A Framework for Migrating Procedural Code to Object-Oriented Platforms

Ying Zou,

Kostas Kontogiannis

Dept. of Electrical & Computer Engineering
University of Waterloo
Waterloo, ON, N2L 3G1, Canada

{yzou, kostas}@swen.uwaterloo.ca

Abstract

With the rapid growth of the Internet and pervasive
computing activities, the migration of back-end legacy
systems to network centric environments has become a
focal point for researchers and practitioners alike. To
leverage back-end legacy services into Web-enabled
environments, this paper proposes an incremental and
iterative migration framework where legacy procedural
source code is reengineered into an object-oriented
platform. The reengineering framework allows for the
representation of the legacy source in he form of XML
based Annotated Abstract Syntax Trees. Consequently, the
extraction of an objecr-oriented model from the original
source code is based on the analysis of source code
features in the original system that can be used to identify
classes, associations, aggregations, and polymorphic
patterns in the new target system.

1. Introduction

With the widespread use of the Internet and pervasive
computing technologies, distributed object technologies
have been widely adopted to construct network-centric
architectures, using Web Services, CORBA, and DCOM.
This use has triggered a plethora of research with the main
objective to leverage the business value of legacy software
systems into Web-enabled environments. Object oriented
technologies play an important role in the reengineering,
integration and deployment of back end legacy services
into Web enabled platforms.

To facilitate the reengineering of legacy services in
Web-enabled environments, our approach proposes a
framework where components of a procedural egacy
system can be migrated to an object-oriented platform.
The proposed framework is based on a methodology that
allows for the source code of a legacy system to be

)-7695-1083-3/01 $17.00 © 2001 IEEE

390

represented at a higher level of abstraction using an XML
domain model, and second on an analysis and
transformation technique that aims at extracting an object
model from the procedural system. The target migrant
system is intended to be more maintainable than the
original system and to possess an open programmatic
interface (API) that can be used for integration and
deployment to a Web enabled environment. Such object
components that deliver back-end services can also
become building blocks of reference software architectures
that are related to Web and pervasive computing
applications.

The remainder of the paper is organized as follows.
Section 2 reviews related works in literature. Section 3
gives an overview on the framework of object oriented
model discovery process. Section 4 discusses the approach
that represents C source code in XML. Section 5 proposes
a catalog of evidences that qualify features in procedural
code towards object-oriented model. Section 6 provides
experimental results for the objectoriented model
discovery. Finally, section 7 provides the conclusion of the
paper and some pointers for the future research.

2. Related work

2.1. Source code representation

There is a growing stream of activities related to XML
representation of source code. In [8], a system for
annotating C++ and Java is presented. Specifically, Java
and C++ grammars are mapped to corresponding DTDs
using a domain model. Consequently, semantic actions
have been added to custom made parsers in order to
annotate the input stream (source code) with XML tags
that are compliant to a domain mode! DTD. In this
approach, common structures between object oriented
languages are abstracted in a more generic DTD that aims
to model object oriented language constructs.

In [7], the InterMediate Language (IML) is proposed to
model and analyze source code. IML allows for
sophisticated data-flow and control-flow analyses to be
built. Extensions to IML have been discussed in [13],
where the Resource Graph (RG) is proposed to abstract
global information, such as call, type, and usage relations
for architectural design recovery.

in [6], he Graph Exchange Language (GXL) is
proposed as a data exchange format among software
analysis tools. GXL is designed for the representation of
typed graphs.

Other program representation schemes, such as ASG,
Program Dependence Graph, Rigid Standard Format
(RSF), Tuple-Attribute Language (TA) and AsFix,
represent the source code at different abstraction level, and
are used in different program analysis tools. A summary of
these techniques and a high-level exchange schema
between them is discussed in {3].

2.2, Objectification

In the relevant literature, several methods for
identifying an object model from a legacy system have
been defined. Overall, these research efforts focus on the
identification of objects and abstract data types (ADTs). In
[4], the identification of object model from RPG programs
is presented. Objects are centered around persistent data
stores, while related chunks of code in the legacy system
become candidate methods. In [9, 12], an object model is
discovered directly from procedural code written in C.
Candidate objects are selected by analyzing global data
types and function formal parameters. An evidence model
helps to attach the methods to a candidate class and choose
an appropriate object model. This evidence model is
consisted of state change information, return types, and
data flow patterns.

Another objectification method is presented in [18].
The method is based on documentation and informal
information, such as user manuals, requirement and design
specifications, and naming conventiors. However, for
legacy systems, the external information is not always
available, and this technique may not always be
applicable. The technique may also be used to analyze
source code informal information such as comments and
identifier names and from other non-linguistic aspects of
0O code.

Our approach extends the research presented in [9, 12].
Specifically, in addition to identifying objects based on
abstract data types, we aim to provide an iterative and
incremental process that allows for alternative object
models to be extracted form the procedural source code
and be evaluated conformance to specific software
engineering principles namely cohesion and coupling.
Moreover, we aim to discover an object model that
incorporates the object-oriented characteristics of a well-

391

designed system, namely the characteristics of class
inheritance, polymorphism and overloading.

3. Portable source code representation

3.1. Abstract syntax tree

At the lowest level of abstraction, Abstract Syntax
Trees (ASTs) have been successfully used by the data flow
analysis community in order to analyze and transform
source code entities. These trees contain information about
the source program [6] in the form of nodes and edges.
Such tree-like structures represent the source program in a
top-down matter. For example, C applications are
represented at the top level as applications,
modules, and files, while at lowest levels as
functions, declarations, macros,
expressions, and identifiers to name a few [1].
The internal nodes of the AST represent the non-terminal
phrases such as statements, operations,
functions, and the leaf nodes represent the terminal
symbols, such as identifiers, and empty
declarators. An edge denotes tree attributes, which
are represented as mappings between AST nodes. AST
nodes correspond to programming language constructs
such as If-Statements, For-Statements, and
While-Statements.

However, there are several issues that need be
considered for the successful application of ASTs with the
objective of developing flexible software analysis tools.
Namely, these issues include:

1. Decoupling the AST representation from specific

parsing environments by utilizing domain models for

programming languages,

Allowing for AST representations to be extended in

order to allow tools to be built in an incremental way,

3. Using a flexible, open and standard API so that such
analysis tools can be integrated into collaborative
software maintenance environments.

These minimal requirements could ensure that software
r-engineering tools can be quickly built, easily
maintained, and provide multiple views of the system
being analyzed.

S

3.2, Advantages of representing AST in XML

XML provides a unified framework for annotating
structured data. It is extensible, and can define meaningful
tags that link syntax with the semantics of the entities for a
given domain. Similar to AST, an XML document can be
thought of as a tree structure with nodes and edges
connected by a hierarchy relationship. Such a tree is called
a Document Object Model (DOM) tree.

Compared to the custom-made software extractors, the

TGk Fatninal %

e P add

i et
o o
[priasrs BRI ; L idrstvier-anl
v N -
/‘ %,
it [N——

i P —
] T PP RS 1 i . 1

<EXPRESSION-STATEMENT >
<EXPRESSION-STATEMENT-BODY>
<ASSIGNMENT surface-syntax="shuffle_level = num_decks * 26">
<ASSIGNMENT-TARGET surface-syntax="shuffle_level">
<IDENTIFIER-REF id-name="shuffle_level"/>
</ASSIGNMENT-TARGET>
<ASSIGNMENT-SOURCE surface-syntax="num_decks * 26">
<MULTIPLICATION surface-syntax="num_decks * 26">
<MULTIPLICATION-ARGS>
<IDENTIFIER-REF id-name="num_decks"/>
<INT-LITERAL int-long="NIL" int-radix="10"
int-unsigned="NIL" value="26"/>
</MULTIPLICATION-ARGS>
</MULTIPLICATION>
</ASSIGNMENT-SOURCE>
</ASSIGNMENT>
</EXPRESSION-STATEMENT-BODY>
</EXPRESSION-STATEMENT>

Figure 1. AST Structure for Expression Statement in C

DOM provides a standard API for programmatic access (o
XML documents, and manipulates the structural data. In
such a way, tool developers can consistently interact with,
and analyze XMI-based documents. In addition, the DOM
APIs are widely supported and can be bounded with
different programming languages, such as Visual Basic,
C++, Java, and JavaScript.

3.3. Mapping ASTs into XML

There are two main approaches to extract the Abstract
Syntax Tree of a source code fragment and encode it in
XML. The bottomup approach utilizes the concept of a
domain model definition that denotes the syntactic
structures of a programming language such as Pascal,
Fortran, C, C++ and Java. Tools that utilize this approach
include Refine for C, Datrix for C++/C/Java, JavaCC for
Java [8], and IBM VisualAge for C++ and Java [8].

The second approach, referred to as the top-down
approach, examines the grammar of the specific
programming language, and defines a standard logical
structure for an annotated Abstract Syntax Tree. By
following the rules, different parsers can extract the
necessary information from the source code and encode it
in a uniform and application-independent format. Using a
domain model definition extracted from the specification
of a given programming . language (i.e. ANSI C), we
employ a two step hybrid approach to define the logical
structure of the entities of an Abstract Syntax Tree in
terms of a Document Type Definition (DTD) document.

For our work, we define the structure of the Abstract
Syntax Tree for a specific language by developing a
domain model for this language. By recursively traversing
the hierarchy of the domain model entities, we are able to
map the given domain model to a Document Type
Definition (DTD). Specifically, the tree hierarchical
structure of the domain model is mapped to XML
elements and attributes. Figure 1 illustrates an Abstract
Syntax Tree that conforms to a given domain model and
represents the C assignment expression, “shuffle_level =

392

Figure 2. XML Element for Expression Statement in C

<?2xml version="1.0"7>
<!clement EXPRESSION-STATEMENT
(EXPRESSION-STATEMNT-BODY >
<!clement EXPRESSION-STATEMENT-BODY(EXPRESSION)>
<!element EXPRESSION(ASSIGNMENT IMULTIPLICATION I...)>
<!ciement ASSIGNMENT (ASSIGNMENT-TARGET.
ASSIGNMENT-SOURCE)>
<lelement ASSIGNMENT-TRAGET
(EXPRESSIONIIDENTIFIER-REFI...)>
<lelement ASSIGNMENT-SOURCE
(EXPRESSIONIIDENTIFIER-REF!L...)>
<!element MULTIPLICATION(MULTIPLICATION-ARGS)#>
<!element MULTIPLICATION-ARGS
(IDENTIFIER-REF*IINT-LITERAL*|..... >
<!atlist ASSIGNMENT surface-syntax CDATA #REQURIED>
<lattlist ASSIGNMENT-TARGET surface-syntax CDATA #REQURIED>
<lattlist ASSIGNMENT-SOURCE surface-syntax CDATA #REQURIED>
<latttist MULTIPLICATION surface-syntax CDATA #REQURIED>
<tattlist IDENTIFIER-REF id-name CDATA #REQURIED>
<lattiist INT-LITERAL int-long CDATA #REQURIED
int-radix CDATA #REQURIED
int-unsigned CDATAD #REQURIED
value NUMBER #REQURIED>

Figure 3. DTD for Expression Statement in C

num_decks * 26”. The non-terminal nodes are expression-
statement, assignment, and multiplication. The leaf nodes
represent terminal tokens, such as identifierref (identifier
reference), int-literal (integer). Similarly the edges
represent language construct attributes as mappings
between AST nodes. For example, the edge, named
assignment-source, is considered as an attribute of the
assignment construct that contains as a value a node of
type multiplication. Each node and edge in the AST is
mapped to an XML element tag as illustrated in Figure 2.
The attribute values of an AST node are mapped to the
corresponding attribute values of the XML elements.

Consequently, we focus on the enhancement and
generalization of the domain model and common schema
for the programming language being modeled. The domain
model for a given language and its corresponding DTD
can be enhanced with information such as unique identifier
numbers, linkage, and analysis information. Similarly,
domain model generalizations include the introduction of
elements that relate to system constructs such as system,
module, and component. In this context, the grammar of
the programming language being modeled defines the

XMLized AST Abstract Data
y Types <~
Annotation a Indentification —Ruleg,
" 3
Language Domain —_— — Work
Model & DTD | —Flows,
AST - - Evidence
Annotation Odtect Oriented | | Collection &
in CASE Tool Analysis
N
4 ~le
& = 2
Source Code Abstract Data Object Oriented Domain
Type Relation t=pi Model <3—] Knowledge
Analysis Evaluation 9

Figure 4. Proposed process for migrating procedural systems to object oriented platforms

Document Type Definition (DTD) and consequently the
organization of the XML document that models the AST
of a given: source code fragment. Conformance to the
grammar of the programming language being modeled,
ensures that the AST DTD specifies the logical structure
of the XML element hierarchy and relates to the syntactic
entities of the source code. Figure 3 illustrates the AST
DTD of the AST are presented in Figure 1.

4. A framework for migration to object
oriented platforms

The proposed migration process consists two major

phases. The first phase focuses on representing the source
code of the system being analyzed at a higher level of
abstraction than source text in the form of an annotated
Abstract Syntax Tree.
In order to achieve portability, source code is annotated by
XML tags, which conform to specific language models. So
far, we have developed domain models and XML source
code annotators for C, C++, and Java. Once the source
code is:annotated with XML tags, it can be transferred and
imported to an analysis tool as a valid XML document that
is compliant to the specific programming language domain
model DTD. In this context, the annotated Abstract Syntax
Tree of the original system being analyzed is the DOM
tree that is generated by parsing the XML document (i.e.
the annotated source code). Software analysis and re-
engineering tools can be developed on top of such DOM
Abstract Syntax Trees. This representation scheme is very
portable, since it can be parsed by any XML parser and
provides through the DOM tree APT an open interface to
build reengineering tools. These tools could be fully
interoperable since they share the same API as the W3C’s
DOM tree APL

The second phase aims at the extraction of an object-
oriented model by a series of iterative analysis steps
applied at the Abstract Syntax Tree level. The focal point
in this -step is the extraction of classes and the

393

identification of methods that can be attached to these
classes. To facilitate this extraction phase, the process
focuses on the analysis of global aggregate data types, and
formal parameter lists. In this context, global data types
and data types in formal parameter lists found in the
original legacy source code become primary candidates for
classes in the new object oriented system. Similarly,
functions and procedures in the original system become
primary candidates for methods and are attached to the
aforementioned identified classes. During the object model
extraction process, many alternative object models can be
considered. An evidence model [9] allows for the user to
evaluate alternative object models and generate the one
that possesses specific quality characteristics such as
minimal coupling between classes, maximal cohesion
within methods, and the incorporation of inheritance and
polymorphism in the extracted model. Other important
functions of the evidence model include the method
assignment conflict resolution (i.e to assist the user to
decide to which class a method is the best to be attached),
object model refinement (i.e to assist the user to decide the
appropriate aggregations and associations between
classes), and quality-based object-oriented source code
generation for the new migrant system (i.e. to assist the
user to generate readable and maintainable code).

Finally, taking into account of an application domain of
the code, the domain knowledge assists to evaluate the
extracted object model. The overview of the proposed
framework is illustrated in Figure 4.

5. Object oriented model discovery and
refinement

In the process of extracting an object-oriented model
from procedural source code, it is very important to be
able to identify those transformation steps and extraction
rules that allow for the generation of a high quality target

migrant system. To achieve this goal, we propose a
process that consists of specific migration steps namely
class creation, method identification, and object model
refinement including the identification of associations and
aggregations for the new migrant system. In the following
sections, we present a catalog of analysis and discovery
steps that can be used for extracting a quality object
model from procedural systems.

5.1. Class creation

In an object-oriented system, software is structured
around data rather than around services of systems. In the
search of an object mdel that can be extracted from
procedural source code, we first examine the global data
structures and global variables of the procedural system as
starting points to identify candidate classes. Based on the
usage of data types of formal parameter lists an be
collected into one aggregate class to minimize the
parameter size of the global variables or data types,
methods can be identified and attached to specific classes.
Moreover, highly related corresponding method that can
be generated from the function or procedure being
examined [5].

When more than one design decision is possible, a
collection of source code features is used to assist the user
to select the object model that optimizes specific metrics
and quality characteristics. The extraction steps re
discussed in more detail in the sections below.

5.1.1. Private member identification

Data type analysis

A structure is a collection of variables that can be of
diverse types. Similar to C++ classes, the structure of a
record groups the data items related to ech other. In
procedural code, for example, C struct and union are
constructs that can be used to generate aggregate data
structures, indicating a degree of functional and logical
coupling among a group of data and functions that are
using it. For the migmtion purposes, each data member of
a structure can be converted into the corresponding data
field of the class that corresponds to the structure or the
record of the procedural data type.

Variable analysis

There are three main scopes to access variables in a
program, namely, local scope, file scope and global scope.
According to their different scopes, variables can be
transformed to private data members of the identified
classes. In this context, variables that can only be
referenced within a function can be declared as private
data members of the class that encapsulates the method
that corresponds to the function being transformed.

394

Although C-++ allows for global constant definitions to
be accessible from within classes, in order to obtain a
better object oriented design for the migrant code, one
should aim to eliminate file and global scoped variables
that can be referenced from within a file or a whole
program. File scope and global scope variables are similar
in that they are used or updated by any function. Keeping
this scope of variables in the new object oriented system
would violate the principles of encapsulation and
information hiding. A possible solution is that each of
these variables can become a data field of a class that
relates to these variables or it encapsulates the functions
or part of functions that most often refer or update such
variables. Finally, orphan variables that cannot be
assigned to any class can be encapsulated in a container
class.

5.1.2. Method identification. The method
identification process focuses on the discovery of
functions from a procedural code that can be transformed
into methods in classes. The process of identifying
methods and associating them with a class is based on the
formal parameter type analysis, return type analysis and
variable usage analysis. For this task only aggregate data
types are considered, and simple ones such as int, char,
and float are ignored.

Parameter type analysis .

A formal parameter of a function indicates that .the
function references a data item of a particular type. In the
process of extracting an object model from procedural
code, one key analysis is to consider functions of the
procedural system as primary candidates for methods in
the new object oriented system. These methods can be
attached to a class that corresponds to the data type
appearing in the formal parameter list. In this context, a
function or a procedure may be able to be attached to
many different classes when more than one data type
exists in the formal parameter list. We then say that this
method produces an assignment conflict. An evidence
model can be used to evaluate the alternative designs and
suggest so the user can select the one that optimizes a
number of software engineering criteria namely cohesion
and coupling of the target system. Parameter type analysis
is one of the alternative ways to consider when we would
like to decide whether a function should be transformed to
a method, or to which a class should be attached. The
following points discuss such alternative types of
analyses.

Return type analysis

The return type of a function indicates that the function
updates variables of a specific type that appears in the
return statement. If this return type is also in the formal

parameter list, then this provides stronger evidence that

the function should be a method attached to the class
stemming from this data type. The reasoning behind this
analysis is that classes should encapsulate methods that
update the state of objects that belong to this class.
Moreover, this type of analysis provides valuable insights
as to which class the method should be attached to, when
no other information can be extracted from the formal
parameter list.

Variable usage analysis

Variable usage analysis allows for examining whether a
function or a procedure references a particular data type.
Based on the concept of information hiding, we are
interested in attaching methods to classes in a way that a
given method references as much as possible variables of
the same type as the class it is attach ed to. Variable usage
analysis provides such insights and counts as to how
many times a variable of a particular class is references
within a candidate method. This type of analysis is also of
particular importance when no information from formal
parameter list and return type analyses could be obtained
to decide which class a candidate method should be
attached to.

Metrics

Metrics play an important role in deciding to which class
a candidate method should be attached. Two particular
metrics Information Flow, and Function Point provide
valuable insight on the characteristics of the alternative
designs that can occur when considering all the alternative
ways of attaching methods to classes. In particular, when
an alternative design is evaluated, we are interested on
minimizing the Information Flow and the Function Point
metrics. The reasoning is that the Information Flow
metric provides a measure of the coupling between two
different modules (in this case classes). By minimizing
this metric, we obtain an object model that has minimal
coupling between its classes, which is a highly desirable
property. Similarly, the Function Point metric provides a
measure of the functionality delivered by a specific
module (a class and its methods in this case). For our
analysis we would like to minimize the functionality
delivered by a class and its methods that is to make it
highly cohesive (i.e. delivers a specific well-defined
functionality).

Function Splitting

One of the features in legacy procedural code is the size
of functions or procedures which tends to increase with
prolonged maintenance activities (i.e. when adding new
functionality, or when correcting errors). This situation
leads to the complex code that is difficult to understand,
maintain, and migrate. For the objectification process,
such long function or procedure should be sliced into
smaller chunks of code. The slicing criteria may vary, but

395

the safest way is to consider slicing according to the first
use of a data type that corresponds to a class that the
specific function is a candidate to be attached to as a
method. Function Point analysis can also be used to
confirm that a particular slice provides a highly cohesive
piece of code. Finally, source code informal information
such as comments and variable names provide also good
cues for splitting a function or a procedure into more than
one component [5].

5.2. Class association discovery

Inheritance, polymorphism, and overloading, are some
of the most important features of an object-oriented
design. To achieve a good object-oriented design from a
procedural legacy system, we have identified a number of
heuristic analysis rules that can be used to establish
associations between abstract data ‘types and assist to
solve the method assignment conflict problem. Below we
discuss the different heuristics to identify inheritance,
polymorphism, and overloading opportunities in the
extracted object model of the target migrant system.

5.2.1. Inheritance

Data field cloning

If two or more structures differ only with respect to few
fields, these can be the candidate subclasses of a more
general class. The common fields from those structures
are extracted and form a super class. Subclasses can
inherit from it with the addition of their own fields.

Data field mapping)

Certain functions copy values of the fields from one data
structure to the values of the fields in another data
structure. These two data structures may not be of the
same type, but they share common values. The relation of
these data structures can be identified as inheritance, by
extracting the common fields into a super class.

Function code cloning

The code clone analysis can identify inheritance where
two functions are identical with the only difference that
they operate on different data types. In this case, these
data types may become subclasses of the more general
type and the method can be attached to the subclasses that
are inherited from the more general class.

Data type casting

In cast operations, the compiler will automatically change
one type of data into another when appropriate. For
instance, when an integral value is assigned to a floating-
point variable, the compiler will automatically convert the
int to a float. Casting allows to make this type

conversion explicit, or to force it when it wouldn’t

normally happen. Implicit cast operation between two
data types suggests that these data types share common
data fields or are interchangeable. The inheritance
between these two abstract data types can be deduced in
that the casted type becomes the subclass of the type that
it is casted to.

Anonymous union type

Anonymous union types denote that their data members
share the same memory space. This feature provides a
subtle difference from the semantics of a C struct
where all members are referenced as single distinct group.
By contrast, only one union data member can be
referenced at a time, and different data members cannot
co-exist in the same time. In this context, the common
structure of the union data member can be extracted as a
superclass, while each of the union data members can be
transformed to a subclass. For example the Personnel, a C
struct as illustrated in Program 1 below, contains a
union type data field. The super-class, Personnel is
created and contains the field, age, other than the union
data member in the struct illustrated in Program 2, while
each of the union data fields becomes a subclass.

typedef struct|{
union {
int student;
int teacher;
}
int age;
} Personnel

p | struct definiti

class Personnel {
int age;

I

class Student public Personnel{
int student;};

class Teacher: public Personnel(
int teacher;};

Program 2. Refactoring ADT into Class inheritance in
C++

5.2.2. Polymorphism

Switch statement replacement

One of the most important characteristics of object-
oriented designs code is the limited use of switch (or
case) statements — Polymorphism provides an elegant
way to limit the use of long, complex and cumbersome
switch and case statements [5]. A switch statement in
the procedural code that uses in its evaluation condition a

396

type check code, can be replaced by polymorphic
methods. Specifically, each of the case statement bodies
may become a polymorphic method while the data type
codes that are used by he condition of the switch or case
statement can be considered as candidate dasses in the
new migrant system.

Conditional statement replacement

The branch of a conditional statement is executed
according to the return value of the evaluating condition.
When the type code is used in the conditional expression,
then each branch of the conditional statement can be
transformed to a polymorphic method, while the type
code used by the conditional expresion can be considered
as a candidate class in the new design.

void printIt (void *itToPrint,
{

int type)

employee *thisEmp;
market *thisMarket;

if (type == EMPLOYEE) {
thisEmp = itemToPrint;
/] e
}
if (type == MARKET) {
thisMarket = itemToPrint;
/[l

}
p 3. Conditional S Renlac:

Function pointer replacement

There are two ways functions can be invoked n C: by
name and by address. Invocation by name is by far the
most common one when the functions to be called are
decided at the compile time. Invocation by address is used
to determine at run time the concrete functions to be
executed. In this context, each possible function pointer
reference can become a class and their corresponding
source code can become a polymorphic method.

Generic pointer parameters replacement

The generic C pointer is denoted by “void *”. A *“‘void *”
variable can contain the address of any data type. Often
this technique is used to write highly generic functions
that need to deliver some small piece of non-generic
functionality. An example is illustrated in Program 3
below, where the address of struct data type in C,
along with a type code is passed into the generic function
as a parameter at the printIt () function. At run time,
the appropriate struct is accessed by address. In this case,
the generic function can be converted into a polymorphic
method whereas its behavior is determined according to
the type of the object that is applied upon. Moreover, the
type codes that can be referenced by the generic pointer

parameter can be transformed to classes in the new
migrant system.

5.2.3. Overloading

Source code cloning

When two or more functions are identified as clones with
minor differences in their structure and the data types they
use, these functions can be overloaded on the data types
they differ. The constraint is that these functions should
return the same data type.

Functions with common prefix or suffix name

Similar prefix and suffix names in functions or procedures
provide important cues for overloading. For example,
execl(), execv(), execlp(), execp() are functions to execute
unix processes in various ways and all can be overloaded
according to the type they operate upon.

Functions with union type parameter

The functions with a union type parameter may become
candidates for overloaded methods. The reason is that
these functiens usually have different behavior according
to the type of the union parameter they are applied upon.
These functions can be transformed into several
overloaded methods with different parameter types that
are obtained: from the original union structure definition.
Each overloaded method can operate on the specific case
of the original union structure.

6. Experiments

To investigate the usefulness of the migration process
and heuristics presented in this paper, three different
systems (AVL tree libraries, bash, tcsh) have been
annotated by XML tags and represented by DOM
Abstract Syntax Trees. A fourth system (WELTAB) has
been analyzed and migrated to an object oriented
platform, from its original C implementation.

6.1. Source code representation in XML

The domain model for the C programming language
was examined and C source code for various systems has
been represented in the form of an XML document and an
XML DOM tree.

We have used the Refine/C parser by Reasoning to
obtain an XML version of the C source code. In this
context, we could have used any parser for this task. We
have chosen the Refine parser because of the flexibility of
the API it offers and the rich domain model that defines in
the form of language entities taxonomy. For example, in
the C domain model we denote that multiplication
language construct is a subclass of arithmetic—

397

System Size of Source Code | Size of AST XML
AVL Library 164,401bytes 1,660,167 bytes
Bash 628,919 bytes 25,421,443 bytes
Tesh 930,644 bytes 47, 444,861bytes

Table 1. Comparison between the Size of Source Code
and AST XML Document

expression, which is in turn a subclass of the
expression construct. All language constructs can be
represented as classes in the language domain model.
Moreover, the domain model defines the attributes of
these object classes in terms of mappings from one object
class to another. The domain model also specifies which
of these attributes define the structure of a C Abstract
Syntax Tree and which attributes define annotations on
the tree [1].

Based on ANSI C grammar and leveraging the
concepts in C domain mo del [1], we have created an AST
XML structure that was specified in terms of a DTD. In
this context, Figure 3 illustrates part of the resulting DTD.
For this work we have constructed the XML DTD
manually, by examining the C language model. However,
on-going work in our group is focusing on extracting such
a DTD automatically using the IBM Eclipse framework,
the MOF XMI, and a UML description of the language
domain model. Table 1 provides some comparison
statistics related to the size of the original source codes
and the size of the generated XML documents. A detailed
discussion on representing source code as XML
documents can be found in [11].

6.2. Object oriented model discovery

For our experiments we have applied the proposed
objectification technique to extract an object model from
the WELTAB system. WELTAB was created in 1970 to
support collection, reporting and certification of US
federal election results. The system is consisted of a set of
C program and common data files. In total it has 190 files,
including 39 C source files, 26 Library files, 20 driver
files and rest of data files.

The object model identification process as discussed in
the previous sections is primarily based on data type
analysis, global variables, formal parameter analysis and,
data usage. First, all data types of global variables
declared in a file are collected. Then parameter lists are
examined and the corresponding data types are also
collected. All the collected data types become candidate
classes. For example, as it is illustrated in Program 4
below, the global variables in file state.h are grouped

together to form the private members of a class named
OFFICE.

long int form[6]([21];
int nform;
int outpos;

Program 4: Global Variables

The functions fetching or storing variables related to

the collected data types become primary candidates for
methods. A data type, along with the set of functions
operating on this data type form an object. Files, which
provide formatted input or output, are examined, and their
ftructure is used for orming classes. Private data
members can be obtained from local variables in
functions or fields in structures.
In Figure 5, the object model obtained from the original C
source code of the WELTAB system is illustrated. The
obtained object model is presented using UML and can be
refined by the software engineer using the UML editor
from the tool TogetherTM. The main unit for the migrated
WELTAB system is the class WELTAB, which is
associated with. the classes RECORD, OFFICE and
VOTEUNIT. Finally, the migrant C++ source code is

“ATaIee Tht 1R
o - sorticanam :chm 113
~aloch:cnem (4
-otzmt:long int
npeeeing
-notsiciing
-maud:int
-nomaine
-acmaint
mlactn:che {57
Saaie Tow InE
+astal cuch; chx
sotottmE:long int

i
%

e
satrigEc: 1ong int
STl long int
rtantasx: chan

NI

i

iR

soutroanc int
stanmaint
s talactn:che
oo vaia

Tmatitiveid
mtmisvald

mamotticiesia
smanam via
spensnavaa
+mtAnndvoid
smalactnivaid
|emeort:vaia
st vaa
stottivaid
sgbandvaid
squdnd iveid
sgtomavad
weanavaa
sutdad voia
sutersivald
sutomaveia
smmangolivaid
e mmouctme:void
mlovcmAdvad
(eovicivaia

Figure 5. Object Model in UML Diagram

witnmecha {29
~imitnoriat

automatically generated, by using the extracted object
model and the DOM Abstract Syntax Tree. Some
automatically generated sample code is illustrated in
Figure 6.

7. Conclusion

In this paper, we presented a framework to migrate
systems written in procedural code into an object-oriented
platform. The software analysis is based on a portable
XML source code representation that utilizes a domain
model and consequently maps the entities of the
programming language domain model to a DTD. The
XML document effectively corresponds to an AST and
has a standard structure and API. We consider that such
an XML based representation of the source code can be
thought of as a first step towards CASE tool
interoperability.

Moreover, we presented a process and a list of
heuristic steps that allow for a quality object model to be
extracted from the legacy source. The proposed process is

“omesg:long InE
~emppt:long int
| -cmprac: 1ong int

-

R

I

Figurc 6: Sample Source Code Generated from Object
Model Discovery

incremental and iterative up to the point that the user is
satisfied with the quality characteristics of extracted
object model. The quality characteristics we consider in
this work focus on the minimization of coupling and the
maximization of cohesion in the derived object model.
The proposed technique has been applied for the
migration of various C systems to C++ at the IBM Center
for Advanced Studies and it is shown to be scalable and
extensible. Moreover, by following such a migration
framework, reusable components can be identified and be
wrapped using CORBA or SOAP wrappers so that, they
can be invoked as Web services in Web-enabled
environments.

Future extensions on the work presented in this paper
may focus on two directions. The first direction is on
investigating the use of the XMI MOF model in order to
obtain a standardized domain model DTD for a given
programming language. The second direction is on
extending the heuristic rules in order to obtain a more
fined object model. his work is conducted in
collaboration with TBM Center for Advanced Studies at
the IBM Toronto Lab.

8. References

[m Reasoning Systems, “Refine/C Programming’s
Guide”, June 1995.

399

(2]

{31

(4]

[5]

[61
(7N

(8]

[91

[10]

(1]
(12]

Letha H. Etzkorn, Carl G. Davis, “Automatically
Identifying Reusable OO egacy Code”,
Computer, IEEE, October, 1997.

Michael W. Godfrey, “Defining, Transforming,
and Exchanging High-Level Schemas”, h
WCRE’2000.

De Lucia, G.A. Di Lucca, A.R. Fasolino, P.
Guerra, S. Petruzzelli, “Migrating Legacy
Systems toward Object-Oriented Platforms”,
1997, IEEE.

Martin Fowler, “Refactoring: Improving the
Design of Existing Code”, Addison-Wesley,
2000.

R. C. Holt, et al., “GXL: Toward a Standard
Exchange Format”, 7" WCRE 2000.

R. Koschke, J.-F. Girard, and M. Wiirthner, “An
intermediate representation for integrating
reverse engineering analyses™ , 7" WCRE’2000.
E. Mamas, K. Kontogiannis, “Towards Portable
Source Code Representation Using XML”, i
WCRE’2000.

P. Patil, Y. Zou, K.Kontogiannis, J. Mylopoulos,
“Migration of Procedural Systems to Network-
Centric Platforms”, CASCON 1999.

Jorg Czeramski, et al, “Data Exchange in
Bauhaus™,. 7' WCRE’2000.
hutp://www.swen.uwaterloo.ca/~yzou/AST/.

K. Kontogiannis, P. Patil, *“Evidence Driven
Object Identification in Procedural Systems’’.
STEP’99, September 1999, pp. 12-21.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

