain workflow and source code subsets were
not synchronized etc. We have measured recall based on the
top results of our matching process and have not enforced
the conflict resolution rules based on the feedback received
from the developers.

5. Conclusions and Future Research

In this paper, we have presented a framework for estab-
lishing model dependencies using formal concept analysis.
We have described the steps in this approach including cre-
ation of metamodels, extraction of intermediate models, ap-
plication of the formal concept analysis to extract model de-
pendencies, and validation of the established dependencies.
We have also discussed in some detail attribute association
rules that can be used to infer relations between attributes
from different contexts. Finally, we have demonstrated the
usage of our approach by applying it to an industrial case
study of synchronization of business process models with
enacting Java source code.

In future research, we intend to further investigate the
suitability of this approach by applying it to different case
studies that relate to different stages of the software devel-
opment lifecycle. For example, we intend to specifically
investigate the synchronization of UML design diagrams
with as-designed or as-implemented software architectures

in one direction or with the underlying source code in an-
other. This work is performed in collaboration with the
IBM Canada Ltd. Laboratory, Center for Advanced Stud-
ies (CAS) in Toronto.
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