
�

Code Migration Through Transformations� An Experience Report

Kontogiannis� K��� Martin� J��� Wong� K��� Gregory� R���

Mueller� H�� and Mylopoulos� J��

University of Waterloo� University of Victoria� University of Toronto�

Dept� of Electrical Eng� Dept� of Computer Science Dept� of Computer Science

Abstract

One approach to dealing with spiraling maintenance
costs� manpower shortages and frequent breakdowns
for legacy code is to �migrate� the code into a new
platform and�or programming language� The objec�
tive of this paper is to explore the feasibility of semi�
automating such a migration process in the presence
of performance and other constraints for the migrant
code� In particular� the paper reports on an experi�
ment involving a medium�size software system writ�
ten in PL�IX� Several modules of the system were mi�
grated to C��� �rst by hand and then through a semi�
automatic tool� After discovering that the migrant
code was performing up to �	
 slower than the orig�
inal� a second migration e�ort was conducted which
improved the performance of the migrant code sub�
stantially� The paper reports on the transformation
techniques used by the transformation process and the
e�ectiveness of the prototype tools that were developed�
In addition� the paper presents preliminary results on
the evaluation of the experiment�

� Introduction

Legacy software systems are software systems that
have been in operation for many years� have evolved to
meet changing organizational demands and computing
platforms� and are often mission critical for the organi�
zation that owns and operates them� Managing such
systems is di�cult because of frequent breakdowns�
spiraling maintenance costs and shortages of quali�ed
personnel who are willing to work with obsolete pro�
gramming languages and operating platforms� Not

�This work was funded by IBM Canada Ltd� through the
Center for Advanced Studies �Toronto�� the Natural Sciences
and Engineering Research Council �NSERC�� and the National
Research Council of Canada� The IBM contact for this paper
is Bill O�Farrell billo	ca�ibm�com

surprisingly� management is looking for alternatives�
which sometimes take the route of totally replacing
the legacy system in question with a new one� or re�
engineering it�

Unfortunately� re�engineering a large system not
only requires a very high commitment of human re�
sources� but also introduces a number of risk factors
such as integration errors� introduction of faulty code
and non�compliance with global constraints on perfor�
mance� maintainability� etc�

One pragmatic approach to the re�engineering of
legacy code is to �migrate� the code into a new plat�
form and�or programming language� Migration can
be done at di�erent levels which are increasing more
ambitious and time�consuming to implement� At low�
est levels� migration takes the form of transforming
	or� �transliterating�
 the code from one language into
another� At higher levels� the structure of the system
may be changed as well to make it� for instance� more
object�oriented� At still higher levels� the global ar�
chitecture of the system may be changed as part of
the migration process� For this paper� we adopt a
lower level migration strategy� because it is practical�
it does not require that the software re�engineer is fa�
miliar with the legacy code� and is most amenable to
automation�

Legacy code migration is rarely done in a vacuum�
Instead� for each migration project there are require�
ments such as �the migrant code must run at least
as fast as the original code�� or �the migrant system
must be easier to maintain�� These non�functional
requirements introduce a risk factor into the migra�
tion process� since they can usually only be evaluated
after the migration is complete� Another constraint
often adopted in order to reduce the risk of migra�
tion projects is that the process must be incremen�
tal �Brodie�
�� i�e�� can be conducted so that certain
components of the legacy system are selected and mi�
grated� resulting in an operational system� Such an

incremental process ensures that migration can pro�
ceed in a piecemeal fashion� thereby lowering the risk
of overall failure� cost and time overruns� and the like�

This paper reports on an experiment intended to
develop a methodology for building code migration
tools which meet non�functional requirements and
support incremental migration� In particular� the
paper reports on the migration of components of a
medium�size software system from PL�IX to C���
PL�IX is a dialect of PL�I that has been used widely
for system development� As part of the experiment�
several modules of the system were migrated to C���
�rst by hand and then through a semi�automatic tool�
After discovering that the migrant code was perform�
ing up to
�migration e�ort was conducted which im�
proved the performance of the migrant code substan�
tially� In both phases� migration was �rst carried out
by human experts� followed by identi�cation of the
heuristics used by the experts� and then coding of
these into the tools that semi�automate the migra�
tion process� The transformation tool has been built
within the framework of the Consortium for Software
Engineering Research and it took roughly � person
months to develop�

The case study used for the experiment involves a
compiler optimizer written in PL�IX and consisting
of approximately ���KLOC� The �owners� of the sys�
tem have variable degrees of familiaritywith the global
architecture of the system and extensive familiarity
with particular components they are responsible for�
The coding standards and the informal information
	comments� variable names
 are key guiding elements
for the understanding and maintenance of the system�
The system implements sophisticated code optimiza�
tion techniques and has been highly optimized itself
during its �
�year lifetime� Some components of the
system are not owned by any member of the devel�
opment team and are therefore very di�cult to main�
tain� Not surprisingly� the team is reluctant to per�
form radical changes to its structure since this may
a�ect negatively its overall performance� For such a
case� code transformation is an attractive alternative�
promising to move parts of the system� for instance�
orphaned components� into a modern programming
language 	C��
� without any deterioration in perfor�
mance� nor a high risk of failure �

Section � of the paper reviews the literature for re�
lated research� while section � describes the transfor�
mation process adopted for the project� In section �
we discuss some of the migration tactics used for data
types� which in some cases 	e�g�� for aggregate types

are substantially di�erent in the two languages� Sec�
tions
 and � describe the the transformation process�
while section � discusses integration and porting issues
for migrated modules� also some of the limitations of
the tools that have been developed� Finally� section �
presents an overall evaluation of the experiment and
section � o�ers conclusions and describes directions for
further research�

� Related Work

A number of research teams have addressed the is�
sue of source code migration� In �Gillesp��� a tool
that is used to transform Pascal programs to C �
while in �Feldman��� a Fortran��� to C and C�� con�
verter is proposed� Both migration tools are based
on parse trees that are generated from source code�
are consequently transformed and then fed to a com�
piler of the target language� In �Yasuma�
� a system
for translating Smalltalk programs into C is presented
which creates runtime replacement classes that imple�
ment the same functionality as Smalltalk classes in the
source code� A semi�conservative� real�time garbage
collection mechanism is also provided in this environ�
ment� On the commercial front� a Fortran to Fortran�
Windows converter has been developed by �Sigma���
and allows for HP UX� Sun� VAX� and IBM For�
tran� to be converted to Fortran that can run on
Windows����NT environments� Similarly� a number
of translators for Ada �� to Ada �
� CMS�� to Ada�
Jovial to Ada� Fortran to Ada have been developed by
Xinotech �Xino����

In many respects� the translation problem of code
from one programming language to another can be
thought as a problem of as mapping syntactic and se�
mantic patterns of the source language to patterns
in the target language� Within the framework of
pattern identi�cation� Baker 	�Baker���
 represents
source code as a stream of strings� The approach uses
parameterized pattern matching techniques based on
a variation of the Boyer�Moore algorithm to identify
duplication within a string� Paul 	�Paul���
 proposes a
system 	SCRUPLE
 in which regular�expressions are
used to locate programming patterns in a large soft�
ware system� Likewise� Johnson 	�Johnson���
 iden�
ti�es text�level patterns in source code by comput�
ing �ngerprints using a hashing mechanism� These
are then compared to identify similarities between two
texts corresponding to code fragments�

Finally� other approaches� originally developed
for the area of syntax based editing� include CIA

	�Chen���
� CSCOPE 	�Ste�en�
�
� the Pan system
	�Ballance���
� the CENTAUR system 	�Borras���
�
the Cornell Synthesizer Generator 	�Reps���
 and� A�

	�Ladd�
�
�

� The Transformation Process

In order to perform software transformations� it
is useful to represent source code at a higher level
of abstraction than� say� text or even parse trees
�Yasuma�
�� Like many other research e�orts� we have
chosen to represent the source code in the form of Ab�
stract Syntax Trees 	AST
 which has been emitted
from a custom�built PL�IX parser and linker� Ab�
stract Syntax Trees provide a �ne�granularity rep�
resentation of source code details 	type information�
scoping� resource usage
 which is exploited throughout
the transformation process� A custom�built PL�IX
language domain model provides an hierarchical view
of the PL�IX language constructs and �drives� the
set of transformation routines which maps PL�IX lan�
guage constructs to corresponding C and C�� con�
structs� Once a PL�IX construct is identi�ed� a trans�
formation routine is selected and invoked� Each en�
tity of the custom�made PL�IX domain model has
a corresponding transformation routine� For exam�
ple a StatementIf in PL�IX will be transformed
to an equivalent statement in C by transforming its
condition� its then�clause� and its else�clause�
which the domain model indicates that are of type
Expression� Statement� and Statement respectively
	see example in Section �
�

A subset of the PL�IX domain model is illustrated
below� with indentation representing sub�classing�

PlixObject

PlixApplication

PlixFile

� PlixProgramFile

� PlixIncludeFile

Statement

� StatementIf

� StatementAssignment

� StatementCall

� StatementDeclare

� � DeclareObject

� � StatementInclude

� StatementDoEnd

Expression

� ArithmeticAdd

� ArithmeticDivide

� ArithmeticMultiply

� ArithmeticSubtract

� IdentifierReference

� LogicalAnd

� LogicalNot

� LogicalOr

� ReferenceComponent

Each language construct is represented in the do�
main model as an object with a list of attributes� For
example a PL�IX If Statement is represented as�

StatementIf object

Subclass�of Statement

Attributes

condition � Expression

then�clause � Statement

else�clause � Statement

End StatementIf

The transformation of a given code fragment con�
sists of the following steps�

Transformation of its data structures� PL�IX
data structures of the subject system were analyzed
and migrated based on a set of transformation rules
applied both to the basic and to aggregate data types
of the source language� Overlays� unnamed �elds�
memory areas� aliases� controlled variables� and many
other complex features of the source language were
mapped to functionally similar structures in the tar�
get language�

Generation of supporting utilities and other
target language speci�c artifacts� In many cases con�
structs of the source language do not have obvious cor�
responding constructs in the target language� In this
case� a set of utilities and libraries need be constructed
to support execution of the migrant code� Examples
of such constructs include array classes 	one dimen�
sional or multidimensional
� memory allocation and
deallocation mechanisms� and built�in functions that
are speci�c to the source language�

Generation of the new system� Programs are
mapped from the source language to the target lan�
guage in a way that preserves structure� algorithmic
patterns� informal information 	i�e variable names
�
comments� and indentation� In particular comments
are handled as annotations in the AST and are ex�
tracted by the custom�made linker� In most cases map
very well to the correct position in the new generated
code as most comments occupy a single line and do not
interleave with expressions inside a source code state�
ment� For cases where there is a position discrepancy

this usually is in the order of one or two lines and can
be easily identi�ed at the code inspection phase�

The process of selecting which components of the
legacy system to migrate begins with program under�
standing and re�documentation techniques which lead
to a detailed analysis of the legacy system in terms
of its major components� �les� subsystems� and corre�
sponding interfaces �Finni���� Each subsystem is thor�
oughly analyzed in terms of its control and data �ow
properties� its interface with the rest of the system�
and the major algorithms and data structures used�

Once a global decomposition of the legacy system
has been achieved in terms of subsystems and inter�
faces� a number of subsystems can be selected as the
primary candidates for migration� The selection cri�
teria focus on�

Code size� Subsystems between
���KLOC are
ideal candidates since they can be manually examined
and inspected�

Interface patterns� Self contained� systems with
simple interface patterns� and as few as possible side
e�ects� are also primary candidates�

Maintainability� Subsystems which degrade in
quality and performance due to the lack of resources
are also good candidates for migration� Maintenance
for these systems is performed on as needed basis and
usually is of a corrective variety� The incorporation
of substantial domain knowledge in the code 	i�e� do�
main speci�c algorithms
 results in increased di�culty
on understanding and maintaining the particular sub�
system�

Performance� Subsystems that have been iden�
ti�ed as a performance bottleneck � time or space �
during testing due to� algorithmic complexity or poor
utilization of language constructs are also high on the
candidate list�

The following subsections discuss in detail the is�
sues involved for the migration of any given subsys�
tem�

� Data Type Migration

The �rst step towards code migration is the trans�
formation of data structures�
Basic Type Conversions� A global table that

maps PL�IX primitive data types to their correspond�
ing C�C�� data types was constructed� The type
mappings are illustrated in Table���

Aggregate Type Conversions� Mappings for ag�
gregate data types were developed by the code trans�
formation program� using information on basic data
type conversion� As a general rule� PL�IX records
were transformed to C�C�� structures 	struct
�
Overlays were handled as C�C�� unions� The type
conversion table can be modi�ed with ease during the
migration process and can be tailored to particular
requirements for a speci�c migration project� A de�
tailed discussion on the issues involved for data type
transformations can be found in �CserRep�� An exam�
ple that illustrates the transformation of an aggregate
data type is shown below�

dcl � dsstate external�

� prg integer�

� externs integer�

� statmem integer�

� curr�pdx�statmem integer�

� aregcnt integer�

� aregused integer�

� flags bit���	�

� ��

� dbg bit�

� detail bit�

� warn bit�

� detail� bit�

� memused bit���	�

� maxmuse bit���	�

The data structure above is automatically trans�
formed into�

struct any�DSSTATE

int prg�

int externs�

int statmem�

int curr�pdx�statmem�

int aregcnt�

int aregused�

union FLAGS

int flags�

struct any�DSSTATE��

int dbg���

int detail���

int warn���

int detail����

��

��

int memused�

int maxmuse�

��

PL�IX Type C Type

integer int
integer half short int
integer long long int

�oat double
�oat short �oat
�oat long double
character char

bool bool
bit bool

bit	�
 � �
bit	�
 � �
bit	�
 unsigned char
bit	�
 � �
bit	��
 unsigned short
bit	��
 � ��
bit	��
 unsigned

Table �� Basic PL�IX to C type conversion�

Macros to access �elds�

In order to replicate the access of a �eld that is
deeply nested within a record� a macro is generated
for every �eld access pattern found in the code� These
macros allow the migrant C�� code to closely resem�
ble its PL�IX ancestor� The syntax and the de�nitions
for calling these macros are stored in tables during a
preprocessing phase� Another transformation issue re�
lates to PL�IX array references for which indexes do
not necessarily appear next to the element in the ref�
erence component to which they belong� For example�
in �eld access a�b�i�� it may be the case that a is an
array� not b as it may be thought initially� An elab�
orate analysis of the PL�IX data structures� and the
generated corresponding C�� data structures is re�
quired in order to construct the correct transformation
for such a �eld access� This analysis automatically
reconstructs the full path of the corresponding C��
structure� starting from the last� inner�most� �eld on
the reference component and proceeding towards the
outer�most �eld of the structure� Array indices are
substituted� from left to right for each array related
�eld found in the reconstructed path� �Liked� �elds
are also handled appropriately�

Ambiguous �eld names� The problem here is
that PL�IX allows paths of �eld accesses to be abbre�
viated 	for instance� a�b�c is abbreviated as c
� Such
paths need to be reconstructed for the migrant C��

code� The �rst step in dealing with this problem
is �nding �eld names that are used more than once
within the same compiler option� A dis�ambiguation
process then locates all such names and builds a path
of �elds that is required to access each such �eld� Once
those paths are available� a subset of those chains
is selected which completely distinguishes among the
ambiguous �elds� For example� a record rec� may
consist of �eld fielda which consists of nested �elds
fieldb and fieldc� One can then write an assignment
statement in PL�IX as fielda � val 	as opposed to
fielda�fieldb�fieldc � x
� The migration tool builds
a macro for each previously ambiguous identi�er and
this macro de�nition is consequently stored in a global
macro table� Examples of macro de�nitions for trans�
forming reference components are illustrated below�

Uses of �eld access for the bb begin� bb end�
bb count� and irreducible PL�IX �elds 	sample
from the original PP�IX code
�

do plx� bc�bb�end�bb		

repeat�bc�plx		

while�plx��bb�begin�bb		�

Statements

�������������

do bb� � to bb�count�

Statements

�������������

irred� irreducible�rgn	�

the C generated code for the PL�IX code segments
above is�

for �plx � bc�C�BB�END�bb	��

plx �� C�BB�BEGIN�bb	�

plx � bc�plx�	

Statements

�������������

for �bb � �� bb �� C�BB�COUNT� bb��	

Statements

�������������

irred � C�IRREDUCIBLE�rgn	�

while the C corresponding macro de�nitions for the
�eld accesses are�

�define C�BB�BEGIN�i	

�bb�tab
bb�t��i	�
BB�BEGIN
bb�begin	

�define C�BB�END�i	

�bb�tab
bb�t��i	�
bb�end	

�define C�BB�COUNT

�bb�tab
bb�count	

�define C�IRREDUCIBLE�i	

�bb�tab
bb�t��i	�
flags
irreducible	

Literals� In this phase of the migration process�
we look for all PL�IX literal declarations and attempt
to classify them into one of six types� These types are
as follows�

�� The literal is an integer�

�� The literal is an ambiguation

�� The literal is a string of PL�IX variable attributes

�� The literal is a string that is an Identi�er

� The literal is a string that is a PL�IX type

�� The literal is a bit mask

All of these cases are handled either by declaring
appropriate macros evaluating on the correct value of
the literal de�nition� or by using the C preprocessor
	i�e� �de�ne
 to de�ne literal constant values� Exam�
ples of literal de�nitions include�

The PL�IX code for literal de�nitions is�

dcl mode�� integer constant init��	�

dcl tags�full lit����	�

dcl tags�small lit����	�

and the corresponding generated C code for the
PL�IX literal de�nitions above is�

const int mode�� � ��

�define C�TAGS�FULL ��

�define C�TAGS�SMALL ��

� Generating Class Header Files

The second step for transforming a PL�IX applica�
tion to C�C�� was to generate the C�C�� header
�les using the data type information obtained from
the PL�IX Abstract Syntax Tree� the data type ta�
bles� and the macro de�nition tables� Generating the
header �les required the following steps�

Constructing the Foundation Classes� This
�rst step deals with the construction of a set of �foun�
dation� classes used in the header �les� Each of these
classes is de�ned to have only static methods in order
to resemble the PL�IX semantics� For every public
procedure in PL�IX� one class with the procedure as
its public method is created�

A PL�IX procedure group is transformed into a
class with multiple public methods� Every nested pro�
cedure� or unexposed procedure in a group� is made
into a private method of the class which holds its outer
procedure 	or group
� This is not exactly orthodox
object�oriented programming 	O�O�OP
� but it allows
us to encapsulate a PL�IX procedure within a C��
class so that new functionality can be added to the
procedure 	for example� a nested PL�IX procedure

in a transparent with respect to the rest of the legacy
system way� An example of this type of transforma�
tion is illustrated below�

Given a the PL�IX procedure declaration� which
de�nes a nested procedure�

dslvbb� proc�bb	�

proc�ensc� proc�memref	�

end proc�ensc

end dslvbb

the corresponding C�� foundation class are gener�
ated as follows�

class Dslvbb

public�

static void dslvbb�int bb	�

private�

static void proc�ensc�any�L�BAG memref	�

��

Merging Classes� The next step in the process
of creating class header �les is merging classes that
correspond to identical types for parameters passed
in several procedures� For example� if we have proce�
dures P� and P� with parameters p� of type T�� and
p� of type T�� then we want to map P� and P� into
methods of the class C T� corresponding to the type
T�� A Java based interface has been built for to make
this process interactive and allow the user to specify
how the classes corresponding to procedures are to be

merged� As the reader might infer� a data type that
is heavily used as a parameter to several procedures is
a primary candidate to be transformed to a class and
the procedures to be member functions with the par�
ticular parameter removed� As an example consider
the scanner PL�IX data type which is transformed
to a class as follows�

class Scanner

private�

static alloc�int lim	�

static new�item�int elem� P�BAG flags	�

void join�int lo� int hi�

boolean ds�used�bit	�

public�

void init�scan�int lst	�

int advance�	�

int pick�	�

boolean ds�is�used�	�

static int make�empty�list�	�

static void kill�list�int list	�

int find�item�int elem	�

void delete�item�	�

void delete�lfrag�	�

void insert�mem�dsc�Scanner sc�

boolean ds�used�bit	�

boolean join�item�int m�

boolean ds�used�bit	�

void insert�live�int item�

P�BAG attrs	�

void insert�after�int elem�

P�BAG p�flags	�

void insert�item�int elem�

P�BAG p�flags	�

boolean join�live�Scanner join�me	�

void split�item�int m	�

void constrict�item�int m	�

boolean defrag�live�boolean ds�u	�

��

Handling External Variables� After processing
all of the declarations in the original PL�IX code� all
of the external variables are stored in a global table�
These declarations are printed to a �le that is not in�
cluded anywhere in the new C�� code� but references
to the variables in it are made via extern statements�
An alternative solution is to include this �le in all oth�
ers and remove the corresponding extern declarations�

� Source Code Transformations

The main objective of this phase is to write out
C�C�� source code that can be compiled with min�
imal corrections� A set of transformation routines

modeled after the custom�built PL�IX domain model
	referred to as the �skeleton�
 is the driver for all
transformations in the system� A tree traversal rou�
tine� traverses a PL�IX Abstract Syntax Tree and for
each AST node corresponding to a PL�IX element
that needs to be transformed� a transformation and
formatting function is invoked� For example when
transforming the body of a procedure the routine that
handles the transformation of Statement is invoked�
A selection process identi�es what type of Statement
is to be transformed and the appropriate transforma�
tion routine is invoked�

An example on how the transformation process is
applied to the PL�IX Abstract Syntax Tree that corre�
sponds to an StatementIf is shown below� The trans�
formation routine proceeds as follows�

PL�IX Code�

if �kill then cannot�kill � true�

Corresponding AST Node�

����� �a statementif�

class� STATEMENTIF

parent�expr� ������a statementdoassigment�

condition� ������a logicalnot�

then�clause� ������a statementassignment�

Corresponding Domain Model�

StatementIf

condition � Expression

then�clause� Statement

Transformation Process Trace�

Transform Statement

 Transform StatementIf

��� if �

 Transform Expression

 Transform LogicalNot

��� ��

 Transform IdentifierReference

��� kill

��� 	

��� 	

 Transform Statement

 Transform StatementAssignment

���

���

��� cannot�kill � true�

Code Translates To�

if � ��kill	 	

cannot�kill � true� �

Formatting for nested functions is generated
through the use of a two way pass� A �rst pass on
the AST is used to collect all necessary information�
while second pass generates the migrant code� Note
that in order to conformwith PL�IX semantics� nested
procedures have been de�ned as private methods on
the �basic� class encapsulating the top level procedure
	see data type transformations
�

Syntactically correct C�� code is output to a �h or
to a �cpp �le� As expected� this process does not al�
ways guarantee that the resulting code will be seman�
tically correct� with respect to the original application
code� However� the process provides a fast and rela�
tively reliable way to handle massive volumes of code
and thus makes code migration a feasible alternative�
The �nal result of this step is checked manually� and
the generated code is passed through all test buckets
to verify the correctness of the migrant code�

A number of helper libraries have also been de�ned
for built�in PL�IX functions� such as those for mem�
ory allocation� For example� an ArrayALLOCATION�x�

function is de�ned as a macro and corresponds to the
PL�IX statement allocation�x�� Helper data types
are also used to simplify the appearance of the gen�
erated code� and to make it look as much as possible
to the original PL�IX code �� These types inherit
from basic library elements such as set� bag� list�
sequence and array� For example a template class
PlixArray� type � was used to model one dimen�
sional arrays�

� Integration� Porting� Limitations

Once one or more subsystems of the legacy system
have been migrated� they need to be integrated with
other existing PL�IX subsystems� This integration re�
quires 	i
 writing of emulation classes for PL�IX built�
in data types and functions� 	ii
 manual �xing of the
generated code where necessary� and 	iii
 writing of in�
terface code� so the C�� code can access PL�IX func�
tions and data types� The last two steps can actually

�This was another requirements for the migration e
ort� in
order to facilitate future maintenance of the migrant code

be carried out concurrently� by compiling the modules
�le�by��le� and then adding interfaces for routines and
functions where necessary� Since the modules share
most of the interface code� less interface code needs
to be written for each new module so that the last
step requires minimal e�ort after the migration of sev�
eral modules� We have identi�ed a number of manual
changes required for the new code to compile and link
properly� These relate to handling multi�dimensional
arrays� and �eld accesses and to limitations on map�
ping the PL�IX semantics to C�C�� semantics 	i�e�
in the case of LEAVE statement in PL�IX which has to
be mapped to some form of GOTO in C�C��
� Some
of these manual changes have either been incorporated
in the tool or been �agged so that the developers can
identify easily the points that manual intervention is
required�

The migration process has limitations� including�

� Local variables of nested procedures� C�� does
not have nested procedures� so local variables that
are used in sub�procedures� need to be passed as
parameters to the sub�procedures 	or be made
class variables

� Insertion of gotos and labels� multi�level
leave�iterate statements have to be done auto�
matically

� Grouping sub�procedures� static procedures of a
class will not work with the current treatment
for recursive procedures� A design has been pro�
posed on how to �x the problem and will be im�
plemented with the next release of the transfor�
mation tool�

	 Tool Evaluation

Evaluation of the migration tool focused on four
major areas� The �rst area examines the generality
of the tool in terms of the lessons learned on how
the same transformation process can adopted in or�
der to migrate and transform applications written in
similar to PL�IX languages 	i�e� PL�I
� The second
area� examines the performance of the new compiler
with respect to memory usage� the third investigates
the performance of the migrant code compared to the
original� while the fourth examines reductions in the
human e�ort required to migrate legacy code�

The main characteristics of the transformation
process as compared to other transformation tools

Subsystem PL�IX Time C�� Time � of Runs
	in minutes
 	in minutes

Test��k ����� ����� �
�
gcc ���
� ����� ���
lib g�� ����� ������ ���

JPEG ����
� ����� ���

Table �� Compilation time statistics with the old
	PL�IX
 and the new 	C��
 compiler� Results were
averaged on the number of runs� The experiments
were conducted on four di�erent models of RISC�����
machines�

�Verhoef��� is the use of a repository that holds all
the necessary information for the system to be trans�
formed� as opposed to applying transformations at the
syntactic�semantic level using grammar and semantic
actions re�write rules� This repository is populated at
parse time and is annotated appropriately by a cus�
tom made for PL�IX linker� All code transformations
have been built in terms of modular application pro�
grams at the repository level� It has become apparent
from this project� that the transformation logic should
be as modular and localized as possible 	i�e� di�erent
transformation programs for each language construct
�
and focus on three main points� a
 transformation of
data types� b
 development of support utilities 	i�e�
macros� interface classes
 and� c
 transformation of
the source code entities 	i�e� the actual application
�
The schema in the repository has been built in such a
way as to be compatible with the PL�AS and PL�X
domain model� Therefore� the transformation process
is also applicable� with minor schema and transforma�
tion logic changes� to applications written in PL�AS
and PL�X� We currently investigate the possibility of
applying the same transformation logic to applications
written in PL�I�

As indicated in the introduction� the migration tool
was built in two phases� The �rst phase aimed at de�
veloping a tool which would produce C and C�� code
that resembled substantially the hand�transformed
code produced for a legacy subsystem� The second
phase aimed on incorporating into the transforma�
tion routines heuristics that have been used to hand�
optimize the migrant code� The migration tool has
been tested with three subsystems of the legacy sys�
tem� The performance results obtained for these sub�
systems are reported in Table ��

As indicated earlier� the legacy system that has
been partly migrated is a compiler optimizer� In order

Subsystem Code Size Transformation Time
	KLOC
 	min�sec

BI ���KLOC �����
	����

DS ���KLOC �����
	�����

SM ���KLOC ����

	�����

Table �� The time to transform the selected subsys�
tems after parsing� Code size refers to actual code
excluding comments and blank lines�

to evaluate the performance of the new version of the
optimizer 	which includes the three migrated subsys�
tems
� the optimizer was run on four sets of source
code� namely�

i
 A single ������ line pre�processed C source
�le� about ����� lines of which were actual code
	rather than declarations
� ii
 The Independent JPEG
Group�s free JPEG software� sixth public release 	C
sources
� iii
 Stage � of the GNU C compiler� version
������� 	C sources
 and� iv
 The GNU C�� library�
version ����� 	C�� sources

The performance results obtained when running the
optimizer against these four test cases with the PL�IX
and C�� versions of the subsystems respectively are
reported in Table �� These are preliminary results
obtained after the optimization heuristics were added
in the transformation tool� More results are being
collected as the migration tool is undergoing further
enhancement related to heuristics that can be incor�
porated to the transformation logic and used for en�
hancing the performance of the new code�

The time it takes the tool to generate migrant code
as a function of the size of the input code 	time for
parsing is shown in parentheses
 as well as the e�ort in
person days for adapting and integrating the migrated
code with the rest of the original legacy system are
illustrated in Tables � and � respectively�

These results indicate a signi�cant enhancement in
productivity for the migration process� with no de�
terioration in the performance of the migrated code�
In particular� manual transformation of one subsystem
	DS
 required approximately
� person�days� By com�
parison� it took only one person day to adapt the auto�
matically generated migrant code for the same subsys�
tem so that it can be compiled� linked� and integrated
with the rest of the legacy system� Statistics gathered
for the other two subsystems 	BI and SM
 follow the

Subsystem Code Size Automatic
Transliteration

	KLOC
 	person days

BI ���KLOC ���pd
SM ���KLOC �pd
DS ���KLOC �pd

Subsystem Code Size Manual Transliteration
DS ���KLOC
�pd

Subsystem Code Size Manual Optimization
DS ���KLOC ��pd

Table �� The e�ort to adapt and integrate the new
components to the rest of the system compared to the
e�ort to manually transform the same subsystem�

Subsystem Subsystem Original New
Size System Size System Size

	KLOC
 	MB
 	MB

BI ���KLOC ����
� �����

DS ���KLOC ������ ������
SM ���KLOC ������ ������

Table
� The total size of the compiled system 	binary

before and after migration�

same trend and indicate an e�ort of approximately
half a person�day and two person�days respectively�
The di�culty of the integration task depends largely
on the usage patterns of the data structures in the
legacy system which have not been migrated yet and
therefore need be shadowed� so that the new version of
the system can be compiled and linked as a whole� Fi�
nally� in Table
 the size of the old and the new version
of the overall system is compared� As it is shown� the
new system is approximately
� larger in size than
the original one� This can be explained by the added
C�� libraries to handle and simulate the behavior of
several PL�IX language�speci�c constructs�

The comparison of the PL�IX to C converter dis�
cussed in this paper� with the other tools found in the
literature is summarized in the following points� In
�Yasuma�
� the authors present a higher performance
ratio 	that is the performance of the old system di�
vided by the performance of the new system
 for the
migrant code 	ratio � ����
 than the performance ra�
tio we could obtain on our initial experiments 	ratio �
����
� The reason for this discrepancy is that we deal
both with PL�IX� which is a highly optimized lan�

guage 	as opposed to SmallTalk
� and with a highly
optimized application which� in our case� is the IBM
compiler back�end� Therefore our margins of perfor�
mance improvement are limited compared to the ones
that could be obtained in SmallTalk to C conversion�

In �Feldman��� and �Gillesp��� the authors report
that the performance of the converted code using the
f�c and p�c utilities respectively� is the same as the
performance of the original code� indicating thus a
performance ratio of ���� However� the code gener�
ated by these tools is reported to be non�maintainable
due to the structure and the characteristics of the gen�
erated code 	no informal information and code struc�
ture preserved
� This is to be expected since these
tools were meant to produce code� which after compi�
lation is binary�equivalent with respect to the original
code� We took a di�erent approach� and we generate
code that is structurally �similar� with respect to the
original code so that we could still produce portable
and maintainable code without of course a�ecting the
performance�

On these aspects� our tool performs well� as it both
maintains an acceptable performance ratio� and allows
for the new code to be moremaintainable and portable
due to resources� analysis tools� and the range of exist�
ing compilers available for C�based systems� as com�
pared to limited support that is available for PL�IX�
based systems� In this respect� we can say that our
tool could be placed in the middle of the spectrum rep�
resented in its extremes by� i
 the SmallTalk to C con�
verter which deals with low optimized SmallTalk con�
structs and not compatible programming paradigms
between the source and the target language and on
the other end by ii
 the Fortran to C converter which
deals with easier mappings between the source and the
target language� but with no further maintainability
and portability requirements for the target system�

 Conclusion

We have described an experiment in code migra�
tion in the presence of global constraints� namely non�
deterioration in the performance of the maintainable
migrant code� and an incremental migration process�
Our experiment suggests that it is possible to develop
tools which reduce the human e�ort required for the
migration process by one to two orders of magnitude�
while respecting such constraints�

We are currently completing a thorough evaluation
of the migrant code in comparison to its legacy an�
cestor� We are also in the process of enhancing our

migration tools to meet maintainability and other non�
functional requirements for the migrant code�

Acknowlgement

The authors would like to thank Bill O�Farrell and
Stephen Perelgut of IBMCenter for Advanced Studies�
for their technical and management support without
which this e�ort would not be possible� We would
also like to thank Greg Mori for his e�orts on the �rst
phase of the tool implementation�

About the authors

Kostas Kontogiannis is an Assistant Professor at
the Electrical � Computer Engineering department�
University of Waterloo� His interests include software
re�engineering� software migration and� distributed
object technology� Johannes Martin is a Ph�D can�
didate at the Computer Science department� Univer�
sity of Victoria� His research interests include soft�
ware architectures� software re�engineering and� tools
for source code visualization� Kenny Wong is a post�
doctoral Research Associate at the department of
Computer Science� University of Victoria� His inter�
ests include software migration� tools for visualization
of software architectures� and distributed systems�
Richard Gregory is a fourth year student at the Com�
puter Science department� University of Toronto� His
interests include software re�engineering and network�
centric computing� Hausi Muller is a Professor at the
University of Victoria� department of Computer Sci�
ence� His interests include software visualization� dis�
tributed object technology and network�centric com�
puting� John Mylopoulos is a Professor at the Uni�
versity of Toronto� department of Computer Science�
His interests include software requirements� concep�
tual modeling� software repositories� and software re�
engineering�

References

�Baker��� Baker S� B� Parameterized Pattern Match�
ing� Algorithms and Applications�� Journal
Computer and System Sciences� �����

�Ballance��� Ballance� R�� Graham� S�� Van De Van�
ter� M�� The Pan Language�Based Edit�
ing System�� ACM Transactions on Software
Engineering and Methodology� Jan� �����
Vol� �� No��� pp��
�����

�Borras��� Borras� P�� Clement� D�� Despeyroux� Th��
Khan � J�� Lang� G�� Pasual� V�� CEN�
TAUR� The System�� Proceedings of the
SIGSOFT�SIGPLAN Software Engineering
Symposium on Practical Software Develop�
ment Environments� Boston� Mass� �����

�Brodie�
� Brodie� M�� Stonebraker� M�� Migrating
Legacy Systems�� Morgan KaufmanPublish�
ers� ���
�

�Chen��� Chen� Y�� Nishimoto� M�� Ramamoorthy�
C�� The C Information Abstraction Sys�
tem��� IEEE Transactions on Software En�
gineering� vol���� No��� ����� pp���
�����

�CserRep� Consortium for Software Engineering Re�
search� http���www�cser�ca

�Feldman��� Feldman� S�� Gay� D�� Maimone� M��
Schryer� N�� A Fortran to C Converter��
AT�T Technical Report No� ���� �����

�Finni��� Finnigan � P� et�al The Software Book�
shelf�� IBM Systems Journal� vol���� No���
�����

�Gillesp��� Gillespie� D�� A Pascal To C Converter��
The HP�UX Porting and Archive Center�
http���hpux�u�
aizu�ac�jp�hppd�hpux�Languages�p�c�
�����readme�html

�Johnson��� Johnson� H�� Substring Matching for
Clon e Detection and Change Tracking�� In�
ternational Conference on Software Mainte�
nance ����� Victoria BC� ����� September�
����� pp���������

�Ladd�
� Ladd� D�� Ramming� J�� A�� a Lan�
guage for Implementing Language Proces�
sors�� IEEE Transactions on Software En�
gineering� vol���� no���� Nov� ���
� pp�����
����

�Paul��� Paul� S�� Prakash� A�� A Framework for
Source Code Search Using Program Pat�
terns�� IEEE Transactions on Software En�
gineering� June ����� Vol� ��� No��� pp� ����
��
�

�Reps��� Reps� T�� Teitelbaum� T�� The Synthe�
sizer Generator�� In Proc� of the SIG�
SOFT�SIGPLAN Symposium on Practical
Software Development Environments� Pitts�
burgh PA� ����� pp�������

�Sigma��� Sigma Research Inc� � http���www�sigma�
research�com�for�win

�Ste�en�
� Ste�en� J�� Interactive examination of a C
program with Csope�� Proceedings USENIX
Assoc�� Winter Conference� Jan� ���
�

�Yasuma�
� Yasumatsu� K�� Doi� N�� Spice� A Sys�
tem for Translating SmallTalkPrograms Into
a C Environment� IEEE Transactions on
Software Engineering� vol� ��� no���� Novem�
ber ���
�

�Verhoef��� van den Brand� M�� Sellink� A�� Verhoef�
C�� Generation of Components for Soft�
ware Renovation Factories from Context�
free Grammars�� Proceedings Working Con�
ference on Reverse Engineering� WCRE����
Amsterdam� The Netherlands� October
�����

�Xino��� Xinotech Inc� http���www�xinotech�com

