

Quality Driven Transformation Compositions for Object Oriented Migration

Ying Zou, Kostas Kontogiannis
Dept. of Electrical & Computer Engineering

University of Waterloo
Waterloo, ON, N2L 3G1, Canada

{yzou, kostas}@swen.uwaterloo.ca

Abstract
Reengineering legacy software systems to object

oriented platforms has received significant attention over
the past few years. In this paper, we propose a goal
driven software migration framework that aims to identify
and extract a quality object model from a procedural
system and to generate quality object oriented code. The
framework is composed of analysis tools, transformation
rules, and non-functional requirement models for the
target migrant system. Specifically, to facilitate the design
and development of such goal driven migration
framework, source code transformation rules are
associated with a degree of belief that they contribute
towards enhancing a desired property for the target
system. The migration process applies a search algorithm
that is guided by the source code analysis to select a
transformation sequence that has the highest likelihood of
yielding such a target system. The migration of a selected
set of gnu AVL libraries to a new object oriented platform
is presented as a proof of concept for the proposed
technique.

1. Introduction

Object oriented (OO) reengineering focuses on the
transformation of procedural software into a functionally
similar object-oriented program. In a nutshell, the
migration process aims to identify Abstract Data Types
(ADT) and extract candidate object models from the
procedural code. Heuristic rules, metrics, and data flow
analysis can be used to select an object model that is the
most appropriate in a given context [1, 2]. Other methods
to identify candidate classes from the procedural code,
include concept analysis [5, 6], cluster analysis [3, 4],
slicing [8], data flow and control flow analysis [9], and
informal information analysis [7]. However, existing
reengineering methods for migrating legacy systems to
new object oriented platforms do not provide a

comprehensive framework for ensuring that the migrant
Object Oriented system will posses certain quality
characteristics. To incorporate quality requirements into
the migration process, we propose a reengineering
approach that quantifies and assesses the impact each
transformation step has on the target system. The specific
quality requirements we focus in this paper are to increase
modularity and cohesiveness for the new target system.

In this context, there are three major issues to be
addressed namely, modeling the quality requirements for
the target system, modeling the transformations in a
formal way so that their preconditions and their impact on
specific target quality requirements can be easily
measured and evaluated and finally, a reengineering
process that applies transformations in order to achieve
the desired target qualities with a high likelihood score.
For this work we adopt the non-functional requirement
framework presented in [10] whereby software qualities
and design decisions are modeled as a soft-goal
dependency graphs. Similarly, software transformations
are modeled as class templates in UML while their pre-
and post- conditions that yield instantiations of
transformation rules are modeled in OCL. Finally, the
migration process is conceptually modeled as a Markov
model of sequences of transformations whereby each
transformation alters the state of the system by a given
likelihood. The initial state corresponds to the original
procedural system and the final state corresponds to the
target migrant object oriented system. Given that each
transformation alters at least one source code feature, a
likelihood score as a measure of belief that the specific
transformation impacts a specific quality can be
computed. The likelihood score that a transformation
contributes towards achieving a desired quality property
is computed as a function of the source code features
altered by the specific transformation and the relation of
the altered source code features with the specific quality
of interest.

The paper is organized as follows. Section 2
introduces in more detail the goal driven migration

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

framework. Section 3 presents the formalization of
transformation rules. Section 4 lists a catalogue of
transformation rules that aim to extract a quality object
model from the procedural source code. Section 5
discusses a migration process for the selection and
combination of transformations. Section 6 presents an
experiment for the transformation of selected gnu AVL
libraries and evaluates the proposed method. Finally,
section 7 concludes the paper and provides insights for
future work.

2. Goal Driven Migration Process

In this reengineering framework we focus on the
identification and extraction of quality object models
from legacy procedural code. The specific qualities we
consider for the new migrant system to posses are
modularity and cohesiveness. The proposed goal driven
migration process consists of several steps as illustrated in
the Figure 1.

In our work, the subject software system is modeled in
terms of entities and relations. The software entities
represent source code structures of interest, such as
aggregate types, parameters, global variables, and
functions. The relations, model interactions between
software entities, such as function calls, global variable
usage, or aggregate data type references.

Essentially, the migration process either creates new
software entities, for example a new class, or alters the
associations between software entities that refer to the
target object model. A set of possible transformation rules
is identified to perform such re-architecture.
Transformation rules are modeled as OCL expressions
and can be sequentially composed to form a full migration
process path. Assuming that each transformation alters the
state of the system towards achieving the quality
requirements of new target system, each transformation is
selected according to its likelihood altering the state
towards the desired requirements. The effect each
transformation has on specific software qualities is
modeled as a collection of soft goal dependency graphs.
Soft-goal dependency graphs are directed labeled graphs
that aim to associate design decisions with specific system
non-functional requirements such as maintainability,
performance, and reliability. The nodes of the graph
represent interim qualities that need be achieved for the
parent qualities to be achieved. Leaves of the graph
represent specific design decisions and source code
features that need be altered in order to achieve specific
non-functional requirements. Applying a search algorithm
such as A* or simulated annealing the order of
transformations that achieve the highest likelihood the
desired target system qualities for the migrant system can
be computed.

System Modelling
and Analysis

Transformation
Rule

Application

Initial
System
State

New
System
State

Quality
Evaluation

Soft Goal
Dependency

Graphs

Software Quality
Requirements

Procedural
System

OO
System

Figure 1. Soft goal driven migration process

3. Specification of Transformations

In the proposed framework, transformation rules
provide the means to implement generic migration steps.
A transformation can be modeled as class template that
has specific pre/post conditions and is instantiated for the
source code context that it is applied upon. For example, a
transformation template can be considered to be a rule
that transforms global aggregate data types into candidate
classes. We model transformation patterns as UML
classes and pre/post conditions that govern the
applicability of a given rule in a given context as OCL
expressions. The following sections present these models.

3.1. UML and OCL Representation

The UML (Unified Modeling Language) provides a
formalism for specifying, visualizing and documenting
object-oriented systems in the form of class diagrams,
object diagrams, use case diagrams, and state diagrams.

Furthermore, UML is enhanced by OCL (Object
Constraint Language) that specifies well-formed
constraints for the UML artifacts. Although OCL [15] is a
formal language based on predicate logic and set theory, it
provides a collection of textual expressions, such as types
and operations that allow for articulating the invariants,
pre/post-conditions of methods, and guards transition
constraints in state transition diagrams.

In our research, it is of importance that the
transformation rules can be interpreted without ambiguity.
Due to its simplicity and formality, we believe that OCL
is suitable candidate for the specification of software
transformation rules. Furthermore, a rigorous proof for
the correctness of the rules can be performed with the aid
of the predicate logic and set theory.

3.2. OCL Expressions for Transformations

In general, a transformation rule template can be
considered as a mapping function between a specific

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

procedural source code feature and target object oriented
code constructs. For example, an aggregate data type in
the legacy system will be mapped to a candidate class in
the new object oriented system. In this context, pre-
conditions in OCL expressions denote the domain of the
mapping function and the post-condition denote the range
of the mapping function. An example OCL specification
is illustrated below.

context ATypeName::OpName(parameter:Type1,
 …):AReturnType
pre: parameter1> …
post: result= expressions …

context is the keyword that declares that the
specification of the operation, OpName, is in the context of
the class (i.e. ATypeName). pre is the keyword for
denoting pre-condition expressions, and so is the keyword
post for the post-conditions. The result is the keyword
that denotes the return value of the operation. OCL can
model mathematical expressions using a collection of
predefined operators such as, existential and universal
qualification, iteration, and accumulation of values to a
fix point by applying a specific expression to each
element in a collection of elements.

3.3. UML Software Transformation Models

In this section, we present a collection of
transformation rules that can assist in the extraction of an
object model from a procedural system that is denoted as
UML and OCL artifacts. In this context, there are two
major categories of transformations. The first category
aims to generate a class candidate from Global

Variables, Declarations, and Type_Specifiers.
This category is further subdivided to transformations that
aim to generate the Attribute structure of the class
candidate (i.e. its private data members), and to
transformations that aim to generate the Behaviour of
the candidate class (i.e. its methods). The second category
of transformations aims to generate object oriented
extensions to the simple model that can be extracted by
simply analyzing global variables, parameters, and
aggregate data types. The extensions deal with the
introduction of Polymorphism, Inheritance and
Overloading in the generated object model. The later is
denoted by the HierarchyTrans and
PolymorphismTrans classes in Figure 2, where the
UML class diagram illustrates the static structure of a set
of transformation rules.

The association between the Attribute and
Declaration classes indicates that the attributes in
class candidates are generated by the field declarations in
the original code. In this context, the operations in the
AttributeGen association class are referred to as

Figure 2. Migration process UML model

transformation templates and are responsible to denote the
operations that migrate procedural field declarations of
procedural aggregate struct, record, and union types
to data members of candidate classes in the new object
model. Furthermore, the detailed criterion for each
transformation template is specified in OCL.

Finally, the association between the Behavior class
and the Function class denotes the generation of
methods from functions and procedures of the original
legacy source code. For example, the association class,
MethodAttachmentTrans provides four rules for
function assignments in the corresponding operations.

4. Catalogue of Transformation Templates

In the migration process, it is important that the
transformation rules not only yield object models, but also
result in a new object oriented software system that
possesses specific software qualities, such as high
modularity, high cohesion inside the class and low
coupling between classes. With the consideration of these
goals, we identified and formally specified a series of
transformation templates into two categories namely,
class creation transformations and transformations for
object model extensions. In the following sub-sections,
we discuss the transformation rules and their OCL formal
specification in more detail.

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

context AttributeGen::structTypeTrans(
struct: StructType): Set(ClassCandidate)

pre: struct.nestingLevel = 1
post: result->including(adt:ClassCandidate |

adt.name = struct.name and
struct.structElements->iterate(elem: Declaration |

adt.features->including(attr:Attribute |
attr.visibility = EnumType::private and
attr.body = elem

)
)

)

Figure 3. Converting StructType into class candidate

4.1. Class Creation Transformations

The rules on the class creation category define the
criteria for the production of object models from the
procedural code. In the search of an object model that can
be extracted from procedural source code, we aim at
achieving high encapsulation, high cohesion within a
class, and low coupling between classes. The process is
divided into three steps: class identification, private data
member identification and method attachment. The
following sections provide indicative transformations that
can be applied in each step.

4.1.1. Class Identification
The first step towards the migration of a procedural

system to an object-oriented system is the selection of
possible object classes. This task can be automated to a
large extend using a number of different software analysis
techniques. However, no matter how sophisticated the
analysis techniques are, user assistance and guidance is
crucial on obtaining a viable and efficient object model.
Significant domain information can be utilized by the user
to guide the discovery process and to obtain a better and
more suitable object model. The object identification
techniques focus on two areas: a) the analysis of global
variables and their data types, b) the analysis of complex
data types in formal parameter lists. Analysis of global
variables and their corresponding data types is focusing
on the identification of variables that are globally visible
within a module. For each variable, its corresponding type
is extracted from the Abstract Syntax Tree, and a
candidate object class is generated. Data type analysis is
focusing on type definitions that are accessible via
libraries. Examples include typedef C constructs. Data
types that are used in formal parameter lists become also
primary class candidates. The union of data types that are
identified by the global variable analysis and data type
analysis forms the initial pool of candidate classes.

context AttributeGen::globalVarTrans(
var : GlobalVar): Set(ClassCandidate)

pre: var.scope = EnumType::file or EnumType::globe
post: result->including(adt:ClassCandidate|

adt.name=var.name and
adt.features->including(attr: Attribute |

attr.visibility = EnumType::private and
attr.body = var

)
)

Figure 4. Converting global variable into class candidate

4.1.2. Private Data Member Identification
Data type analysis
Aggregate data types refer to a collection of data
members inside a user-defined source code structure, such
as struct and union in C. The OCL expression for the
transformation of struct type is illustrated in Figure 3.
The pre-condition requires that the struct type is not
defined inside any other struct type. Since such struct
type is globally available to be referenced by functions
and can be used by other declarations throughout the
program, it is will be suitable to be a class candidate in
the new system. The post-condition characterizes the
result of the transformation that all of the data members of
the struct type become the private class attributes.
Similarly, the union type can be converted into class
candidate with the pre-condition that it is not embedded
inside any other struct type definitions.

Variable analysis
Although C++ allows for global constant definitions to be
accessible within file and global scope, keeping these
scopes of variables unchanged in the new system would
violate the principles of encapsulation and information
hiding in the target object oriented system. The OCL
expression in Figure 4, globalVarTrans, aims at
eliminating such extensive scopes, by encapsulating such
declarations as a private data member in an individual
class.

4.1.3. Method Attachment
Parameter type analysis
A formal parameter in a procedure or a function indicates
that the function references a data item of a particular
type. In the process of object model extraction, we
consider procedures and functions as method candidates.
To maximize the cohesion inside the class and minimize
the coupling between classes, the procedures and the
function with struct parameter types are attached to the

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

context MethodAttachmentTrans::parameterTypeAnalyze(
func: Function,
adts: Set(ClassCandidate)) : Set(ClassCandidate)

pre: func.parameters->size >=1
pre: func.parameters->exists(param: Paramter|

 param.type.oclType(StructType)=true and
 adts->exists(adt: ClassCandidate|

adt.name= param.type.name))
post: adts->iterate(adt:ClassCandidate;

 result:Set(ClassCandidate)=Set{} |
 func.parameters->iterate(param:Parameter|
 if param.type.oclType(StructType)= true and

param.name = adt.name
 then

adt.features->including(op:Behavior|
 op.visibility= EnumType::public and
 op.method = func) and
 result->including(adt)

 else result->including(adt)
 endif
)
)

Figure 5. Method attachment based on parameter type

context MethodAttachmentTrans::returnTypeAnalyze(

func: Function,
adts: Set(ClassCandidate)
): Set(ClassCandidate)

pre: func.returnType->notEmpty=true
pre: func.returnType.oclType(StructType)=true
pre: func.parameters->exists(param: Parameter |

param.type.oclType(StructType)=true)
->size=0

post: adts->iterate(adt:ClassCandidate;
result:Set(ClassCandidate)=Set{} |
 if adt.name= func.returnType.name and

adt->features->exists(op: Behavior|
 op.method.name= func.name)->size=0

 then adt.features->including(op:Behavior|
 op.visibility= EnumType::public and
 op.method = func) and
result->including(adt)

 else result->including(adt)
 endif

)

Figure 6. Method attachment based on return type

class candidates that are generated from these struct
types. The formal expression for this transformation rule
is illustrated in Figure 5.The pre-condition specifies the
qualified function that has at least one parameter whose
type is a struct type. The assignment of a function to a
class is described in the post-condition that the function
becomes a public method in more than one class
candidates as the function can have more than one
aggregate type parameters.

Return type analysis
The return type of a function indicates that the function
possibly uses and/or updates the data fields of the
aggregate type of the return value. Especially, in the case
that a function without a parameter of an aggregate type,
the return type provides strong evidence to assign such a
function to the class candidate originated from the return
type. Similar to the parameter type analysis, the
transformation rule is illustrated in Figure 6.

Variable usage analysis
In the case that a function has neither aggregate type
parameters, nor a return value of a aggregate type, the

context MethodAttachmentTrans::globalVariabeUse(
func: Function,
globalVars: Set(GlobalVar),
adts: Set(ClassCandiate)):
Set(ClassCandidate)

pre: func.parameters->exists(param: Parameter|
param.type.oclType(StructType)=true)
->size = 0

pre: func.returnType->isEmpty=true or
func.returnType.oclType(StructType)=false

pre: func.body.globalVars->size >= 1
post: adts->iterate(adt:ClassCandidate;

result:Set(ClassCandidate)=Set{}|
func.body.globalVars->iterate(var:GlobalVar |

if var.declarator=adt.name and
 adt->features->exists(op: Behavior|
 op.method.name = func.name)->size=0
then adt.features->including(op:Behavior|
 op.visibility= EnumType::private and
 op.method = func) and
 result->including(adt)
else result->including(adt)
endif
)

)

Figure 7. Method attachment based on global variable usage in

a function

LCOM: Lack Of Cohesion LCC: Loose Class Cohesion DIC: Depth of Inheritance Children
TCC: Tight Class Cohesion CBO: Coupling Between Object RFC: Response For a Class
LOC: Lines Of Code

High
Modularity

Global
Variables

High
Encapsulatio

n

Public
attributes

Inline
Methods

Pivate (Protected)
attributes / # Total

Attributes

High Functionality
Concentration

Function
Point

Accessors

Non-Accessors /
Tot Methods

Non-Accessors

High
Abstraction

Ref. To
Abstract
Classes

ratio of #
method

inherited

ratio of #
attributes
inherited

Inheritance

Method
Parameter

High
Cohesion

Degree of
Connecitivity
of Elements

LCC

Infomation
Flow Inside

Class

LCOM

TCC

Narrow
Interface

Public
Methods

Method
Arguments

Public Methods
/ Total Methods

Method
Return Types

Connections

Direct Attribute
Based Coupling

Direct Class
Coupling

Method
Invocations

Aggregation

Local Variable
Types

Method
Parameter

Types

Method Return
Types

Low
 Coupling

Information Flow
Between ClassRFC

CBO

Polymorphic
Methods

DIC
#

Children

Overridden
Methods

Parents

Data
Structur

e
Nesting
Level

Figure 8. Soft-goal interdependency graph of high modularity

frequency of usage of aggregate types in the function
body is considered as an evidence to transform the
function to method in the class candidate that is generated
by the aggregate type used. The pre-conditions and post-
conditions of this transformation rule are illustrated in
Figure 7.

5. Selection and Combination of
Transformations

In [10], we proposed soft-goal dependency graphs that

systematically model source code features that are related
to reliability and maintainability. An example soft-goal
interdependency graph is illustrated in Figure 8. The

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

leaves of graph list the source code features that have
impacts on high modularity. By such a graph, the changes
in the source code features can be traced back to reflect
the changes in the high-level software quality goals.

Moreover, in section 4, a sample of possible
transformation templates is specified. We consider that
the migration process can be modeled as a sequence of
transformations that alters features identified in the soft-
goal graph. Consequently, we consider that these
transformations have an impact on the modeled quality
(i.e. maintainability) when they are applied. The objective
thus is to identify the combination of transformations that
have the highest likelihood of achieving the specified
quality requirements for the target migrant system. For
this work, we adopt an approach that is based on a
Markov model to denote the likelihood that a
transformation when applied in one system state will yield
a new system state with better quality characteristics.

5.1. Quality Driven Migration Process Model

Conceptually, the migration process can be modeled
as a sequence of transformations in a labeled system state
transition system [18]. A formal definition for a migration
system is as follows.

Definition 1: A migration process is a tuple:

(S, I, F, T, →t)
where:
• S is a non-empty states, s0, s1, …, si, si+1, …, sn.
• I represents the original software system state.
• F represents a set of final states that corresponds to

the resulting migrant system.
• T is a set of transformations, t01, t02, …, tij,

ti,j+1, …, tkn, each of which alters a state and yields
a consecutive state and aims to transform a software
system in a stepwise faction from its initial state to a
final state that correspond to the original system and
new system. tij represents the transformation
moving from si to si.

• STSt ××⊂→ is a set of rules, which define
the semantic meaning for transformations.

Definition 2: A feature vector v represents the quality
with respect to a non-functional requirement in a state and
is denoted by a set of attributes <a1, a2, …, ak, …,
am>, where ak quantifies in a numeric format a source
code feature, which is a terminal in soft goal
interdependency graphs.

Definition 3: Two states are distinct if their feature
vectors are different.

As presented above, system sate changes are achieved

by the application of transformations from the set T and
conform to the following rules:

Rule 1: Every transformation tij causes at least one

change in a selected code feature that quantifies
state si and results in state sj.

Rule 2: The change is quantified by the identified source

code features modeled as leaves of the soft-goal
graphs.

As stated in Rule 1, a transformation makes changes to

a state. A transformation may cause the value ak to
increase, decrease, or keep it the same. As a consequence,
the change is quantified by a delta on the corresponding
feature values. The more positive the impact is, the higher
the likelihood that the transformation can contribute
towards the desired quantity objectives. Therefore, a
transformation is combined with a quality factor that is
used to evaluate the quality contribution each
transformation has.

The following formulae (1), (2) are proposed to
compute the likelihood of λ(G)ij,, called as quality factor,
that the transformation tij improves the quality
characteristics of the system with respect to the quality
goal G. When the number of the changed features that
contribute positively towards the desired quality is higher
than the number of features changed that contribute
negatively towards the desired quality, the following
formula is used:

∑
∑ ∑−

=
Attribute

Impact NegativeImpact Positve
(G)ijλ (1)

In the cases that the negative impacts are larger than

positive changes, we take the logarithm of the result and
the following formula (2) is applied:

∑

∑ ∑−

 = Attribute

Impact NegativeImpact Positve

(G)ij eλ (2)

It is also important to note that in many cases a goal is

achieved if its sub-goals are also achieved. To compute
the likelihood score of a goal as a composition of
likelihood scores of its sub-goals, we propose the
following formula (3). In addition, some sub-goals are
more important than others and in this case goal weights
are determined by the users, and are added as a coefficient
ck.

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

∑
= =

m

k
ijkkc

ijG e 1
)(

)(

λ
λ (3)

where m is the total number of the goals, ck is the
coefficient for each goal(k) and λ(k)ij, is the likelihood for
the transformation tij to achieve goal(k).

The above formula (3) can be applied recursively at
different levels of the soft-goal dependency graphs. In
addition, using the above formula, we can calculate the
overall likelihood to achieve more than one quality
objective. It is worth noting that the likelihood λ(G)ij,
only depends upon the immediately preceding states si,
and not upon other previous states.

5.2. Transformation Composition

For the migration of procedural code to object
oriented platform, we have previously identified a catalog
of transformation rules to apply at the procedural in order
to extract an object-oriented model [2]. A subset of the
transformation rules is described in terms of pre/post
conditions, as shown in Table 1.

To model all possible transformation paths the
stochastic process algebra formalism is adopted. As
illustrated in Figure 9, an example specification is as
follows:

S0 = (R1, λ01).S1 + (R2, λ02).S2
S1 = (R3, λ13).S3, S3 = (R4, λ35).S5, S5 = (R5, λ57).S7

S2 = (R5, λ24).S4, S4 = (R3, λ46).S6, S6 = (R4, λ67).S7
S7 = exit

where, the symbol, “=”, is used to assign names to
processes, and the symbol, “+”, represents the process
behaves either S1 or S2, and the choice is determined by
the value of λ01 and λ02. Similarly, the symbol “.”
represents the prefix of processes. For example, (R3,
λ13).S3 means the process engages in a transformation
under the rule R3 with the quality factor λ13 and
subsequently behaves as S3. Such a specification discloses
the general behaviors of the migration process by the use
of rules to label the transitions. A concrete system
evolution is generated by applying the transformations
with the conformant to the rules.

5.3. Optimal Transformation Path

The objective of the migration process is to compute an
optimal transformation path that can yield a target system
that meets specific quality requirements. Similar to
labeled transition systems, Markov chains are directed
graphs where the transitions are labeled by probability

Table 1: A Subset of Transformation Rules for Object
Oriented Migration

Rule Pre-condition Post-condition

R1 Aggregate Data Types
(ADTs) are class
candidates

Transforms each data field in
ADTs into attributes in the
corresponding classes

R2 Each global variables
are encapsulated as
class candidates

Transforms each global variable
into the attribute in the
corresponding classes

R3 Function has the
parameters with
aggregated data type
(ADT)s

Attach this function to the class
that is created from the ADT of
the parameter type

R4 Function, w/o
parameters of ADT,
has a return value with
an ADT

Attach such a function to the
class that is created from the
ADT of the return value

R5 Function, w/o
parameters and return
value, makes use of
globe variables

Attach such function to the class
that is created from the global
variable.

S2

S1

S0

S3

S4

v0

v1

v2

v3

v4

v7

S5

S6

S7

v5

v5

S0: Original Procedural System
S1: ADT class candidates
S2: Global Variable class candidates
S3: ADT class candidates with methods that
has parameters with the same ADT type.
S4: Class candidates with methods that use
global variables.

S5: Class candidates with methods that has
ADT type return value
S6: Globle variable class candidate + ADT
class candidates with methods that has
parameters with the same type
S7: Globle variable class candidates + ADT
class candidates

011,λR

022,λR

133,λR

245,λR

354,λR

463,λR

575,λR

674,λR

Figure 9. State Evolution For Identifying Class Candidates

from Procedural Code

S2

S1

S0 S3

0.6

0.4

0.6

0.4

0.4

0.6

Figure 10. A Markov Model Example

scores. A simple example is shown in Figure 10. The
probability predicts the likelihood that a transition can
happen. It is straightforward that a stochastic process can
be mapped to a Markov chain by deriving the probability
for each transition [18]. In our work, the probability for

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

each transition is calculated by formula (4) and (5). In the
case that multiple transformation alternatives be triggered
from the same state, the probability can be calculated by
the formula (4). For the sequential transformations, the
probability is defined by the formula (5):

∑
=

=
m

nk
ik

ij
ijq

λ

λ
, when multiple states evolve from Si (4)

ij

ij
ijq

λ
λ
+

=
1

, when one state is followed from Si (5)

where λij is the quality factor for a transformation between
Si and Sj, n is the smallest index of the state that follows
Si, and m is the largest index of the state that moves from
Si.

 In this context, the larger the quality factor is, the
higher likelihood such transformation results in a better
quality state. Based on the Markov chain approach, the
likelihood of different transformation paths can be
calculated. To get the path with the highest likelihood that
reaches desired goals, the Viterbi algorithm [19] is used.

6. Experiments

To investigate the feasibility of such a quality driven
re-engineering framework, we apply it for the migration
of the gnu AVL tree libraries from its original procedural
implementation to an object oriented one. For the
experimentation purposes of this paper, we use the
transformation rules listed in Table 1 to extract an object
model from the gnu AVL system. The whole migration
process is an instantiation of the general model (shown in
Figure 8) that gives the constraints and imposes orders to
apply the transformation rules based on the pre and post
conditions of the rules.

6.1. Quality Goals and Metric Collection

For this case study, the target requirements for the
new system are to achieve high encapsulation, as well as
high cohesion and low coupling. These quality attributes
can be considered as sub-goals, and consequently achieve
higher-level soft-goals for the new system such as high
encapsulation, high cohesion, low coupling, reusability
and maintainability. For each of the soft-goals, a set of
metrics was considered, as illustrated in Figure 11.

Encapsulation <NPA, NGV, PAR>, where
NPA: Number of Public Attribute NGV: Number of Global

Variable
PAR: Private Attributes Ratio

Cohesion <IFIC>, where
IFIC: Information Flow Inside Class

Coupling <CBO, IFBC, DCC, NMI, NLVT, NMPT, NMRT>, where
CBO: Coupling between Objects IFBC: Information Flow

Between Classes
DCC: Direct Class Coupling (count of the different

number of classes that a class is directly related
by attribute declarations and parameters in
methods.)

NMI: Number of Method Invocations in other classes
NLVT: Number of Local Variable Types from other classes
NMPT: Number of Method Parameter Types from other

 classes
NMRT: Number of Method Return Types from other classes.

Figure 11. Software Goals and Metric Sets

Table 2: Encapsulation Measurement on Converting Struct

Type into Class Candidate

 Sample

Rec

ubi_

btNode

ubi_

btRoot

NPA +2 +3 +4
NGV - - -
PAR +1 +1 +1

λ(encapsulation)ij

(Formula 1)
0.6667 0.6667 0.6667

λ(encapsulation)ij

(Formula 2)

1.9478

1.9478

1.9478

6.2. Transformations and State Evolutions

As specified in the stochastic process algebras, the
migration process firstly aims to achieve high abstraction
where the global variables and global aggregated data
types are converted into class candidates. In AVL
systems, there are three global aggregated data types,
including SampleRec, ubi_btNode and ubi_btRoot.
The quality factors for each of the transformations that
convert a data type into candidate classes is illustrated in
Table 2.The values in the table cells from the row 2 to
row 4 illustrate the changes in source code features after
applying the transformations to identify classes. Formula
(1) and (2) are applied to compute the quality factors
towards encapsulation. All the transformations contribute
towards positive feature changes, and therefore contribute
positively towards the desired quality with the same
likelihood; hence the transformations can be selected in
any order.

The initial break down of the system is achieved and
illustrated in Figure 12. The methods with square labels
denote the potential methods that can be attached to more
than one class. All these methods can be assigned either

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

Figure 12. System State with Initial Classes

Table 3: Coupling measurement for resolving the
attachment of method avl_btInsert to a class

Assigned Class Ubi_btNode ubi_btRoot

CBO -9 -11
IFBC 0 -11
DCC -1 -2
NMI 0 -4
NLVT 0 -1
NMPT -1 -1
NMRT 0 -1

λ(coupling)ij

(Formula 1)
-0.4286 -1

λ(coupling)ij

(Formula 2)
0.6514 0.3679

Table 4: Cohesion measurement for resolving the attachment of
method avl_btInsert to a class

Assigned Class ubi_btNode ubi_btRoot

IFIC +11 0

λ(cohesion)ij

(Formula 1)
1 0

λ(cohesion)ij

(Formula 2)
2.7183 1

Table 5: Accumulative result for resolving the attachment of
method avl_btInsert to a class

Assigned Class ubi_btNode ubi_btRoot

λij

(Formula 3)
λ69

29.0697
λ(6,10)

3.9271

Figure 13: System State without Method Conflicts

to ubi_btRoot or ubi_btNode. Table 3 illustrates the
changes of the features related to coupling, if the method
avl_btInsert is assigned to either class. The values in
the table cells from the row 2 to row 8 illustrate the deltas
of the source code features between two consecutive
states. According to formulas 1 and 2, the cases of
λ(coupling)ij are calculated, respectively. Similarly, table
4 illustrates the impact on cohesion. Finally by utilizing
formula 3, the cumulative result of the impact on both
goals is calculated, as shown in Table 5. Thus, the
avl_btInsert is assigned to ubi_btNode, because it
has higher likelihood according to the impacted features,
to achieve the desired software goals. The rest of the
conflicting methods can be resolved in the same way.
Figure 13 illustrates the state where all classes have been
identified and no methods are in conflict.

In addition, the selection of consecutive
transformations is not only determined by the
corresponding quality factors, but also the internal
dependencies of the methods. For example, the method,
ubi_avlRemove, depends on the method,
ubi_btRemove, which depends on the method,
SwapNode. Therefore, the resolution of the method,
SwapNode, is crucial for the other two methods.
Similarly, the method, ubi_avlInsert depends on the
method, ubi_btInsert.

Finally, formulae (4) and (5) can be used to obtain an
optimal transformation path in a Markov transformation
chain. The final state of the system is illustrated in Figure
14 as a UML diagram.

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

Figure 14. Final Retrieved Object Model

7. Conclusion

This paper presents a quality driven reengineering
framework that constructs the migration process as a
labeled state transition system, and evaluates the
fulfillment of soft quality goals at each step of the
process. The framework is characterized by four sub-
models, including an object model, in which states are
represented as entities and relations, a transformation
model, in which transformation rules are formally
specified in terms of pre/post conditions, a software
quality model, in which the specific quality features can
be traced to source code features, and a migration process
model that selects and composes transformations based on
their contribution to the desired qualities. Moreover, the
migration process is formally specified by stochastic
process algebra. In this context, the software quality
model is incorporated into the migration process by the
associating each transformation with a quality factor. By
the use of stochastic process algebra, a Markov chain is
automatically generated and facilitates to find an optimal
transformation path to achieve a desired system.

Currently, the proposed framework is applied to
migrate systems written in C to functionally similar
systems that comply with an object oriented design and
implemented in C++. On-going work is focusing on
generating soft-goal graphs for portability and testability
and applying the framework for the migration of larger
than 4KOC systems.

References

[1] Lionel Briand, et. al, “Characterizing and Accessing
 a Large-Scale Software Maintenance Organization”,
 http://www.cs.umd.edu/projects/SoftEng/ESEG/

[2] Ying Zou, Kostas Kontogiannis, “A Framework for
Migrating Procedural Code to Object Oriented Platform”,
in the proceedings of 8th Asia-Pacific Software
Engineering Conference, Macau SAR, China, December
4-7, 2001.

[3] S. Mancoridis, B.S. Mitchell, Y. Chen, and E. R. Gansner,
Bunch: a clustering tool for the recovery and maintenance
of software system structures, In Proc. Of International
Conference on Software Engineering, 1999.

[4] H. Muller, M. Orgun, S. Tilley, and J.Uhl, A reverse
Engineering Approach To Subsystem Structure
Identification, In Journal of Software Maintenance:
Research and Practive, 5(4): 181-204, 1993.

[5] C. Lindig and G. Snelting, “Assessing Modular Structure
of Legacy Code Based on Mathematical Concept
Analysis”, In Proc. Of International Conference on
Software Engineering, 1997.

[6] H. A. Sahraoui, W. Melo, H. Lounis, F. Dumont,
“Applying Concept Formation Methods To Object
Identification In Procedural Code”, In Proc. Of 12th
Conference on Auotmated Software Engineering, 1997.

[7] Letha H. Etzkorn, Carl G. Davis, “Automatically
Identifying Reusable OO Legacy Code”, Computer, IEEE,
October, 1997.

[8] Filippo Lanubile, and Giuseppe Visaggio, “Extracting
Reusable Functions by Flow Graph-Based Program
Slicing”, IEEE Transactions on Software Engineering,
Vol. 23, No. 4, April, 1997.

[9] De Lucia, G.A. Di Lucca, A.R. Fasolino, P. Guerra, S.
Petruzzelli, “Migrating Legacy Systems toward Object
Oriented Platforms”, 1997, IEEE.

[10] Ying Zou, Kostas Kontogiannis, “Migration to Object
Oriented Platforms: A State Transformation Approach”,
International Conference on Software Maintenance 2002.

[11] Ladan Tahvildari, Kostas Kontogiannis, John Mylopoulos,
“Requirements-Driven Software Reengineering", 8th
IEEE Working Conference on Reverse Engineering
(WCRE 2001), Stuttgart, Germany, pp. 71-80, October
2001.

[12] Ladan Tahvildari, Kostas Kontogiannis, “On the role of
design patterns in quality-driven re-engineering”, In
Proceedings of the 6th IEEE European Conference on
Software Maintenance and Re-engineering (CSMR),
Hungary, Budapest, march 2002.

[13] K. Kontogiannis, P. Patil, “Evidence Driven Object
Identification in Procedural Systems’’. STEP’99,
September 1999, pp. 12-21.

[14] International Standard for Software Product Quality
Software (ISO/IEC 9126: 1991).

[15] “OMG Unified Modeling Language Specification”,
ftp://ftp.omg.org/pub/docs/formal/01-09-67.pdf.

[16] Martin Fowler, “Refactoring: Improving the Design of
Existing Code”, Addison-Wesley, 2000.

[17] Stuart Russell, et. al, “Artifical Intelligence, A Modern
Approach”, Englewood Cliffs, N.J. : Prentice Hall, 1995.

[18] Ed Brinksma and Holger Hermanns, “Process Algebra and
Markov Chains”, FMPA 2000, LNCS 2090, pp.183-231,
2001, Springer-Verlag Berlin Heidelberg 2001.

[19] Paul van Alphen & Dick R. van Bergem,
 “Markov Models and Their Application in Speech
 Recognition”.

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

