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Abstract

One approach to dealing with spiraling maintenance
costs, manpower shortages and frequent breakdowns
for legacy code is to "migrate” the code into a new
platform and/or programming language. The objec-
tive of this paper is to explore the feasibility of semi-
automating such a migration process in the presence
of performance and other constraints for the migrant
code. In particular, the paper reports on an experi-
ment involving a medium-size software system writ-
ten in PL/IX. Several modules of the system were mi-
grated to C++, first by hand and then through a semi-
automatic tool. After discovering that the migrant
code was performing up to 50% slower than the orig-
inal, a second migration effort was conducted which
improved the performance of the migrant code sub-
stantially. The paper reports on the transformation
techniques used by the transformation process and the
effectiveness of the prototype tools that were developed.
In addition, the paper presents preliminary results on
the evaluation of the experiment.

1 Introduction

Legacy software systems are software systems that
have been in operation for many years, have evolved to
meet changing organizational demands and computing
platforms, and are often mission critical for the organi-
zation that owns and operates them. Managing such
systems is difficult because of frequent breakdowns,
spiraling maintenance costs and shortages of qualified
personnel who are willing to work with obsolete pro-
gramming languages and operating platforms. Not
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surprisingly, management is looking for alternatives,
which sometimes take the route of totally replacing
the legacy system in question with a new one, or re-
engineering it.

Unfortunately, re-engineering a large system not
only requires a very high commitment of human re-
sources, but also introduces a number of risk factors
such as integration errors, introduction of faulty code
and non-compliance with global constraints on perfor-
mance, maintainability, etc.

One pragmatic approach to the re-engineering of
legacy code is to "migrate” the code into a new plat-
form and/or programming language. Migration can
be done at different levels which are increasing more
ambitious and time-consuming to implement. At low-
est levels, migration takes the form of transforming
(or, transliterating”) the code from one language into
another. At higher levels, the structure of the system
may be changed as well to make it, for instance, more
object-oriented. At still higher levels, the global ar-
chitecture of the system may be changed as part of
the migration process. For this paper, we adopt a
lower level migration strategy, because it is practical,
it does not require that the software re-engineer is fa-
miliar with the legacy code, and is most amenable to
automation.

Legacy code migration is rarely done in a vacuum.
Instead, for each migration project there are require-
ments such as “the migrant code must run at least
as fast as the original code”, or ”the migrant system
must be easier to maintain”. These non-functional
requirements introduce a risk factor into the migra-
tion process, since they can usually only be evaluated
after the migration is complete. Another constraint
often adopted in order to reduce the risk of migra-
tion projects is that the process must be incremen-
tal [Brodie95], i.e., can be conducted so that certain
components of the legacy system are selected and mi-
grated, resulting in an operational system. Such an



incremental process ensures that migration can pro-
ceed in a piecemeal fashion, thereby lowering the risk
of overall failure, cost and time overruns, and the like.

This paper reports on an experiment intended to
develop a methodology for building code migration
tools which meet non-functional requirements and
support incremental migration. In particular, the
paper reports on the migration of components of a
medium-size software system from PL/IX to C++.
PL/IX is a dialect of PL/I that has been used widely
for system development. As part of the experiment,
several modules of the system were migrated to C++,
first by hand and then through a semi-automatic tool.
After discovering that the migrant code was perform-
ing up to 50migration effort was conducted which im-
proved the performance of the migrant code substan-
tially. In both phases, migration was first carried out
by human experts, followed by identification of the
heuristics used by the experts, and then coding of
these into the tools that semi-automate the migra-
tion process. The transformation tool has been built
within the framework of the Consortium for Software
Engineering Research and it took roughly 8 person
months to develop.

The case study used for the experiment involves a
compiler optimizer written in PL/IX and consisting
of approximately 300KLOC. The "owners” of the sys-
tem have variable degrees of familiarity with the global
architecture of the system and extensive familiarity
with particular components they are responsible for.
The coding standards and the informal information
(comments, variable names) are key guiding elements
for the understanding and maintenance of the system.
The system implements sophisticated code optimiza-
tion techniques and has been highly optimized itself
during its 15-year lifetime. Some components of the
system are not owned by any member of the devel-
opment team and are therefore very difficult to main-
tain. Not surprisingly, the team is reluctant to per-
form radical changes to its structure since this may
affect negatively its overall performance. For such a
case, code transformation is an attractive alternative,
promising to move parts of the system, for instance,
orphaned components, into a modern programming
language (C++), without any deterioration in perfor-
mance, nor a high risk of failure .

Section 2 of the paper reviews the literature for re-
lated research, while section 3 describes the transfor-
mation process adopted for the project. In section 4
we discuss some of the migration tactics used for data
types, which in some cases (e.g., for aggregate types)

are substantially different in the two languages. Sec-
tions b and 6 describe the the transformation process,
while section 7 discusses integration and porting issues
for migrated modules, also some of the limitations of
the tools that have been developed. Finally, section 8
presents an overall evaluation of the experiment and
section 9 offers conclusions and describes directions for
further research.

2 Related Work

A number of research teams have addressed the is-
sue of source code migration. In [Gillesp98] a tool
that is used to transform Pascal programs to C |
while in [Feldman93] a Fortran-77 to C and C++ con-
verter is proposed. Both migration tools are based
on parse trees that are generated from source code,
are consequently transformed and then fed to a com-
piler of the target language. In [Yasuma9h] a system
for translating Smalltalk programs into C is presented
which creates runtime replacement classes that imple-
ment the same functionality as Smalltalk classes in the
source code. A semi-conservative, real-time garbage
collection mechanism is also provided in this environ-
ment. On the commercial front, a Fortran to Fortran-
Windows converter has been developed by [Sigma9§]
and allows for HP UX, Sun, VAX, and IBM For-
tran. to be converted to Fortran that can run on
Windows/98/NT environments. Similarly, a number
of translators for Ada 83 to Ada 95, CMS-2 to Ada,
Jovial to Ada, Fortran to Ada have been developed by
Xinotech [Xino98].

In many respects, the translation problem of code
from one programming language to another can be
thought as a problem of as mapping syntactic and se-
mantic patterns of the source language to patterns
in the target language. Within the framework of
pattern identification, Baker ([Baker94]) represents
source code as a stream of strings. The approach uses
parameterized pattern matching techniques based on
a variation of the Boyer-Moore algorithm to identify
duplication within a string. Paul ([Paul94]) proposes a
system (SCRUPLE) in which regular-expressions are
used to locate programming patterns in a large soft-
ware system. Likewise, Johnson ([Johnson94]) iden-
tifies text-level patterns in source code by comput-
ing fingerprints using a hashing mechanism. These
are then compared to identify similarities between two
texts corresponding to code fragments.

Finally, other approaches, originally developed
for the area of syntax based editing, include CIA



([Chen90]), CSCOPE ([Steffen85]), the Pan system
([Ballance92]), the CENTAUR system ([Borras88]),
the Cornell Synthesizer Generator ([Reps84]) and, A*
([Ladd95]).

3 The Transformation Process

In order to perform software transformations, it
is useful to represent source code at a higher level
of abstraction than, say, text or even parse trees
[Yasuma95]. Like many other research efforts, we have
chosen to represent the source code in the form of Ab-
stract Syntax Trees (AST) which has been emitted
from a custom-built PL/IX parser and linker. Ab-
stract Syntax Trees provide a fine-granularity rep-
resentation of source code details (type information,
scoping, resource usage) which is exploited throughout
the transformation process. A custom-built PL/IX
language domain model provides an hierarchical view
of the PL/IX language constructs and ”drives” the
set of transformation routines which maps PL/IX lan-
guage constructs to corresponding C and C++ con-
structs. Once a PL/IX construct is identified, a trans-
formation routine is selected and invoked. Each en-
tity of the custom-made PL/IX domain model has
a corresponding transformation routine. For exam-
ple a StatementIf in PL/IX will be transformed
to an equivalent statement in C by transforming its
condition, its then-clause, and its else-clause,
which the domain model indicates that are of type
Expression, Statement, and Statement respectively
(see example in Section 6).

A subset of the PL/IX domain model is illustrated
below, with indentation representing sub-classing:

PlixObject
PlixApplication
PlixFile
PlixProgramFile
PlixIncludeFile
Statement
StatementIf
StatementAssignment
StatementCall
StatementDeclare
DeclareObject
StatementInclude
StatementDoEnd
Expression
ArithmeticAdd
ArithmeticDivide
ArithmeticMultiply

ArithmeticSubtract
IdentifierReference
LogicalAnd
Logicalllot
LogicalOr
ReferenceComponent

Each language construct is represented in the do-
main model as an object with a list of attributes. For
example a PL/IX If Statement is represented as:

StatementIf object
Subclass-of Statement

Attributes
condition : Expression
then-clause : Statement
else-clause : Statement

End StatementIf

The transformation of a given code fragment con-
sists of the following steps:

Transformation of its data structures: PL/IX
data structures of the subject system were analyzed
and migrated based on a set of transformation rules
applied both to the basic and to aggregate data types
of the source language. Overlays, unnamed fields,
memory areas, aliases, controlled variables, and many
other complex features of the source language were
mapped to functionally similar structures in the tar-
get language.

Generation of supporting utilities and other
target language specific artifacts: In many cases con-
structs of the source language do not have obvious cor-
responding constructs in the target language. In this
case, a set of utilities and libraries need be constructed
to support execution of the migrant code. Examples
of such constructs include array classes (one dimen-
sional or multidimensional), memory allocation and
deallocation mechanisms, and built-in functions that
are specific to the source language.

Generation of the new system: Programs are
mapped from the source language to the target lan-
guage in a way that preserves structure, algorithmic
patterns, informal information (i.e variable names),
comments, and indentation. In particular comments
are handled as annotations in the AST and are ex-
tracted by the custom-made linker. In most cases map
very well to the correct position in the new generated
code as most comments occupy a single line and do not
interleave with expressions inside a source code state-
ment. For cases where there is a position discrepancy



this usually is in the order of one or two lines and can
be easily identified at the code inspection phase.

The process of selecting which components of the
legacy system to migrate begins with program under-
standing and re-documentation techniques which lead
to a detailed analysis of the legacy system in terms
of its major components, files, subsystems, and corre-
sponding interfaces [Finni97]. Each subsystem is thor-
oughly analyzed in terms of its control and data flow
properties, its interface with the rest of the system,
and the major algorithms and data structures used.

Once a global decomposition of the legacy system
has been achieved in terms of subsystems and inter-
faces, a number of subsystems can be selected as the
primary candidates for migration. The selection cri-
teria focus on:

Code size: Subsystems between 5-10KLOC are
ideal candidates since they can be manually examined
and inspected.

Interface patterns: Self contained, systems with
simple interface patterns, and as few as possible side
effects, are also primary candidates.

Maintainability: Subsystems which degrade in
quality and performance due to the lack of resources
are also good candidates for migration. Maintenance
for these systems is performed on as needed basis and
usually is of a corrective variety. The incorporation
of substantial domain knowledge in the code (i.e. do-
main specific algorithms) results in increased difficulty
on understanding and maintaining the particular sub-
system.

Performance: Subsystems that have been iden-
tified as a performance bottleneck - time or space -
during testing due to, algorithmic complexity or poor
utilization of language constructs are also high on the
candidate list.

The following subsections discuss in detail the is-
sues involved for the migration of any given subsys-
tem.

4 Data Type Migration

The first step towards code migration is the trans-
formation of data structures.

Basic Type Conversions: A global table that
maps PL/IX primitive data types to their correspond-
ing C/C++ data types was counstructed. The type
mappings are illustrated in Table.1.

Aggregate Type Conversions: Mappings for ag-
gregate data types were developed by the code trans-
formation program, using information on basic data
type conversion. As a general rule, PL/IX records
were transformed to C/CH++ structures (struct).
Overlays were handled as C/C++ unions. The type
conversion table can be modified with ease during the
migration process and can be tailored to particular
requirements for a specific migration project. A de-
tailed discussion on the issues involved for data type
transformations can be found in [CserRep]. An exam-
ple that illustrates the transformation of an aggregate
data type is shown below:

dcl 1 dsstate external,
prg integer,
externs integer,
statmem integer,
curr_pdx_statmem integer,
aregcnt integer,
aregused integer,
flags bit(32),

*3

3 dbg bit,

3 detail bit,

3 warn bit,

3 detail2 bit,

2 memused bit(32),
2 maxmuse bit(32);

NN DNDDNDDNDNDDNDDN

The data structure above is automatically trans-
formed into:

struct any_DSSTATE {

int prg;
int externs;
int statmem;
int curr_pdx_statmem;
int aregcnt;
int aregused;
union FLAGS {
int flags;
struct any_DSSTATE_8 {
int dbg:1;
int detail:1;
int warn:1;
int detail2:1;
};
};
int memused;
int maxmuse;



PL/IX Type C Type
integer int
integer half short int
integer long long int
float double
float short float
float long double
character char
bool bool
bit bool
bit(1) 01
bit(2) : 2
bit(8) unsigned char
bit(9) 1 9
bit(16) unsigned short
bit(17) 1 17
bit(32) unsigned

Table 1: Basic PL/IX to C type conversion.

Macros to access fields:

In order to replicate the access of a field that is
deeply nested within a record, a macro is generated
for every field access pattern found in the code. These
macros allow the migrant C++ code to closely resem-
ble its PL/IX ancestor. The syntax and the definitions
for calling these macros are stored in tables during a
preprocessing phase. Another transformation issue re-
lates to PL/IX array references for which indexes do
not necessarily appear next to the element in the ref-
erence component to which they belong. For example,
in field access a.b(1i), it may be the case that a is an
array, not b as it may be thought initially. An elab-
orate analysis of the PL/IX data structures, and the
generated corresponding C++ data structures is re-
quired in order to construct the correct transformation
for such a field access. This analysis automatically
reconstructs the full path of the corresponding C++
structure, starting from the last, inner-most, field on
the reference component and proceeding towards the
outer-most field of the structure. Array indices are
substituted, from left to right for each array related
field found in the reconstructed path. ”Liked” fields
are also handled appropriately.

Ambiguous field names: The problem here is
that PL/IX allows paths of field accesses to be abbre-
viated (for instance, a.b.c is abbreviated as ¢). Such
paths need to be reconstructed for the migrant C++

code. The first step in dealing with this problem
is finding field names that are used more than once
within the same compiler option. A dis-ambiguation
process then locates all such names and builds a path
of fields that is required to access each such field. Once
those paths are available, a subset of those chains
is selected which completely distinguishes among the
ambiguous fields. For example, a record rec; may
consist of field field, which consists of nested fields
fieldy and field.. One can then write an assignment
statement in PL/IX as field, = val (as opposed to
fieldy. fieldy. field, = x). The migration tool builds
a macro for each previously ambiguous identifier and
this macro definition is consequently stored in a global
macro table. Examples of macro definitions for trans-
forming reference components are illustrated below:

Uses of field access for the bb_begin, bb_end,
bb_count, and irreducible PL/IX fields (sample
from the original PP/IX code):

do plx= bec(bb_end(bb))
repeat (bc(plx))
while (plx~=bb_begin(bb));
Statements

do bb= 2 to bb_count;
Statements

irred= irreducible(rgn);

the C generated code for the PL/IX code segments
above is:

for (plx = bc[C_BB_END(bb)];
plx != C_BB_BEGIN(bb);
plx = belplxl) {
Statements

for (bb = 2; bb <= C_BB_COUNT; bb++) {
Statements

irred = C_IRREDUCIBLE(rgn);

while the C corresponding macro definitions for the
field accesses are:

#define C_BB_BEGIN(i)
(bb_tab.bb_t[(i)].BB_BEGIN.bb_begin)



#define C_BB_END(i)
(bb_tab.bb_t[(i)].bb_end)

#define C_BB_COUNT
(bb_tab.bb_count)

#define C_IRREDUCIBLE(i)
(bb_tab.bb_t[(i)].flags.irreducible)

Literals: In this phase of the migration process,
we look for all PL/IX literal declarations and attempt
to classify them into one of six types. These types are
as follows:

1. The literal is an integer.

2. The literal is an ambiguation

3. The literal is a string of PL/IX variable attributes
4. The literal is a string that is an Identifier

5. The literal is a string that is a PL/IX type

6. The literal is a bit mask

All of these cases are handled either by declaring
appropriate macros evaluating on the correct value of
the literal definition, or by using the C preprocessor
(i.e. #define) to define literal constant values. Exam-
ples of literal definitions include:

The PL/IX code for literal definitions is:

dcl mode32 integer constant init(0);
dcl tags_full 1it(’37);
dcl tags_small 1it(’2’);

and the corresponding generated C code for the
PL/IX literal definitions above is:

const int mode32 = 0;
tdefine C_TAGS_FULL 3;
tdefine C_TAGS_SMALL 2;

5 Generating Class Header Files

The second step for transforming a PL/IX applica-
tion to C/C++ was to generate the C/C++ header
files using the data type information obtained from
the PL/IX Abstract Syntax Tree, the data type ta-
bles, and the macro definition tables. Generating the
header files required the following steps:

Constructing the Foundation Classes: This
first step deals with the construction of a set of ”foun-
dation” classes used in the header files. Each of these
classes is defined to have only static methods in order
to resemble the PL/IX semantics. For every public
procedure in PL/IX, one class with the procedure as
its public method is created.

A PL/IX procedure group is transformed into a
class with multiple public methods. Every nested pro-
cedure, or unexposed procedure in a group, is made
into a private method of the class which holds its outer
procedure (or group). This is not exactly orthodox
object-oriented programming (O-O-OP), but it allows
us to encapsulate a PL/IX procedure within a C++
class so that new functionality can be added to the
procedure (for example, a nested PL/IX procedure)
in a transparent with respect to the rest of the legacy
system way. An example of this type of transforma-
tion is illustrated below:

Given a the PL/IX procedure declaration, which
defines a nested procedure:

dslvbb: proc(bb);

end proc_ensc
end dslvbb

the corresponding C++ foundation class are gener-
ated as follows:

class Dslvbb {
public:
static void dslvbb(int bb);
private:
static void proc_ensc(any_L_BAG menref);

¥;

Merging Classes: The next step in the process
of creating class header files is merging classes that
correspond to identical types for parameters passed
in several procedures. For example, if we have proce-
dures P1 and P2 with parameters pl of type T1, and
p2 of type T2, then we want to map P1 and P2 into
methods of the class C_T1 corresponding to the type
T1. A Java based interface has been built for to make
this process interactive and allow the user to specify
how the classes corresponding to procedures are to be



merged. As the reader might infer, a data type that
is heavily used as a parameter to several procedures is
a primary candidate to be transformed to a class and
the procedures to be member functions with the par-
ticular parameter removed. As an example consider
the scanner PL/IX data type which is transformed
to a class as follows:

class Scanner {

private:
static alloc(int 1lim);
static new_item(int elem, P_BAG flags);

void join(int lo, int hi,
boolean ds_used_bit);

public:
void init_scan(int 1lst);
int advance();
int pick();
boolean ds_is_used();

static int make_empty_list();

static void kill_list(int list);

int find_item(int elem);

void delete_item();

void delete_lfrag();

void insert_mem_dsc(Scanner sc,
boolean ds_used_bit);

boolean join_item(int m,

boolean ds_used_bit);
void insert_live(int item,

P_BAG attrs);
void insert_after(int elem,

P_BAG p_flags);
void insert_item(int elem,

P_BAG p_flags);
boolean join_live(Scanner join_me);
void split_item(int m);
void constrict_item(int m);
boolean defrag_live(boolean ds_u);

¥;

Handling External Variables: After processing
all of the declarations in the original PL/IX code, all
of the external variables are stored in a global table.
These declarations are printed to a file that is not in-
cluded anywhere in the new C++ code, but references
to the variables in it are made via extern statements.
An alternative solution is to include this file in all oth-
ers and remove the corresponding extern declarations.

6 Source Code Transformations
The main objective of this phase is to write out

C/C++ source code that can be compiled with min-
imal corrections. A set of transformation routines

modeled after the custom-built PL/IX domain model
(referred to as the ”skeleton”) is the driver for all
transformations in the system. A tree traversal rou-
tine, traverses a PL/IX Abstract Syntax Tree and for
each AST node corresponding to a PL/IX element
that needs to be transformed, a transformation and
formatting function is invoked. For example when
transforming the body of a procedure the routine that
handles the transformation of Statement is invoked.
A selection process identifies what type of Statement
is to be transformed and the appropriate transforma-
tion routine is invoked.

An example on how the transformation process is
applied to the PL/IX Abstract Syntax Tree that corre-
sponds to an StatementIf is shown below. The trans-
formation routine proceeds as follows:

PL/IX Code:

if "kill then cannot_kill = true;

Corresponding AST Node:

#1445 <a statementif>

class: STATEMENTIF

parent-expr: #1456<a statementdoassigment>
condition: #1457<a logicalnot>
then-clause: #1458<a statementassignment>

Corresponding Domain Model:

StatementIf
condition : Expression

then-clause: Statement

Transformation Process Trace:

Transform Statement
. Transform StatementIf
——> "if (n
. Transform Expression
...... Transform Logicallot

__> |I( !II

........ Transform IdentifierReference
-—> "kill"

__> II)II

——> n)n

. Transform Statement
...... Transform StatementAssignment

-—> "cannot_kill = true;



Code Translates To:

if ( ('ki11) ) £
cannot_kill = true; 1}

Formatting for nested functions is generated
through the use of a two way pass. A first pass on
the AST is used to collect all necessary information,
while second pass generates the migrant code. Note
that in order to conform with PL/IX semantics, nested
procedures have been defined as private methods on
the ”basic” class encapsulating the top level procedure
(see data type transformations).

Syntactically correct C++ code is output to a .h or
to a .cpp file. As expected, this process does not al-
ways guarantee that the resulting code will be seman-
tically correct, with respect to the original application
code. However, the process provides a fast and rela-
tively reliable way to handle massive volumes of code
and thus makes code migration a feasible alternative.
The final result of this step is checked manually, and
the generated code is passed through all test buckets
to verify the correctness of the migrant code.

A number of helper libraries have also been defined
for built-in PL/IX functions, such as those for mem-
ory allocation. For example, an ArrayALLOCATION(x)
function is defined as a macro and corresponds to the
PL/IX statement allocation(x). Helper data types
are also used to simplify the appearance of the gen-
erated code, and to make it look as much as possible
to the original PL/IX code . These types inherit
from basic library elements such as set, bag, list,
sequence and array. For example a template class
PlixArray< type > was used to model one dimen-
sional arrays.

7 Integration, Porting, Limitations

Once one or more subsystems of the legacy system
have been migrated, they need to be integrated with
other existing PL/IX subsystems. This integration re-
quires (i) writing of emulation classes for PL/IX built-
in data types and functions, (ii) manual fixing of the
generated code where necessary, and (iii) writing of in-
terface code, so the C++ code can access PL/IX func-
tions and data types. The last two steps can actually

IThis was another requirements for the migration effort, in
order to facilitate future maintenance of the migrant code

be carried out concurrently, by compiling the modules
file-by-file, and then adding interfaces for routines and
functions where necessary. Since the modules share
most of the interface code, less interface code needs
to be written for each new module so that the last
step requires minimal effort after the migration of sev-
eral modules. We have identified a number of manual
changes required for the new code to compile and link
properly. These relate to handling multi-dimensional
arrays, and field accesses and to limitations on map-
ping the PL/IX semantics to C/C++ semantics (i.e.
in the case of LEAVE statement in PL/IX which has to
be mapped to some form of GOTO in C/C++). Some
of these manual changes have either been incorporated
in the tool or been flagged so that the developers can
identify easily the points that manual intervention is
required.
The migration process has limitations, including:

e Local variables of nested procedures: C+4 does
not have nested procedures, so local variables that
are used in sub-procedures, need to be passed as
parameters to the sub-procedures (or be made
class variables)

e Insertion of gotos and labels: multi-level
leave/iterate statements have to be done auto-

matically

e Grouping sub-procedures: static procedures of a
class will not work with the current treatment
for recursive procedures. A design has been pro-
posed on how to fix the problem and will be im-
plemented with the next release of the transfor-
mation tool.

8 Tool Evaluation

Evaluation of the migration tool focused on four
major areas. The first area examines the generality
of the tool in terms of the lessons learned on how
the same transformation process can adopted in or-
der to migrate and transform applications written in
similar to PL/IX languages (i.e. PL/I). The second
area, examines the performance of the new compiler
with respect to memory usage, the third investigates
the performance of the migrant code compared to the
original, while the fourth examines reductions in the
human effort required to migrate legacy code.

The main characteristics of the transformation
process as compared to other transformation tools



Subsystem | PL/IX Time | C++ Time | # of Runs Subsystem | Code Size | Transformation Time
(in minutes) | (in minutes) (KLOC) (min:sec)

Test13k 11.96 12.19 956 BI 6.2KLOC 18:01
gee 70.52 70.30 121 (9:04)
lib g++ 0.916 0.8626 1065 DS 7.8KLOC 28:12
JPEG 9.4257 9.106 764 (13:10)
SM 7.4KLOC 26:45
Table 2: Compilation time statistics with the old (14:00)

(PL/IX) and the new (C++) compiler. Results were
averaged on the number of runs. The experiments
were conducted on four different models of RISC/6000

machines.

[Verhoef97] is the use of a repository that holds all
the necessary information for the system to be trans-
formed, as opposed to applying transformations at the
syntactic/semantic level using grammar and semantic
actions re-write rules. This repository is populated at
parse time and is annotated appropriately by a cus-
tom made for PL/IX linker. All code transformations
have been built in terms of modular application pro-
grams at the repository level. It has become apparent
from this project, that the transformation logic should
be as modular and localized as possible (i.e. different
transformation programs for each language construct),
and focus on three main points; a) transformation of
data types, b) development of support utilities (i.e.
macros, interface classes) and, ¢) transformation of
the source code entities (i.e. the actual application).
The schema in the repository has been built in such a
way as to be compatible with the PL/AS and PL/X
domain model. Therefore, the transformation process
is also applicable, with minor schema and transforma-
tion logic changes, to applications written in PL/AS
and PL/X. We currently investigate the possibility of
applying the same transformation logic to applications
written in PL/L.

As indicated in the introduction, the migration tool
was built in two phases. The first phase aimed at de-
veloping a tool which would produce C and C++ code
that resembled substantially the hand-transformed
code produced for a legacy subsystem. The second
phase aimed on incorporating into the transforma-
tion routines heuristics that have been used to hand-
optimize the migrant code. The migration tool has
been tested with three subsystems of the legacy sys-
tem. The performance results obtained for these sub-
systems are reported in Table 2.

As indicated earlier, the legacy system that has
been partly migrated is a compiler optimizer. In order

Table 3: The time to transform the selected subsys-
tems after parsing. Code size refers to actual code
excluding comments and blank lines.

to evaluate the performance of the new version of the
optimizer (which includes the three migrated subsys-
tems), the optimizer was run on four sets of source
code, namely:

i) A single 13,000 line pre-processed C source
file, about 7,000 lines of which were actual code
(rather than declarations); ii) The Independent JPEG
Group’s free JPEG software, sixth public release (C
sources); 4ii) Stage 1 of the GNU C compiler, version
2.7.2.2 (C sources) and; i) The GNU C++ library,
version 2.7.1 (C++ sources)

The performance results obtained when running the
optimizer against these four test cases with the PL/IX
and C++ versions of the subsystems respectively are
reported in Table 2. These are preliminary results
obtained after the optimization heuristics were added
in the transformation tool. More results are being
collected as the migration tool is undergoing further
enhancement related to heuristics that can be incor-
porated to the transformation logic and used for en-
hancing the performance of the new code.

The time it takes the tool to generate migrant code
as a function of the size of the input code (time for
parsing is shown in parentheses) as well as the effort in
person days for adapting and integrating the migrated
code with the rest of the original legacy system are
illustrated in Tables 3 and 4 respectively.

These results indicate a significant enhancement in
productivity for the migration process, with no de-
terioration in the performance of the migrated code.
In particular, manual transformation of one subsystem
(DS) required approximately 50 person-days. By com-
parison, it took only one person day to adapt the auto-
matically generated migrant code for the same subsys-
tem so that it can be compiled, linked, and integrated
with the rest of the legacy system. Statistics gathered
for the other two subsystems (BI and SM) follow the



Subsystem | Code Size Automatic
Transliteration
(KLOC) (person days)
BI 6.2KLOC 0.3pd
SM 7.4KLOC 2pd
DS 7.8KLOC 1pd
Subsystem | Code Size | Manual Transliteration
DS 6.2KLOC 50pd
Subsystem | Code Size | Manual Optimization
DS 6.2KLOC 10pd

Table 4: The effort to adapt and integrate the new
components to the rest of the system compared to the
effort to manually transform the same subsystem.

Subsystem | Subsystem Original New
Size System Size | System Size
(KLOC) (MB) (MB)
BI 6.2KLOC 27.150 27.265
DS 7.8KLOC 26.738 27.976
SM 7.4KLOC 26.687 28.172

Table 5: The total size of the compiled system (binary)
before and after migration.

same trend and indicate an effort of approximately
half a person-day and two person-days respectively.
The difficulty of the integration task depends largely
on the usage patterns of the data structures in the
legacy system which have not been migrated yet and
therefore need be shadowed, so that the new version of
the system can be compiled and linked as a whole. Fi-
nally, in Table 5 the size of the old and the new version
of the overall system is compared. As it is shown, the
new system is approximately 5% larger in size than
the original one. This can be explained by the added
C++ libraries to handle and simulate the behavior of
several PL/IX language-specific constructs.

The comparison of the PL/IX to C converter dis-
cussed in this paper, with the other tools found in the
literature is summarized in the following points. In
[Yasuma95] the authors present a higher performance
ratio (that is the performance of the old system di-
vided by the performance of the new system) for the
migrant code (ratio = 1.22) than the performance ra-
tio we could obtain on our initial experiments (ratio =
1.02). The reason for this discrepancy is that we deal
both with PL/IX, which is a highly optimized lan-

guage (as opposed to SmallTalk), and with a highly
optimized application which, in our case, is the IBM
compiler back-end. Therefore our margins of perfor-
mance improvement are limited compared to the ones
that could be obtained in SmallTalk to C conversion.

In [Feldman93] and [Gillesp98] the authors report
that the performance of the converted code using the
f£2¢ and p2c utilities respectively, is the same as the
performance of the original code, indicating thus a
performance ratio of 1.0. However, the code gener-
ated by these tools is reported to be non-maintainable
due to the structure and the characteristics of the gen-
erated code (no informal information and code struc-
ture preserved). This is to be expected since these
tools were meant to produce code, which after compi-
lation is binary-equivalent with respect to the original
code. We took a different approach, and we generate
code that is structurally ”similar” with respect to the
original code so that we could still produce portable
and maintainable code without of course affecting the
performance.

On these aspects, our tool performs well, as it both
maintains an acceptable performance ratio, and allows
for the new code to be more maintainable and portable
due to resources, analysis tools, and the range of exist-
ing compilers available for C-based systems, as com-
pared to limited support that is available for PL/IX-
based systems. In this respect, we can say that our
tool could be placed in the middle of the spectrum rep-
resented in its extremes by: i) the SmallTalk to C con-
verter which deals with low optimized SmallTalk con-
structs and not compatible programming paradigms
between the source and the target language and on
the other end by 4i) the Fortran to C converter which
deals with easier mappings between the source and the
target language, but with no further maintainability
and portability requirements for the target system.

9 Conclusion

We have described an experiment in code migra-
tion in the presence of global constraints, namely non-
deterioration in the performance of the maintainable
migrant code, and an incremental migration process.
Our experiment suggests that it is possible to develop
tools which reduce the human effort required for the
migration process by one to two orders of magnitude,
while respecting such constraints.

We are currently completing a thorough evaluation
of the migrant code in comparison to its legacy an-
cestor. We are also in the process of enhancing our



migration tools to meet maintainability and other non-
functional requirements for the migrant code.
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