
Measuring clone based reengineering opportunities

Magdalena Balazinska1, Ettore Merlo1, Michel Dagenais1, Bruno Lagüe2 and Kostas Kontogiannis3

1Department of Electrical and Computer Engineering,École Polytechnique de Montr´eal,
P.O. Box 6079, Downtown Station, Montreal, Quebec, H3C 3A7, Canada

http://www.casi.polymtl.ca
e-mail: magda@casi.polymtl.cafettore.merlo,michel.dagenaisg@polymtl.ca

2Bell Canada, Quality Engineering and Research Group
1050 Beaver Hall, 2nd floor, Montreal, Quebec, H2Z 1S4, Canada

e-mail: bruno.lague@bell.ca
3 Department of Electrical and Computer Engineering, University of Waterloo

Waterloo, Ontario N2L 3G1, Canada
e-mail: kostas@amorgos.uwaterloo.ca

Abstract

Code duplication, plausibly caused by copying source
code and slightly modifying it, is often observed in large
systems.

Clone detection and documentation have been investi-
gated by several researchers in the past years. Recently,
research focus has shifted towards the investigation of soft-
ware and process restructuring actions based on clone de-
tection.

This paper presents an original definition of a clone clas-
sification scheme useful to assess and measure different sys-
tem reengineering opportunities. The proposed classifica-
tion considers each group of cloned methods in terms of the
meaning of the differences existing between them.

The algorithm used for automatic classification of clones
is presented together with results obtained by classifying
cloned methods and measuring reengineering opportunities
in six freely available systems whose total size is about 500
KLOC of Java code.

1 Introduction

Source code reuse in object-oriented systems is made
possible through different mechanisms such as inheritance,
shared libraries, object composition, and so on. Some de-
signs, namely the well-known design patterns [7] particu-
larly facilitate reuse. Nevertheless programmers often need
to reuse components which haven’t been designed to be

reused. This happens mostly when software systems go
through the expansion phase and new requirements have to
be satisfied periodically [7].

When such a situation arise, ideally, the modules in-
volved should be restructured and the component properly
reused. Even better, the whole system could be reorganized,
classes could be refactored into general components and
their interfaces rationalized. Such a process is known
as consolidation and allows a system to become more
flexible and easier to expand [7]. Unfortunately, often the
process used instead is ”cut-and-paste”, i.e. performing
some sort of reuse by manual source code inlining. This
other approach produces what we call cloned pieces of
code, or clones which will undergo independent successive
maintenance.

Previous research has studied both the detection and the
use of clones for widely varying purposes including pro-
gram comprehension, documentation, quality evaluation or
system and process restructuring. Several techniques have
been investigated in the literature for the detection of clones
in software systems. Some techniques are based on a full
text view of the source code. Johnson [8] has developed a
method for the identification of exact duplications of sub-
strings in source code using fingerprints whereas Baker’s
tool, ”Dup” [2], reports both identical sections of code and
sections that differ only in the systematic substitution of one
set of variable names and constants for the other.

Other approaches, such as those pursued by Mayrand
et al. [13] and Kontogiannis et al. [10] focus on whole se-

1

quences of instructions (BEGIN-END blocks or functions)
and allow the detection of similar blocks using metrics.
Those metrics relate to aspects of sequences of instructions
such as their layout, the expressions inside them, their con-
trol flow, the variables used, the variables defined, etc.

In [10], Kontogiannis et al. detect clones using two other
pattern matching techniques namely dynamic programming
matching which finds the best alignment between two code
fragments, and statistical matching between abstract code
descriptions patterns and source code.

Yet another clone detection technique relies on the com-
parison of subtrees from the AST (Abstract syntax tree) of
a system. Baxter et al. [3] have investigated this technique.

Several applications of clone detection have also been
investigated, Johnson [8] visualizes redundant substrings
to ease the task of comprehending large legacy systems.
Mayrand et al. [13] as well as Lag¨ue et al. [11] document
the cloning phenomenon for the purpose of evaluating
the quality of software systems. Lag¨ue et al. [11] have
also evaluated the benefits in terms of maintenance of the
detection of cloned methods. Finally, Baxter and al. [3]
restructure systems by replacing clones with macros to re-
duce the quantity of source code and facilitate maintenance.

The purpose of our research is to investigate the use
of clones as a basis for those reengineering actions which
are useful to the maintenance of systems. Examples of
such reengineering activities include source code transfor-
mation, migration from procedural to object-oriented, or
simply code restructuring. To achieve this goal, the assess-
ment of reengineering opportunities based on clone infor-
mation have been investigated. Indeed, before performing
any concrete reengineering, the opportunities for such activ-
ities have to be determined. Such opportunities have been
defined as groups of cloned methods whose characteristics,
namely the differences between the copies, can give rise to
a concrete reengineering action (parameterization, delega-
tion, moving operations in the class hierarchy, etc.).

To support the approach, a new classification scheme has
been developed and is presented in Section 2. It has been
implemented in a tool, SMC (Similar Methods Classifier)
using algorithms presented in Section 3.

SMC has been applied to six software systems account-
ing for approximately 500 000 lines of code. Section 4 de-
tails the experiment conducted whereas Sections 5 and 6
present and discuss the results. From those results, a defi-
nition of a high impact category is developed in Section 6.
Such categories are those which are particularly favorable
to reengineering based on clone information. The value of
the detection of such categories is also discussed.

2 Cloned methods classification

A clone classification scheme has been presented by
Mayrand et al. in [13]. It defines an ordinal scale of eight
cloning levels based on the degree of similarity between
cloned functions. This degree is a function of the names
of the clones, their layout, the expressions inside them and
their control flow. This classification scheme has been de-
signed for software evaluation purposes.

For reengineering activities based on clone information,
other characteristics have to be taken into consideration. For
a reengineering action to be performed, a detailed knowl-
edge of the characteristics of clones, namely the differences
between copies of a method have to be available. Therefore,
we have developed a new classification scheme by taking
the meaning of such differences into consideration.

The classification scheme has been determined after
manually examining some 800 cloned methods, extracted
from six freely available Java software systems which are
described in Section 4. The clones used for the elaboration
of the classification were extracted from the systems using
Patenaude et al.’s [17] approach which extracts and groups
similar methods using metrics.

During the observation phase, the differences existing
between clones have been listed. It has been noted that
many clones are strictly identical or contain very superfi-
cial differences, i.e. differences that affect neither the out-
put produced by the method nor its behavior. Therefore,
categories ”Identical” and ”Superficial changes” have been
defined for such clones.

For the other differences, three categories clearly ap-
peared: differences affecting only one lexical token at a
time, differences affecting sequences of tokens and differ-
ences affecting attributes of methods (public, static, syn-
chronized, list of thrown exceptions, etc.). The first group
of differences have been further subdivided using the mean-
ing of the single token differences (type of a variable, name
of a parameter, etc.). This has lead to the following defini-
tions of categories 3 through 9:

� Called methods: The single-token differences existing
between the clones correspond to method calls. Stated
differently, when clones differ only in some method
calls, they belong to this category.

� Global variables: The single-token differences corre-
spond to non-local variables or constants.

� Return type: The single-token difference corresponds
to the return type.

� Parameters types: The single-token differences corre-
spond to parameter types.

� Local variables: The single-token differences corre-
spond to the types of local variables.

2

Table 1. Cloned methods classification
Category Type of clones
number
1 Identical
2 Superficial changes
3 Called methods
4 Global variables
5 Return type
6 Parameters types
7 Local variables
8 Constants
9 Type usage
10 Interface changes
11 Implementation changes
12 Interface and implementation changes
13 One long difference
14 Two long differences
15 Several long differences
16 One long difference, interface

and implementation
17 Two long differences, interface

and implementation
18 Several long differences, interface

and implementation

� Constants: The single-token differences correspond to
constants hard-coded in the methods.

� Type usage: The single-token differences correspond
to types explicitly manipulated in expressions such as
”instanceof” or ”typecast”.

Some clones differ in several of the previously de-
fined single token entities. For those clones, categories 10
through 12 have been defined:

� Interface changes: The single-token differences corre-
spond to called methods and/or global variables and/or
parameters types and/or return type.

� Implementation changes : The single-token differ-
ences correspond to types of local variables and/or
constants used and/or types explicitly manipulated.

� Interface and implementation changes: The single-
token differences correspond to any difference used in
the definition of the previous categories.

For the differences affecting sequences of tokens, it has
been noted that most cloned methods either contain only
one or two of such differences or are completely different.
Therefore categories 13, 14 and 15 have been defined as
follows:

� One long difference: Only one entity (an expression, a
statement or other) is affected by a long difference.

� Two long differences: Exactly two entities are affected
by long differences.

� Several long differences: Three or more entities are
affected by long differences.

Some entities are more important in size than others,
though. For two completely different methods, one could
say that they differ in one entity, the whole method, but this
wouldn’t be of much help for reengineering. Therefore, we
have defined a threshold for the maximum percent of differ-
ences in a method. We have used an arbitrary threshold of
30% but this threshold can be further refined.

It has also been noted that many cloned methods differed
in both single token and sequences of tokens differences.
Hence, categories 16, 17 and 18 have been defined as the u-
nions of the definitions of the three previous categories (13,
14 and 15 respectively) with category 12 (”Interface and
implementation changes”).

Finally the differences affecting the list of thrown ex-
ceptions and the attributes of methods (public, static, etc.)
have been kept as parameters for the reengineering phases
because they don’t affect directly the choice of appropriate
reengineering actions.

The categories defined are summarized in Table 1. All
similar methods according to the metrics, that didn’t cor-
respond to any of the previous definitions are currently not
categorized and kept for further research. Nevertheless, the
analysis of some distributions of cloned methods (c.f. Sec-
tion 4) showed that the classification covers a wide spectrum
of cloning cases.

Moreover, the results presented in Figure 7 show that
when several systems are considered, there exists clones
of every category defined by the scheme except category
7 (”Local variables”) as will be discussed later. This result
validates the choice of the categories.

3 Comparison and classification algorithms

This section presents the algorithms that allow to classify
similar methods automatically. We first describe the source
code representation used to get information on the meaning
of the result of comparisons. We then discuss, the choice of
the comparison algorithm. We finally present the compari-
son algorithm followed by the classification algorithm.

3.1 Source Code Representation

The first step towards analyzing a software system is to
represent the code in a higher level of abstraction. A number
of program representation schemes have been proposed in

3

STATEMENT
IF

STATEMENT
CALL

PREDICATE
GT

STATEMENT
ASSIGNMT

IDENTIFIER
REFERENCE

LITERAL
INTEGER

IDENTIFIER
REFERENCE

IDENTIFIER
REFERENCE

IDENTIFIER
REFERENCE

ARITHMETIC
ADD

IDENTIFIER
REFERENCE

ERR
COUNT

OPTIONSHOW_
MENU

0OPTION

LITERAL
INTEGER

ERR
COUNT

1

NODE
NAME

Legend

= AST node

condition then-clause else-clause

assignment
-rhs

assignment
-lhs

caller-listcallee-idargument2argument1

integer-valuedefined-name defined-name defined-name defined-name

arguments

arguments

defined-namedefined-name

attribute name

= Link from parent
to child via a
named attribute

Figure 1. A sample AST.

the relevant literature. These include frames [16], annotat-
ed data and control flow graphs [21], Abstract Syntax Trees
[15], logic formulas on program dependencies [5] and, re-
lation tuples based on a language domain model [14].

We have chosen as a program representation scheme, the
program’s annotated abstract syntax tree (AST). We believe
that this scheme is most suitable because:

� it does not require any overhead to be computed as it
is a direct product of the parsing process and,

� it can be easily analyzed to compute several data and
control flow program properties

The tree is created during the parsing phase, and is anno-
tated in a post-processing phase where linking information
is added. An example AST is illustrated in Figure 1

3.2 Code Segmentation, Preprocessing

One of the important issues in Code Cloning detection is
the segmentation of the source code. This issue relates to
which parts of the system are selected for matching. One
technique is to use a sliding window, and try to match all
possible combinations of source code text which may be
of a certain length (i.e. the length of the sliding window).
Another way is to use some type of preprocessing so that
potential clones can be identified first.

In Buss et. al [4] a metrics based approach has been pro-
posed. The metrics based matching technique is based on
the assumption that if two code fragments are clones, then
they share a number of structural and data flow character-
istics that can be effectively classified by these metrics. It
has been shown that the metrics-based approach provides
a fast approximation of the code cloning recognition prob-
lem. Experimental results [9] have indicated that we can ef-
fectively retrieve 60% of the code cloning instances sought,
and maintain aprecisionof approximately 41.0% at the fi-
nal results. The drawback on the speed and ease of use in
the metrics based method is that at higherrecall levels noise
can be introduced and lowprecisionvalues be obtained. At
a recall level of 70.0% theprecisioncan drop to 19.2%.
Moreover, the metrics based clone recognition does not of-
fer any explanation or classification whatsoever on the na-
ture or the category of the cloning. In this context, we can
use the metrics based approach for a fast selection of po-
tential clones, at a pre-processing stage in order to limit the
search space when using the more accurate but more com-
putationally expensive method of dynamic programming.

3.3 Comparison algorithm

The comparison algorithm used is based on Kontogian-
nis et al.’s Dynamic Pattern Matching algorithm [10]. The
main difference resides in the granularity of the comparison
of the code fragments. Kontogiannis et al. use whole
source code statements as comparison units. Statements
are first abstracted into feature sets. The matching is then
realized on the feature vectors corresponding to blocks of
statements. The features used include metrics values and
specific data- and control-flow properties. The approach
described in this paper uses the tokens of the programming
language as comparison units. Only in a later phase,
sequences of tokens are constructed thus achieving a finer
granularity of analysis.

The dynamic matching is performed on vectors corre-
sponding to the sequences of tokens forming the code frag-
ments. Lett1i represents the i-th token of the first code frag-
ment andt2j represents the j-th token of the second code
fragment, with i and j no greater than the total amounts of
tokens of each code fragment. The vectors of tokens cor-
responding to the code fragments can be defined asv1 =<

t11; t12; :::; t1n > andv2 =< t21; t22; :::; t2m > where n
and m are the lengths of the code fragments. We also have
v1[i] = t1i andv2[j] = t2j .

From the vectors, a grid is constructed which holds the
partial results of the dynamic matching. The dynamic algo-
rithm takes as input the grid and both vectors v1 and v2. It
returns the distance between v1 and v2 as well as the updat-
ed grid containing the details of the match.

4

1 function match(c: Grid; v1,v2: Sequence)=> (cost: Integer)
2 for (i 1 to size(v1))
3 for (j 1 to size(v2))
4 tempCost computeCost(v1[i],v2[j])

5 c[i][j].cost min

8><
>:

c[i � 1][j]:cost + 1;

c[i][j � 1]:cost+ 1;

c[i � 1][j � 1]:cost+ tempCost

6 c[i,j].previous

8
>>><
>>>:

c[i� 1][j];

c[i][j � 1];

c[i� 1][j � 1] depending on

the minimal cost
7 return c[size(v1)][size(v2)]

Figure 2. Core method of the matching algo-
rithm.

The distance between two vectors of tokens is defined as
the minimal amount of tokens that have to be inserted or
deleted to transform one vector into the other.

The core of the algorithm which is defined in function
matchis presented in Figure 2.

Functionmatchiterates over all the elements of the grid
and computes the distance for consecutive sequences s1 and
s2 using previously computed distances between shorter se-
quences as well as the cost of matching the current tokens
< tail(s1) > and< tail(s2) >. This latter cost is deter-
mined bycomputeCost.

FunctioncomputeCostcompares two tokens t1 and t2 by
testing for equality of types and values. Two nodes match
perfectly if they belong to the same type, except if they’re
literals or identifiers. Then they must also have the same
value. For example, the token of type ”if” can only be equal
to another token of type ”if” whereas an identifier can only
be equal to another identifier whose string value represents
the same sequence of characters.

FunctioncomputeCostreturns 0 if the tokens are equal
and can be matched. Otherwise, it returns 2 (the equivalent
of the cost of removing one token and then adding the other
instead).

Figure 3 presents an example of grid after matching
two code fragments. Those fragments have been extracted
from real cloned methods presented in Figure 4. The
numbers placed at each grid[i][j] are the distances between
the sequence<v1[1],...,v1[i]> and<v2[1],...,v2[j]> The
optimal match can be represented as a path in the grid:
p = <<0,0>, <1,1>, <1,2>, <2,3>, <2,4>, <3,4>>

The optimal match determined by the algorithm is thus
represented as a path in the grid where each token is
associated with an action: insertion (horizontal arrow),
deletion (vertical arrow) or match (diagonal arrow).

0 1 2 3 40 1 2 3 40 1 2 3 40 1 2 3 4

1 0 1 2 3

2 1 2 1 2

3 2 3 2 3

pu
bli

c
int ge

tS
oT

im
eo

ut

sy
nc

hr
on

ize
d

public

int

getSoLinger

Figure 3. Grid after matching the code frag-
ments v1 = <public,int,getSoLinger > and v2
= <public,synchronized,int,getSoTimeout >

from the methods presented in Figure 4. The
arrows show the path of the optimal match
between the code fragments.

The comparison isn’t completely over at this point,
though. Indeed, in order for the classification to proceed,
the match has to be defined in terms of differences in the
code fragments. The differences can be represented as
pairs of sequences of consecutive tokens taken from each of
the code fragment and associated with an action (insertion,
deletion or replacement). The set of all the actions allow to
transform one code fragment into the other.

Such sequences can nevertheless easily be extracted
from the grid by walking the optimal match path from the
last element (grid[size(V1)][size(V2)]) to the first element
(grid[0][0]). Consecutively inserted, deleted or matched
tokens are grouped into sequences and the corresponding
action is registered. Later, consecutive actions of inser-
tion/deletions are changed for replacement actions yielding
the final result.

For the example of Figure 3 such a transformation
returns the optimal match as:<f<public>, <public>,
perfect matchg, f<�>, <synchronized>, insertiong,
f<int>, <int>, perfect matchg, f<getSoLinger>,
<getSoTimeOut>, replacementg>. Figure 5 gives the
result for the complete methods.

The whole comparison algorithm, as presented has a
complexity of�(n �m), where n and m are the respective
sizes (numbers of tokens) of the two code fragments.
Usually, for similar methodsn � m and the complexity
can be approximated by�(n2). This complexity can easily
be reduced by using a ”beam search” with an appropriate
threshold, i.e. discarding all the matching alternatives
that demand the deletion and/or insertion of an amount

5

———— Copy 1 —————–
public int getSoLinger() throws SocketExceptionf

Object o = impl.getOption(SocketOptions.SOLINGER);
if(o instanceof Integer)f

return((Integer) o). intValue();
g
else return - 1;
g
———— Copy 2 —————–
public synchronized int getSoTimeout()

throws SocketExceptionf
Object o = impl.getOption(SocketOptions.SOTIMEOUT);
if(o instanceof Integer)f

return((Integer) o). intValue();
g
else return 0;
g

Figure 4. Example of cloned Java methods.
Example taken from JDK 1.1.5. File Sock-
et.java, class Socket.

of tokens greater than the threshold. This optimization
is possible because already similar fragments of code are
compared and the optimal match lies necessarily not far
from the diagonal of the grid.

3.4 Classification algorithm

Once the optimal match between two code fragments has
been found, the classification can proceed. During this sec-
ond phase, each previously found difference is examined
and its type is determined using the information provided
by the AST. The set of all the types of differences deter-
mines the category of the cloning relation. The following
algorithm is used:

1 function classify(s: Sequence)=> (type: TypeCategory)
2 setTypes =?
3 forall pairs p of sequences in s
4 if (action(p) 6= perfect match)
5 setTypes

S
typeDifference(p)

6 return determineCategory(setTypes)

This algorithm takes as input the pairs of sequences with
their actions as a sequence of 3-tuples. It returns the type of
the category of clones.

FunctiontypeDifferencetakes a pair of sequences of to-
kens and determines the type of the programming language
entity (variable, type, expression, etc.) corresponding to the
sequences, using informations from the ASTs. The type of
this entity directly determines the type of the difference.

<public> in the original method
and<public> in the cloned method Perfect match
� and<synchronized> Insertion
<int> and<int> Perfect match
<getSoLinger> and<getSoTimeout> Replacement
< () throws ... SocketOptions .>
and
< () throws ... SocketOptions .> Perfect match
<SO LINGER> and<SO TIMEOUT> Replacement
<) ; ... else return>
and<) ; ... else return> Perfect match
<- 1> and<0> Replacement
<; g> and<; g> Perfect match

Figure 5. Optimal match of the code frag-
ments of Figure 4.

FunctiondetermineCategoryexamines all the types of
the differences and determines the category using the cate-
gory definitions presented in Section 2.

If we consider the methods presented in Figure 4, with
their optimal match presented in Figure 5 we see that the
two methods have four differences. The first one is the in-
sertion of the attribute synchronized to the second methods.
This difference affects the attributes of the method and, as
explained previously, is not used during the classification.
The second difference is the modification of the name of
the methods, its type is thus MethodName. The next dif-
ference, is a substitution of a non-local constant. The type
of this difference is GlobalVariable. Finally, the last differ-
ence is a substitution of constants. It’s type is thus Con-
stant. The set of types of differences is then: MethodName,
GlobalVariable and Constant. Therefore, the corresponding
category is ”Interface and implementation changes”.

4 Experimental set-up

The SMC (Similar methods classifier) tool implements
the classification algorithm. It has been developed in Ja-
va, using jdk 1.1.7. For the ASTs, SMC uses a java parser
generated with javacc version 8 (first pre-release).

We have applied SMC to six freely available Java soft-
ware systems of some 500 000 lines of code.

� JDK [18], a development kit from Sun Microsystems
with 145 000 lines of code.

� SableCC [6] a parser generator from McGill Universi-
ty with 32 000 lines of code.

� ANTLR [12] a parser generator from MageLang Insti-
tute, with some 25 000 lines of code.

6

Source code

AST

Parsing

Tokens

Lexical analysis Metric computation

Metrics vectors

Clone analysis

Clone clusters

Clone classification
(with SMC)

distributions
Clone/Opportunity

Figure 6. Process used for the experiment.

� SWING [19] a user interface toolkit from Sun Mi-
crosystems accounting for 215 000 lines of code.

� KFC [22] a user interface toolkit by K. Yasumatsu of
57 000 lines of code.

� HTTPCLIENT [20] a web browser made by
R.Tschalaer with 21 000 lines of code.

The process used for the experiment is depicted in Fig-
ure 6. For each system, we have first applied Patenaude et
al.’s approach [17] to find clusters of similar methods us-
ing metrics. We have used the output of this tool as input
to SMC. For each cluster of similar methods, SMC deter-
mined groups of cloned methods and the category of their
cloning relation.

The experiment was conducted on a Pentium Pro
180MHz with 64MB RAM running Linux version 2.0.27.

5 Results

The goal of the experiment has been to measure, in
several systems, reengineering opportunities based on clone
information. Opportunities have been defined as groups of
cloned methods to which a concrete reengineering action
can be applied.

Therefore, several values have been computed during the
experiment. The quantities of groups of methods that be-
long to each category of clones have been determined. For

each of those groups, we have counted the number of meth-
ods involved and their size in lines of code. We have also
added the measures obtained for each group in order to get
the total numbers for each category of clones.

Some methods were involved in more that one clone re-
lation. We have computed the different measures counting
methods in every category separately. The results for the
different categories of clones should thus be considered sep-
arately. Those results can be found in Table 2.

5.1 Overall results

The detailed results obtained (c.f. Table 2) show the
amounts of opportunities in the different categories of
clones defined (column ”Groups”) as well as the amounts
of methods and code corresponding to clones of each cate-
gory.

Figures 7 through 13 show the distributions of oppor-
tunities in categories, for the systems analyzed. Figure 7
shows the distribution when the totals of the opportunities
are considered. A novel result appears from those graphs.
Indeed, when the overall results are considered category 1
(”Identical”) contains significantly more opportunities than
any other category. This is also true for two of the systems
considered separately (ANTLR and SWING). In the oth-
er systems, except JDK, category 1 appears in the first two
categories. Such a result is very interesting since identical
clones will obviously be the easiest to manipulate.

The next three categories, in the histogram of Fig-
ure 7, are categories 16 (”One long difference, interface
and implementation”), 12 (”Interface and implementation
changes”) and 3 (”Called methods”). This result is strongly
influenced by results from SWING whose size is signifi-
cantly greater (200 KLOCs) than the size of the other sys-
tems (300 KLOCS altogether). If we consider instead the
first five categories in each system and determine the cat-
egories that come up most often in those first five, we can
show that categories 16 and 3 remain most important but
instead of category 12, category 4 seems to play a leading
role. Two conclusions can be drawn from this result:

0

20

40

60

80

100

120

1 16 12 3 4 10 18 17 13 2 6 15 14 11 8 5 9 7

N
um

be
r

of
 o

pp
or

tu
ni

tie
s

Classes of clones

Figure 7. Overall distribution of opportunities.

7

0

20

40

60

80

100

16 3 17 18 1 6 12 4 10 2 11 13 14 15 8 5 7 9

N
um

be
r

of
 o

pp
or

tu
ni

tie
s

Classes of clones

Figure 8. Distribution of opportunities in JDK.

0

20

40

60

80

100

1 14 18 13 2 8 12 15 16 17 3 4 5 6 7 9 10 11

N
um

be
r

of
 o

pp
or

tu
ni

tie
s

Classes of clones

Figure 9. Distribution of opportunities in
ANTLR.

0

20

40

60

80

100

1 12 3 16 4 10 18 17 13 2 15 14 11 6 8 9 5 7

N
um

be
r

of
 o

pp
or

tu
ni

tie
s

Classes of clones

Figure 10. Distribution of opportunities in
SWING.

0

20

40

60

80

100

16 1 4 3 10 12 13 18 17 6 14 15 2 5 7 8 9 11

N
um

be
r

of
 o

pp
or

tu
ni

tie
s

Classes of clones

Figure 11. Distribution of opportunities in
KFC.

0

20

40

60

80

100

10 1 4 6 16 11 5 17 2 3 7 8 9 12 13 14 15 18

N
um

be
r

of
 o

pp
or

tu
ni

tie
s

Classes of clones

Figure 12. Distribution of opportunities in
SABLECC.

0

20

40

60

80

100

1 3 8 17 2 4 5 6 7 9 10 11 12 13 14 15 16 18

N
um

be
r

of
 o

pp
or

tu
ni

tie
s

Classes of clones

Figure 13. Distribution of opportunities in
HTTPCLIENT.

� The overall results do not reflect the distributions of
opportunities in the individual systems separately.

� Besides category 1, opportunities tend to belong to cat-
egories 16 (”One long difference, interface and im-
plementation”), 3 (”Called methods”) and 4 (”Global
variable”);

Therefore, reengineering categories 1, 16, 3 and 4 will
have a large impact on all systems.

If we consider the size of the source code involved in
clones in the different categories and thus in the different
reengineering opportunities, similar categories appear in the
lead (1, 16, 12 and 3). This result is interesting because
it shows that categories containing most opportunities also
cover the most of the source code.

Finally, it can be noted from the results of Table 2 that
category 7 (”Local variable types”) is empty in all the sys-
tems. Hence, in the systems investigated, local variables
types are never modified without side effects in the bodies
of the methods. This category might therefore be removed
from the scheme.

5.2 Results dependent on systems

The previous results hold independent of the system an-
alyzed. Nevertheless, many characteristics of the measures

8

of reengineering opportunities depend on systems. Indeed,
histograms from Figures 8 through 13 show that distribu-
tions of opportunities vary with systems. Some systems
such as SABLECC have all their clones in a few categories
whereas other systems like JDK have their clones more
evenly distributed between categories. This new result is
extremely important in that it implies that design reengi-
neering decisions based on clone information necessitate
the detailed analysis of clone distribution in systems.

5.3 Impact of different opportunities

Another original result is that all opportunities are not
equivalent. Indeed, opportunities vary in the amount of
methods and amount of code they involve. Those two latter
measures aren’t relative either. The following three exam-
ples prove this point:

� If the results of Table 2 are considered, category 8 from
JDK contains 2 opportunities that involve 54 lines of
code whereas category 2 contains 4 opportunities that
involve only 42 lines of code. Thus opportunities vary
in the amount of source code they involve.

� Category 8 from ANTRL contains 2 opportunities cor-
responding to 4 methods whereas category 12 with
also 2 opportunities affects as much as 29 methods.
Hence, opportunities contain different amounts of
methods.

� Finally, even though category 1 from SWING contains
as much as 3332 lines of code, it contains only
245 methods. This is less than category 12 which
contains only 2729 lines of code but as much as 269
methods. Therefore, amounts of methods contained in
categories are independent of the corresponding size
in lines of code.

6 Discussion

6.1 Clone based reengineering

In the previous section, we have measured reengineering
opportunities and determined their characteristics. In this
section, we’ll go further by analyzing which categories of
opportunities present potential greater impacts for reengi-
neering and how such categories can be detected. Those
categories correspond to what we call ”High impact cate-
gories”.

High impact categories are defined as categories whose
reengineering is relatively easy to automate and/or has im-
portant assets in terms of source code or methods involved
in every single reengineering action.

The identification of such high impact categories will
allow to put priorities on categories of clones and guide
reengineering decisions.

6.2 High impact categories

This section presents a suite of characteristics making
some categories potentially represent a high impact from a
reengineering perspective. The order in which they appear
is arbitrary.

6.2.1 Categories easy to manipulate and containing a
fair amount of code

Categories easy to manipulate are considered as ”high im-
pact” from a reengineering perspective because the automa-
tion of their transformations should be quite easy to imple-
ment. If such categories don’t contain much of the source
code though, their reengineering is of little interest. Manip-
ulations of any categories are worth pursuing only if those
categories contain a fair amount of code.

We believe that categories 1 (”Identical”) through 9
(”Type usage”) will be easy to manipulate because their def-
initions are based on very specific, single token differences.
Categories 10 (”Interface changes”), 11 (”Implementation
changes”) and 12 (”Interface and implementation changes”)
are a composition of the previous categories and shouldn’t
be much more difficult to reengineer. Therefore they might
also be considered during the selection of high impact cate-
gories.

Such high impact categories can easily be selected.
When inspection of results yields that the amounts of source
code per category, for one or some of the chosen categories,
exceed a threshold of interest, high impact categories have
been found.

The analysis of SABLECC shows that there are 1640
lines of code involved in clones of category 6 (”Parameter
types”) and 954 lines of code are in methods from catego-
ry 1 (”Identical”). This represents respectively 61 and 35.5
percent of all the code involved in cloning. Definitively,
categories 1 and 6 are of high impact in this system.

In KFC, a smaller system, categories 1 (”Identical”) and
3 (”Called methods”) account for only a bit more than 200
lines of code each. But this represents as much as 11 and
8 percent of the source code involved in cloning, in this
system. Hence, in KFC, those categories can be considered
having a high potential impact.

6.2.2 Categories containing an important amount of
code

Some categories can be difficult to reengineer, but because
of the quantity of source code they contain, it will be worth-
while to pursue their reengineering.

9

The measure of the quantity of code in each category of
clones is a straightforward indicator of such categories.

Let’s consider the classification of clones in SWING.
In this system, category 1 (”Identical”) contains over 3 K-
LOCs whereas categories 12 (”Interface and implementa-
tion changes”) and 16 (”One long difference, interface and
implementation”) have almost 3 KLOCs. Those two latter
categories will probably be more difficult to reengineer than
category 9 (”Type usage”) and any lower indexed category,
but because of the quantity of source code they cover, the re-
sults of their manipulation will be more noticeable than the
result of the manipulation of any other category (but catego-
ry 1 which also contains 3 KLOCs). Therefore, we consider
them as having a potential high reengineering impact in this
system.

6.2.3 Categories containing an important amount of
methods

It has been shown, in the previous section, that the a-
mount of methods per category is partially independent of
the amount of code. For certain reengineering activities,
the amount of methods that can be reached through some
similar actions is important. An example of such activi-
ties would be clone removal. From such perspective, dif-
ferent categories might be considered ”high impact” than
those simply containing a lot of code.

If we consider SWING again, we can see that categories
1, 3, 4, 10, 12 and 16 contain over 100 methods and can be
considered as having a high potential impact. If we push the
threshold up to 250 methods then only categories 12 and 16
remain.

6.2.4 Categories containing highly clustered groups of
methods

Large clusters imply many copies of one method. There-
fore they represent ”sensitive” parts of a system and should
be more eagerly considered for reengineering. Moreover,
each reengineering action when applied to larger clusters
will have a greater impact on the system.

To make such categories appear from the results of a
classification, the ratio of the number of methods per group
must be computed for each category. Categories having
those ratios exceed a certain threshold will be considered
having a potential high impact.

In the SABLECC system, there are two very large clus-
ters of methods. One is in category 6 and the other in cat-
egory 10. The average amounts of methods per group in
those categories are 41 and 26. Those categories have thus
a potential high reengineering impact in this system.

The analysis of ANTLR shows that categories 12 and 16
each contain 29 methods in only two groups. These cat-

egories have definitively a high potential impact related to
highly clustered groups of methods.

6.2.5 Categories containing large methods

When large methods are manipulated, each reengineering
action, will have a greater impact in terms of the size of
source code involved. But this is not the only reason for
considering large methods for reengineering. Indeed, those
methods are also more interesting because their size in-
creases their probability of containing bugs. Thus, merg-
ing the common parts of the code of longer methods should
benefit more the reduction of the probability of bugs.

The computation of the ratio of the size of the source
code with the amount of methods for every category of
clones will allow the identification of such categories.

In JDK for example, even though category 15 contains
only 135 lines of code, it’s a high impact category because
the average size of the methods of this category is 15 lines.

In HTTPCLIENT, categories 1, 3 and 17 contain meth-
ods whose average size is above 20 lines of codes. Those
categories can hence be considered having a high potential
reengineering impact in this system.

As the results of the previous discussion show, the set of
high impact categories vary with systems. Their identifica-
tion should thus help guide reengineering decisions unique-
ly for each system.

The categories with high potential impacts also depend
on the kind of impact considered during the analysis and the
thresholds selected. Therefore, reengineering decisions will
vary with the goal sought.

7 Conclusions

This paper has presented a definition of a reengineering
opportunity based on clone information. To make the study
of such opportunities possible in large software systems,
a classification scheme has been defined along with algo-
rithms that automatically compare and categorize cloned
methods along the scheme.

Reengineering opportunities have been studied in six
systems. The results of the study have shown that some
categories contain most opportunities independently of the
system analyzed. Those categories have been identified.
Nevertheless, the distributions of opportunities in categories
vary with systems which implies that a careful analysis of
opportunities has to be performed whenever a system is to
be reengineered.

The study performed has also shown that reengineering
opportunities based on clone information vary in size and
amount of code affected. Thus, the sole amount of opportu-
nities isn’t enough to guide reengineering decisions. Other

10

aspects have to be considered. Those aspects are defined
in what is called ”high impact categories”, i.e. categories
whose reengineering presents a potentially high impact on
the system in terms of source code affected, amount or size
of methods affected, size of clusters involved or simply de-
gree of difficulty of implementation and automation.

The identification of such categories could be used to
guide reengineering decisions for systems especially that
the set of high impact categories varies with systems and
kinds of impact sought.

8 Future work

The next step in the investigation of reengineering based
on clone information would be to investigate different con-
crete possible transformation: system redesign, clone re-
moval, clone restructuring, and so on. The benefits and
pitfalls of such transformations would have to be careful-
ly studied.

Depending on the transformations chosen, concrete
reengineering actions could be investigated for each catego-
ry of clones (or opportunities) defined in the scheme along
with algorithms for their automation.

9 Acknowledgements

This research project has been funded by both the Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC) and Bell Canada.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers: princi-
ples, techniques, and tools. Addison-wesley, 1988.

[2] B. S. Baker. On finding duplication and near-duplication in
large software systems. InProceedings of the 2nd Working
Conference on Reverse Engineering. IEEE Computer Soci-
ety Press, July 1995.

[3] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier.
Clone detection using abstract syntaxt trees. InProceed-
ings of the International Conference on Software Mainte-
nance 1998, pages 368–377. IEEE Computer Society Press,
1998.

[4] Buss and al. Investigating reverse enginering technologies
for the cas program understanding project.IBM Systems
Journal, 33(3):477–500, 1994.

[5] G. Canfora, A. Cimitile, and A. DeLucca. Software sal-
vaging based on conditions. InProceedings of the Inter-
national Conference on Software Maintenance 1994, pages
424–433. IEEE Computer Society Press, 1994.

[6] E. Gagnon, Sable Research Group, School of Computer
Science, McGill University. Sablecc 2.5: Object-oriented
comiler framework. http://www.sable.mcgill.ca/sablecc/.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.De-
sign patterns: Elements of reusable object-oriented soft-
ware. Addison-wesley, 1997.

[8] J. H. Johnson. Identifying redundancy in source code using
fingerprints.CASCON’93, pages 171–183, October 1993.

[9] K. Kontogiannis. Evaluation experiments on the detection
of programming patterns using software metrics.Proceed-
ings of the 4th Working Conference on Reverse Engineering,
pages 44–54, 1997.

[10] K. Kontogiannis, R. Demori, E. Merlo, M. Galler, and
M. Bernstein. Pattern matching for clone and concept de-
tection. Journal of Automated Software Engineering, 3:77–
108, March 1996.

[11] B. Lagüe, D. Proulx, E. Merlo, J. Mayrand, and J. Hudepohl.
Assessing the benefits of incorporating function clone detec-
tion in a development process. InProceedings of the Inter-
national Conference on Software Maintenance 1997, pages
314–321. IEEE Computer Society Press, 1997.

[12] MageLang Institute. Antlr 2.2.3.: Predicated-ll(k) parser
generator. http://www.antlr.org.

[13] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the
automatic detection of function clones in a software system
using metrics. InProceedings of the International Confer-
ence on Software Maintenance 1996, pages 244–253. IEEE
Computer Society Press, 1996.

[14] H. Müller. Understanding software systems using reverse
engineering technology perspectives from the Rigi Project.
CASCON’93, pages 217–226, October 1993.

[15] P. Newcomb and P. Scott. Requirements for advanced year
2000 maintenance tools.IEEE Computer, pages 52–57,
March 1997.

[16] J. Ning, A. Engberts, and W. Kozaczynski. Automated sup-
port for legacy code understanding.Communications of the
ACM, 37(5):50–57, 1994.

[17] J.-F. Patenaude, E. Merlo, M. Dagenais, and B. Lague. Ex-
tending software quality assessment techniques to java sys-
tems. InProceedings of the 7th. International Workshop on
Program Comprehension. IWPC’99. IEEE Computer Soci-
ety Press, 1999.

[18] Sun Microsystems Inc. Jdk 1.1.5.: Java development kit.
[19] Sun Microsystems Inc. Swing component set 1.0.2.

http://www.javasoft.com/products/jfc/tsc/.
[20] R. Tschalaer. Httpclient 0.3.:http client library.

http://www.innovation.ch/java/HTTPClient.
[21] L. Wills. Automated program recognition by graph parsing.

MIT Technical Report 1358, MIT, AI Laboratory, 1993.
[22] K. Yasumatsu. Kfc 1.0 beta: Kazuki yasumatsu’s foundation

classes. http://ring.aist.go.jp/openlab/kyasu/.

11

Table 2. Results of the classification of cloned methods in the six systems. The first column is the
number of the category. The second column indicates the amount of source code in terms of lines of
code covered by the category. Column three is the translation of the amount as a percent of the total
amount of code involved in cloning. Columns 3 and 4 represent respectively the amount of methods
and groups of methods belonging to each category of clones. This latter measure is also the amount
of reengineering opportunities in the category. Some methods have cloning relations in more than
one category. In this table results for each category have been computed independently.

JDK SABLECC ANTLR
Category LOCs Percent Methods Groups LOCs Percent Methods Groups LOCs Percent Methods Groups

clones clones clones
1 432 5.9 42 11 954 35.5 94 7 593 24.2 51 14
2 42 0.6 8 4 0 0.0 0 0 40 1.6 4 2
3 464 6.4 36 15 0 0.0 0 0 0 0.0 0 0
4 198 2.7 26 8 476 17.7 49 4 0 0.0 0 0
5 0 0.0 0 0 12 0.4 2 1 0 0.0 0 0
6 229 3.2 24 9 1640 61.0 164 4 0 0.0 0 0
7 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0
8 54 0.7 4 2 0 0.0 0 0 44 1.8 4 2
9 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0

10 162 2.2 21 6 2016 75.0 215 9 0 0.0 0 0
11 117 1.6 13 4 70 2.6 4 2 0 0.0 0 0
12 354 4.9 35 9 0 0.0 0 0 375 15.3 29 2
13 134 1.8 10 4 0 0.0 0 0 69 2.8 11 3
14 56 0.8 6 3 0 0.0 0 0 198 8.1 8 4
15 135 1.9 9 3 0 0.0 0 0 157 6.4 4 2
16 742 10.2 58 21 52 1.9 7 3 363 14.8 29 2
17 233 3.2 28 12 14 0.0 2 1 173 7.1 7 2
18 334 4.6 30 12 0 0.0 0 0 201 8.2 9 4

Total N/A N/A N/A 120 N/A N/A N/A 31 N/A N/A N/A 37

SWING KFC HTTP.
Category LOCs Percent Methods Groups LOCs Percent Methods Groups LOCs Percent Methods Groups

clones clones clones
1 3332 14.5 245 72 294 10.7 29 12 42 17.0 2 1
2 274 1.2 24 9 0 0.0 0 0 0 0.0 0 0
3 1793 7.8 217 44 228 8.3 16 7 63 25.5 3 1
4 1420 6.2 192 24 135 4.9 20 8 0 0.0 0 0
5 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0
6 12 0.05 2 1 117 4.3 9 1 0 0.0 0 0
7 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0
8 28 0.1 2 1 0 0.0 0 0 21 8.5 3 1
9 28 0.1 2 1 0 0.0 0 0 0 0.0 0 0

10 1115 4.8 133 22 140 5.1 16 7 0 0.0 0 0
11 88 0.4 4 2 0 0.0 0 0 0 0.0 0 0
12 2729 11.9 269 52 111 4.0 13 5 0 0.0 0 0
13 314 1.4 21 10 40 1.5 6 3 0 0.0 0 0
14 68 0.3 8 4 16 0.6 2 1 0 0.0 0 0
15 278 1.2 22 8 144 5.2 16 1 0 0.0 0 0
16 2684 11.7 363 36 450 16.4 51 15 0 0.0 0 0
17 669 2.9 75 16 40 1.5 4 2 50 20.2 2 1
18 712 3.1 53 21 201 7.3 21 3 0 0.0 0 0

Total N/A N/A N/A 323 N/A N/A N/A 65 N/A N/A N/A 4

12

