

Semantic Web Data Description and Discovery

 Michael Ryan Bannon Kostas Kontogiannis
 Department. of Electrical & Department. of Electronics &
 Computer Engineering Computer Engineering
 University of Waterloo Technical University of Crete
 Waterloo, ON, N2L 3G1, Chania, 73100
 Canada Greece
 mrbannon@swen.uwaterloo.ca, kkontog@softnet.tuc.gr

Abstract
Currently we are experiencing the emergence of the

fourth

generation of the World Wide Web which is geared

towards service and data provision using semantic and
ontological information. Specifically, the objective is for
data available on the web to be described, retrieved, and
used using semantic and contextual information. This
paper presents a framework that allows such a
polymorphic service provision through the introduction of
user personas, semantic data descriptions that extend the
WSDL and the UDDI protocols. In this way, web data
content is associated at run-time with different services
and presentation manifests, according to the context and
the environment it is invoked and used in. The framework
and its associated architecture have been implemented in
a prototype system that utilizes Web Services technology.

1. Introduction

The World Wide Web has evolved from a collection of
interlinked static pages to a dynamic environment
whereby services and data can be registered, discovered,
selected and invoked in a seamless fashion. The latest
evolutionary pattern that is taking shape in the area of
Web technologies is the use of semantically enriched
information that allows for customizable service and data
provision in Web enabled environments. Over the past
couple of years we are experiencing the emergence of
new publish/subscribe protocols for Web Services. These
include the Web Services Description Language (WSDL)
[17], [19], the Universal Description Discovery, and
Invocation (UDDI) [18], and the Business Process

Enactment Language for Web Services (BPEL4WS), to
name a few. However, very little work has been reported
on the use of ontological information that would assist,
first to associate contextual information with the offered
services, and second to dynamically bind data with
services according to the environment they are invoked
and used in.

The most current related work in semantic data modeling
has been conducted within the framework of
DAML+OIL, DAML-S [25] and the Web Ontology
Language (OWL) [4]. Each of these approaches uses RDF
[3], a subject-verb-object relation language, at its core.

Our research addresses the Semantics level of
Information System integration. As Web Services provide
the potential to revolutionize the world of service
integration, the promise of wrapping legacy systems with
standardized, source-independent, data-centric interfaces
makes the IT community to invest significant research
efforts towards this objective. This data centric service-
based platform is however, still fairly immature and a
strategy for successful context aware Web Data and
Service deployment has yet to be fully realized. As a step
towards the definition of a framework for the transparent
deployment and integration of software applications, this
paper presents a reference architecture that supports
robust enterprise level system integration using web
services technology. In particular, we propose a
framework by which data can be considered as a form of
an extended Web Service. Specifically, we present an
extension to the WSDL to specify contextual and run time
properties of Web data. We refer to this extension as the
Web Data Description Language (WDDL), which allows
for the definition of a finite set of semantic data schemas.

This language also compliments a semantic data
description repository, that we refer to as the Universal
Data Description Discovery and Integration (U3DI)
server, based on the Universal Description Discovery and
Integration (UDDI) initiative. The purpose of the U3DI
server is to store semantic and functional information for
a Data-As-Service offering the distribution of semantic
data as a service. The above concepts are supported by a
metamodel that denotes the necessary entities and
relations to realize such a context and persona-aware data
and service provision. The rest of the paper is organized
as follows. Section 2 presents related work. Section 3
presents the overall system architecture, while Section 4
discusses the WDDL, and U3DI models. Section 5
illustrates experimental results obtained from a prototype
implementation of the system. Finally Section 6
concludes the paper and presents some future work.

2. Related Work

Much of the work presented in this paper is centered on
the concept of the Semantic Web [1]. The Semantic Web
is an evolution of the World Wide Web that is given
additional markup using ontological technologies for the
purpose of allowing web data and services to be
“understood” by machines. The rest of this section
presents technologies and research that relates with the
concept of the Semantic Web and personalized web
spaces

The Simple HTML Ontology Extensions language, or
SHOE, is one of the earliest technologies developed for
the semantic web, developed by the Parallel
Understanding System Group in the Department of
Computer Science at the University of Maryland [2].
SHOE draws from an ongoing line of research based on
knowledge representation and ontologies to allow
semantic markup within existing HTML documents. The
Resource Description Framework, or RDF [3], is an XML
language that allows an author to describe metadata in a
relational manner. RDF offers a subject/predicate/object
formalism for defining a relationship by relating a subject
to a value, or object, via a provided predicate. RDF is the
basis for work done in DAML+OIL and OWL. Similarly,
the DARPA Annotated Markup Language, or DAML, is
an extension of RDF that allows RDF relationships to be
associated with semantic ontologies. The Web Ontology
Language, or OWL, is yet another realization of a
language for implementing the semantic web [4].

 In the area of Software Engineering, Laddad describes
the concept of aspect-oriented programming (AOP) in [5].
Aspect-oriented programming allows orthogonal objects -
each representing a mutually independent goal -to

integrate with each other in order to satisfy a larger, more
complete goal. AOP is considered relevant to this work in
reference to the use of roles and role models. Role models
define usage patterns among particular objects; roles are
those patterns that are singluar instances of the given
model. The use of AOP in role models has been
investigated in [6]. Moran and Dourish describe the idea
of context-aware computing in [7]. Essentially, context-
awareness is an abstract notion of awareness with respect
to physical and social situations. This overlaps with the
idea of contexts in this paper.
Hong proposes an infrastructure and language for
representing contexts in [8]. In it, he offers the logical
context datamodel as a type of semantic net with
aggregates that relate multiple entities together as
contexts. This relates with the concept of a Persona
presented later in this paper.

Theodorakis et al. present a language for specifying a
context within an information base [10]. Their work,
based on [9] and [11], describes a language framework
that denotes a context as a conceptual entity that may
contain other contexts or simple objects (i.e. those objects
that are not contexts). Complementary to the above an
important aspect of recent web technology is the ability
for systems to be automatically reactive. That is, given
some scenario, a system must have the capacity to take
actions based on the conditions of that scenario relative to
a predetermined set of rules.

Paton and Diaz offer a survey of active database system
research [12]. Event-condition-action (ECA) rules are an
important addition to the idea of polymorphic data within
an active database. A large amount of work has been done
regarding event notification. Bailey et al. offer an ECA
language based on XML in [13]. They further go on to
analyze the behaviour of such a language, stating that not
enough work has been done to satisfy behavioural
analysis.
Kiyomitsu et al. propose ECA rules for web
personalization in [14]. Specifically, they use XML-based
ECA rules to personalize web page content, taking into
consideration the logical and physical location of the user,
user history relative to the page, and known behaviour of
the user. This adds another dimension to reactive web: not
only is the system reactive to the data, but also to the
profile of the individual accessing the data.

Bonifati et al. offer an argument for the use of XML-
based technology to “push” active rules to existing XML
repositories [15].

Figure 1. High level system architecture

Finally, there is a wealth of emerging technologies that
can be used to support the implementation and
deployment of the related work presented above. These
include Jena, a toolkit developed by the HP Labs
Semantic Web Programme [26], SOAP, UDDI, WSDL,
and BPEL4WS [16], [24], [25]. In the following section
we present the proposed system architecture and its
supporting meta-model.

3. System Architecture

The architecture of the system is comprised of several
components. These include the User Mobile Device
(UMD), the Gateway, the XML Database (XML-DB), the
Universal Data Description Discovery and Integration
(U3DI) Repository, the Data Pool, the Data-As-Services
(DAS) module, the Integration Server, and the Universal
Description Discovery and Integration (UDDI) Service
Registry. An overview of the architecture with these
components can be viewed in Figure 1.

3.1 Major System Components

User Mobile Device (UMD)
The UMD represents any type of device that can interact
with the Gateway and also represents an individual user
or a client process in the system. In fact, the UMD does
not necessarily have to be mobile as its name suggests.
The UMD denotes any client device or process whose
purpose is to allow interaction with the system.

Gateway
The Gateway acts as the entry point into the system. The
responsibility of the Gateway is to manage the UMD’s

session on the system. The Gateway is also responsible
for hosting Persona composition duties, interacting with
the XML-DB, routing HTTP requests between the UMD
and the Integration Server and instructing the system to
enact Personas. To accomplish its responsibilities, the
Gateway has direct connectivity with the Data Pool,
Integration Server, XML-DB, U3DI, and UMD.

XML-DB
The purpose of the XML-DB is to store Personas and
Persona components in their XML form. A Persona is a
collection of properties that denote the context in which a
service or data are presented to the client. The XML-DB
receives requests from the Gateway and responds with
XML encoded descriptions of the corresponding Personas
and Persona components that were requested. The XML-
DB is also responsible for compiling full Personas on
request for use by the Gateway.

U3DI
The U3DI repository’s purpose is to encode information
related to Data Items and their associated data sources.
The U3DI repository receives requests for Data Items
from the Gateway and searches for the most appropriate
Data Item given the requirements from the Gateway’s
request. The requirements used for localizing the
appropriate Data Item consist of ontological references,
descriptions of the data’s format, and parameters
regarding the retrieval of the data. These factors along
with the proposed Web Data Description Language
(WDDL) and the U3DI specification are presented in
detail in Section 4.3. As its name suggests, the U3DI
repository is based on the UDDI specification. However,
it may be extended to allow for DNS search capabilities
so that the appropriate data source may be found on
another U3DI server as described by [20]. Similarly
WDDL is proposed as an extension of the WSDL and will
be discussed in more detail in Section 4.2.

DataPool
The Data Pool is meant to store and organize all data
streams that have been published to the U3DI repository
and are meant for use by the Integration Server. It is the
responsibility of the Data Pool to notify the Integration
Server, in the form of ECA events, of any arrival or
change in a data stream. The Data Pool also implements
algorithms to support garbage collection of Data Items
that are no longer needed.

Integration Server
The Integration Server is responsible for integrating Data
Items (from the Data Pool) and the Roles that interpret
those Data Items depending on the user’s Persona. When
a Persona is enacted, the Gateway forwards the Data Item

requests to the U3DI repository and the Roles
(encompassing workflows) to the Integration Server. On

Figure 2. High level Use Cases

receiving the Workflows, the Integration Server will await
those events specified by the loaded Workflows. It is also
the responsibility of the Integration Server to interact with
the web services in question and act as a middle-agent
between those services and the UMD for
requests/response events between the two. In addition, the
Integration Server is similar to the Gateway in that it must
check the integrity of the Workflows it has been sent; the
integrity of a Workflow means that there must exist
knowledge of runtime web services on an available UDDI
repository that match the ServiceClasses specified in the
Workflows.

UDDI Repository
The UDDI repository is acting as a binder that holds
handlers of the available Web services. Much like the
U3DI repository, the UDDI repository uses DNS-like
algorithms to find desired web services if they are not
located at the default UDDI repository [20], [23].

3.2. System Operation and Use Cases

This section conveys the logical system functionality
through UML Use Cases. The high-level view of the
actors and Use Cases is illustrated in Figure 2. The actors
in the Use Cases are the User, Web Service, and Data-As-
Service (DAS). Each provides functionality outside the
domain of the system however, the DAS is discussed in
the following sections. Furthermore, the message

sequencing chart for the high level component interaction
is illustrated in Figure 3.

Figure 3. Message Sequencing Overview

4. System Models

This section presents the metamodel that describes the
concept of a Persona for context aware computing, and
the WDDL and U3DI specification models. A Persona is
an abstract construct that allows a user to associate in a
polymorphic manner online data with different services or
“points of view”. The WDDL model extends the WSDL
specification in the Web Data domain, while the U3DI
extends the UDDI specification to act as a broker for Web
Data content as well.

4.1. Meta Model for Context Aware Data

The user’s perception of the web depends on the Contexts
that are associated with a Persona. A Context is the
abstract definition of what data is to be visible to a user
and how that data is to behave. Technically, a Context is a
container, however, the nature of a Context that defines
data and its behaviour is implicit by containing Data
Items and Roles. In a nutshell, a Persona is part of an
individual’s profile that defines a point of view relative to
the web. A Persona denotes (a) what data is visible to the
user, (b) how that data is semantically interpreted, and (c)

what actions are to occur given the particular values of the
data.

Persona
Aside from containing information regarding a user’s
profile on the system, the Persona describes that user’s
data preferences and how he/she wishes to realize them.
As described earlier, a Persona defines a “point of view”
relative to the web. This is accomplished by defining a set
of Contexts within a Persona.

Context
A Context is an entity that relates semantically described
web data to behaviours that exist as web services. Both
data and associated behaviours are described using
compatible semantic constructs such that a behaviour
defines what data it may operate with, by using the same
semantic descriptors used for the data. Consequently, that
data may behave differently under Context A than in
Context B. A semantically described piece of data is
called a DataItem and the entity that relates behaviour to
DataItems is called a Behaviour. Behaviours are
implicitly contained in Contexts through Roles.

DataItem
A DataItem is an abstract semantic description of data
that the user wishes to view or use. DataItems are
described behaviourally as instances of specific by
DataClasses. Specifications of DataClasses are denoted
using the U3DI model that will be discussed in the next
section.. DataItems have attributes that obtain single,
atomic data values. These attributes are originally defined
in the corresponding DataClasses and are related to a
DataOntology. However, a DataItem obtains ist Attributes
relative to the DataClass that is an instance of.

Role
A Role entity represents a Behaviour set to be associated
with DataItems. If a DataItem represents data in a
Context, a Role represents how that data is to be used.
that is how a Persona should generally act and what
actions to take given the data presented to it.
 A Behaviour is an entity that describes action data
associated with it is to take depending on its value.
Behaviours are implemented as Workflows and described
by ServiceClasses, obtained from a ServiceOntology, that
semantically define what actions can be taken. Behaviours
make up the actions that constitute a Role.

Workflows
An ECA (Event Condition Action) entity represents an
ECA based workflow. Each ECA entity is composed of
multiple rules that describe the logic of the ECA entity
and is associated with a runtime that represents the
grounding of that ECA workflow. Each workflow that is

used in a Role must be associated with those DataItems
that it uses.

Figure 4. Overview of WDDL data requirement contents.

This ensures that those Workflows brought into an
Context will be compatible with the DataItems in the
same Context.
A runtime entity is the service grounding for an ECA
entity. In effect, it represents the actual workflow that is
executable on the web. Every runtime has an associated
WSDL file that describes how that workflow can be
enacted.

4.2. WDDL Specification

The concept of DataItems as presented above is realized
by the Web Data Description Language (WDDL). The
purpose of the WDDL, which has been based on an
amalgamation of concepts in semantic data and database
theory, is to allow a user to quantify the requirements of a
DataItem in a semantic and structural fashion based on
existing OWL ontologies. When a particular DAS has
been found that satisfies the requirements of the provided
WDDL document and that DAS has been queried with the
WDDL document, the DAS returns an instance of the data
that conforms to the requirements of the WDDL. The goal
of the WDDL is to enable a user to expressively describe
the data he/she requires from a DAS by using semantic
constructs and descriptive data requirements. As stated
earlier, semantic description languages have been
proposed in the form of such languages as DAML and
OWL, just to name a few. WDDL stems from the concept
that data can be described semantically and includes the
notion of requirements on data values, the schematic
structure of the data, and conditional statements relative
to the data. In addition to using semantic networks to
accomplish these goals, the concept of AND/OR trees is
used to implement conditional requirements of OWL
classes. Additional work relative to data requirements can
be found in relational databases and soft-goal graphs [21].
Figure 4 illustrates the general contents of a WDDL
semantic data requirement document. A WDDL

document is made up of two pieces: a set of metadata and
the actual requirements, which is broken up into resource
requirements and semantic requirements. The meta-data is
used to provide information such as a description of the
file, who authored the file, and so forth.

Resource Requirements

As stated earlier, a user may define the requirements of
the DAS and associated data sources that would be used
to process the WDDL document and instantiate the
resulting schema, respectively. Such constructs are made
available in the resourceRequirementElement. This
element contains predicate calculus statements that use
predicates of four terms to define the requirements of the
DAS or the data sources.
The calculus used in the resourceRequirement structure is
loosely based on the work done with ConChat [22]. A
first-order predicate Resource is defined with four terms:

Resource(<EntityType>,<Subject>,<Relater>,<Object>)

A Resource predicate relates a <Subject> to an <Object>
with a <Relater> relative to a specific <EntityType>.A
<Subject> is any type of quality parameter, whether it
refers to data quality, service quality, etc. A <Relater> is
any comparison operator and is used to relate the
<Subject> to the <Object>.The <Subject> and <Object>
must be of the same type and the <Relater> must support
that type. The <EntityType> is one of Localizationor Se-
lection, meaning that the predicate relation should be
applied to determining a DAS or choosing the appropriate
data sources, respectively.
The source for the <Subject> term comes from a
predetermined set of quality attributes. This
predetermined set may come from any source as long as
the WDDL document attributes will be understood and
mapped to DAS entities. It is suggested that, in addition to
a DAS publishing OWL ontologies that it uses in its data
descriptions, it also publishes a set of quality attributes
useful for resource descriptions. Some examples of
Resource predicates are security, latency, differential,
reliability, and accuracy.

Semantic Resources

The semantic requirements of a WDDL data requirement
file are implicitly represented in a tree structure. The
structure is analogous to that of an XML schema. In
essence, a user creates a tree that defines a semantic
schema that he/she wishes to receive instances of. The
nodes of the tree are represented as
classReferenceElements. Each classReference logically
represents an OWL class and may contain zero or more

classReferenceElements as associating entities, thus
forming the schematic network structure. In this respect,

Figure 5. U3DI scope and role.

containment means that the XML data instance of a
classReferenceElement will have, as sub-elements, XML
data instances of those classReferenceElements that are
associated of the parent classReference. For example, a
classReference may represent a Car class and has an
association with an Engine class. Thus, XML instances of
the Car class will have, as a subelement, an XML instance
of the Engine class. The XML instances are XML
representations of OWL individuals. To give more
descriptive power to the user, WDDL incorporates
AND/OR trees into its definition by allowing disjunctions.
WDDL uses AND/OR trees to allow
classReferenceElements the ability to define containment
with Boolean expressions.

So far, WDDL has focused on defining the semantic
requirements of conceptual entities by using OWL
ontologies. The conceptual schematic structure will be of
little value if there is no simple data associated with it. In
this respect, simple data refers to data based on simple
types such as strings or integers.

Generally, a client would author a WDDL document that
uses static dataProperties in its dataRestrictionElements
and uses the IncludeAttribute with seperate
dataProperties that are expected to be dynamic. This way,
the client will receive streams of data that may be
constantly changing.

4.3. U3DI Specification

U3DI is based on the Universal Description Discovery
and Integration (UDDI) initiative.

Figure 6. U3DI data structure overview.

UDDI is a repository server that acts as a “white pages”
for web services. A user or automated process can query
the server for the location and link to a full description of
a web service based on parameters relating to how that
service might be accessed and what service it offers,
among other parameters. Our work on U3DI has adopted
the concept of UDDI and altered it to serve specifcally as
a white papers for DAS entities.
Figure 5 illustrates the role of U3DI relative to a DAS.
The U3DI is used to locate DAS entities that may
conform to the WDDL document semantic and resource
requirements. The U3DI cannot determine whether a DAS
is able to provide an instance of the particular WDDL
document. Rather, like UDDI, it acts as a general guide
for discovering DAS entities.

Similarly, Figure 6 illustrates an abstract view of the
U3DI data structures. To summarize, a U3DI contains any
number of DAS publishers. Each DAS publisher
references any number of DAS entity references that
logically represent existence of a DAS entity. A DAS
entity reference, in turn, references any number of OWL
classes.
As stated earlier, a U3DI stores information on any
number of DAS Publishers. A DAS Publisher is
represented in XML as the dasPublisherElement.

Each dasEntityElement has a unique
dasEntityKeyAttribute that identifies that DAS entity. In
addition, the dasEntity has a dasPublisherKey that

uniquely identifies the owning DAS Publisher. Each
dasEntity has a name and optional description as well.

The nature of a DASEntity is represented in the
classReferenceElement. This element contains
availableClassElements that list what OWL classes are
relative dataProperties are implementable by this
particular DAS entity by using the classKeyattribute and
dataPropertyKeyElement. Like the dasPublisherElement,
a dasEntityElement contains descriptive information in
the form of the dasEntityName and
dasEntityDescriptionElements. In addition, there may be
any number of qualityAttributeElements that contains
quality attributes of the particular DAS Entity and its
associated data sources. The dasEntityElement also
contains a wsdlReferenceDocumentElement that points to
a WSDL document on the web. The purpose of this
document is to describe how the relative DAS Entity can
be used.
Every U3DI repository should contain a database of OWL
ontology references. For each ontology reference, there is
a set of OWL class references. Each class reference
should point to an existing DAS Entity on the repository.
This implies that the target DAS Entity can provide
instances of the class that references that DAS Entity.

Furthermore, each existing classReferenceelement
logically represents an OWL class that is implemented by
one or more of the DAS entities represented at the U3DI
repository. Each classReference is uniquely identified by
a classReferenceKey. It also contains a
classNameElement that defines the name of the class and
one or more dataPropertyReferenceElements. The
dataProperty ReferenceElements act as references to the
available dataProperties that the DAS Publisher claims
are available for instantiation. These dataProperties must
exist within the OWL definition of the relative OWL
class.

A dataPropertyReferenceElement contains the name of
the OWL dataProperty it represents in the form of the
dataPropertyNameElement and a unique identifier key in
the form of the dataPropertyKeyAttribute.

A dasPublisherElement contains metadata in the form of
the dasPublisherName, dasPublisherDescription, and
dasPublisherContactInformationElements. Each DAS
Publisher must have a dasPublisherKeyattribute that
uniquely identifies it from other DAS Publishers on the
repository. A DAS Publisher also contains multiple
references to unique DAS Entities using the
dasEntityKeyElement. It is understood that a DAS Entity
referenced by a DAS Publisher is the responsibility of that
DAS Publisher. Furthermore, a DAS Entity may be the
responsibility of only one DAS Publisher.

Figure 7. Summary of test components structure.

5. Prototype System

The prototype system is related to the provision of
medical information and associated polymorphic services
on this data to various users with diverse personas and
profiles (epidemiologists, ambulance crews, family
doctors, ER doctors). This section presents two sets of
statistics that were computed on a working imple-
mentation of an individual DAS. The first statistic was
captured under experimentation and provided time
statistics regarding WDDL parsing and data retrieval. The
second statistic descirbes space allocation required
relative to the DAS specifications.
The implementation that was conducted was limited to a
single DAS registered with two data sources. A WDDL
file was constructed such that one data source would not
be able to satisfy the WDDL file, but the other would.
Figure 7 provides an overview of the components
involved. Each data source component in the figure
represents a data source entry in the DAS that may be
capable of implementing the given WDDL document.

The DAS itself was limited to extending its WDDL
parsing by involving only subclasses/subproperties and
equivalent classes/properties, in addition to searching for
the original entity. The DAS parsed the provided WDDL
file and locally examined if a known data source could
implement the said file. Once parsing was completed and
a schema was generated, the DAS examined two resource
requirements to decide if a data source was available.

5.1 TimeAllocation

Four iterations were executed with the same WDDL file
and ten different WDDL files were created, each having
one root and X number of children. The number of
children were between ten and 100 inclusive, each being a
factor of ten. Furthermore, all of the children were
contained in a conjunction, so each child had to be
satisfiable. For each trial, an average time required to

Figure 8. Average WDDL parse and DAS retrieval time.

parse the WDDL document and the total time required to
execute the implementation were computed. Figure 8
illustrates the time performance results for the
experimentation suite.

The parse time is the time taken to traverse the WDDL
document and decide what classes and data properties can
be satisfied by the known data sources. In the WDDL
files, each of the children are identical. As such, a linear
growth of time based on the number of nodes was
expected and found. In fact, traversal of the tree is always
linear with respect to the number of nodes in the tree
since any pre-order traversal with a constant-time node
visit is linear. Of course, node visits are not always
constant. Rather, they depend on the classes or data
properties that are available to the DAS. In a worst-case
scenario, a given node would be compared to all nodes in
a given ontology before returning positive (or negative).
Thus, a node visit in the algorithm is linear also.

5.2 Space Allocation

The second statistic gathered concerns the size of a DAS
specification. In effect, how much space is required to
store the information needed to decide whether a provided
WDDL is implementable or not.
In a DAS specification, the only dynamic entity is the
storage entity used to archive known data sources and
what they provide. In total, a DAS must store knowledge
of each data source it is associated with, including
information on how to access that data source, an
identifier for each unique ontology class provided by the
DAS, an identifier for each unique data property provided
by the DAS, an identifier for each unique object property
provided by the DAS, and an identifier for each unique
resource requirement defined by the data sources. In
addition, each data source must reference those resource
requirements that it can satisfy, along with a value, and

DAS space requirement entities
Requirement Symbol

Associated Data Source D
Ontology Class C
Ontology Data Property P
Ontology Object Property O
Resource Requirement R

Table 1. DAS space requirement entities.

must reference those ontology entities that it can provide.
Table 1 above summarizes these requirements. For
simplicity, assume that all identifiers, references, and
values have the same storage requirements, X. The space
required to store all identifiers is linear among the five
different identifiers.

SpaceReq.=X(D+C+P+O+R)

In a worst-case scenario, each data source is able to
provide information regarding each class, property, data
property, and resource requirement. For simplicity, let X
also be the space required to store a reference from a data
source entity to one of the other four entities. The new
space requirement becomes:

SpaceReq.=X(D+C+P+O+R)+X(DC+DP+DO+DR)

Therefore, space requirement in a DAS grows relative to

max(DC,DP,DO,DR).

We are currently working on extending and deploying the
prototype with multiple Data-as-Service elements, and
more complex application domains.

6. Conclusion

This paper proposes a framework whereby emerging
semantic and web service technology can come together
to address the problem of customizability and
personalization in web services and web data. It has
focused on two primary issues. First, the Persona, a
concept that allows an individual to define a unique web
space based on the semantically-described needs of the
individual has been presented.

Second, to facilitate the idea of personalized data, the
Data-As-Service and Web Data Description Language
was created. The Data-As-Service provides semantic
markup for raw data based on an individual’s specific
needs for the data. The individual defines his/her semantic
needs using the Web Data Description Language. Data-

as-Service elements can be published in a U3DI binder
that extends the UDDI standard.

The work presented in this paper opens some
opportunities for future work, both in the realm of
research and implementation technologies.
Research wise, more work can be done regarding the
definition of a Context. It was noted that several, mildly
disjoint definitions of context in computer science have
been offered in literature. It may be beneficial to define
the concept of a Persona and Context in a well-defined
language (possibly an XML language) that could be
standardized (such as how SOAP and WSDL have
become relative standards). More work should also be
done on the DAS architecture and Data Pool. In
conjunction with the DAS and Data Pool, additional work
is required to solidify a strong storage requirement for
Personas and related components. However, most
importantly, work should be done to integrate workflows
into the Persona, combining the idea of template/concrete
workflows with the concept of Behaviours. This would
allow testing of the proposed communication protocol
within the architecture.

Overall, we believe that this is an emerging area of
research that holds the potential of interesting applications
and industrial uses.
Concluding, we would like to acknowledge and thank
Bell Canada University Laboratories at the University of
Waterloo, the Consortium for Software Engineering
Research, and the Natural Sciences and Engineering
Research Council of Canada for their continuous support
for this research.

References

[1] Tim Berners-Lee, James Hendler, and Ora Lassila. The

Semantic Web. Scientific American, 284(5):35–42, May
2001.

[2] Jeff Heflin, James Hendler, and Sean Luke. SHOE: A
Knowledge Representation Language for Internet
Applicateions. Institue for Advanced Computer Studies,
University of Maryland, College Park,
http://www.cs.umd.edu/projects/plus/SHOE/pubs/techrpt99.
pdf/, 1999.

[3] World Wide Web Consortium. Resource Description
Framework. World Wide Web, http://www.w3.org/RDF/.

[4] World Wide Web Consortium. Web Ontology Language.
 World Wide Web, http://www.w3.org/2001/sw/.
[5] Ramnivas Laddad. I want my AOP!, Part 1. Java World,

http://www.javaworld.com/javaworld/jw-01-2002/jw-0118-
aspect.html/ , 2002.

[6] Elizabeth A. Kendall. Role Model Designs and
Implementations with Aspect-oriented Programming. In
Proceedings of the 1999 ACMSIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, pages 353– 369. ACM, November 1999.

[7] Thomas P. Moran and Paul Dourish. Introduction to This
Special Issue on Context-Aware Computing. Human-
Computer Interaction, 16:1–8, 2001.

[8] Jason I. Hong. The Context Fabric: An Infrastructure for
Context-Aware Computing. In ProceedingsofCHI2002,
pages 554–555. ACM, April 2002.

[9] Manos Theodorakis, Anastasia Analyti, Panos
Constantopoulos, and Nikos Spyratos. Context in
Information Bases. In Proceedings of the Third IFCIS
Conference on Cooperative Information Systems. IEEE,
August 1998.

[10] John Mylopoulos and Renate Motschnig-Pitrik.
Partitioning Information Bases with Contexts. In
Proceedings of the Third International Conference on
Cooperative Information Systems, pages 1–12, May 1995.

[11] M. Theodorakis and P. Constantopoulos. Context-Based
Naming in Information Bases. International Journal of
Cooperative Information Systems, 6(3, 4), 1997.

[12] Norman W. Paton and Oscar D iaz. Active Database
Systems. ACM Computing Surveys, 31(1):63–103, March
1999.

[13] James Bailey, Alexandra Poulovassilis, and Peter T. Wood.
An Event-Condition-Action Language for XML. In
WWW2002, pages 7–11. ACM, May 2002.

[14] Hidenari Kiyomitsu, Atsunori Takeuchi, and Katsumi
Tanaka. ActiveWeb: XML-Based Active Rules for Web
View Derivations and Access Control. In Proceedings of
the Workshop on Information Technology for Virtual
Enterprises, pages 31–39. IEEE, 2001.

[15] Angela Bonifati, Stefano Ceri, and Stefano Paraboschi
 Pushing Reactive Services to XML Repositories using

Active Rules. In WWW10, pages 1–5. ACM, May 2001.
[16] World Wide Web Consortium. Simple Object Access

Protocol. World Wide Web,
http://www.w3c.org/2000/xp/Group/.

[17] World Wide Web Consortium. Web Services Description
Language (WSDL) 1.1. World Wide Web,
http://www.w3.org/TR/wsdl.

[18] Universal Description Discovery and Integration. World
Wide Web, http://www.uddi.org/specification.html/.

[19] Peter Brittenham, Francisco Cubera, Dave Ehnebuske,
and Steve Graham. Understanding WSDL in a UDDI
registry. World Wide Web,
ftp://www6.software.ibm.com/software/developer/library/w
s-wsdl.pdf/, 2001.

[20] Kelvin H. Cheung. A Customizable Web Services
Integration Environment. Mas-ter’s thesis, University of
Waterloo, Ontario, Canada, 2002.

[21] John Mylopoulos, Lawrence Chung, and Brian
Nixon. Representing and Using Nonfunctional
Requirements: A Process-Oriented Approach. IEEE
Transactions On Software Engineering, 18(6):483–497,
June 1992.

[22] Anand Ranganathan, Roy H. Campbell, Arathi Ravi, and
Anupama Mahajan. ConChat: A Context-Aware Chat
Program. Pervasive Computing, 1(3):51–57, July-
September 2002.

[23] Gerald Tarcisius. A Specification and Enactment
Framework for Context-Aware Template-Based
Workflows. Master’s thesis, University of Waterloo,
Ontario, Canada, 2002.

[24] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron
Goland, Johannes Klein, Frank Leymann, Kevin Liu, Dieter
Roller, Doug Smith, Satish Thatte, Ivana Trickovic, and
Sanjiva Weerawarana. Business Process Execution lan
guage for Web Services Version 1.1. World Wide Web,
http://www.siebel.com/bpel/.

[25] DAML-S: Semantic Markup for Web Services. World
Wide Web, http://www.daml.org/services/.

[26] HP Labs. Jena A Semantic Web Framework for Java. World
Wide Web, http://jena.sourceforge.net/.

