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Abstract

Cloning of code fragments in large systems is a com-
mon practice that may result in redundant code, higher
maintenance costs, and less modular systems. This
paper examines and evaluates the use of five data and
control flow related metrics for identifying similar code
fragments. The metrics are used as signatures for a
code fragment. Matching on such signatures results
in fast matching that can be used to locate instances
of code cloning even in the presence of modifications
such as changes in variable names, and insertion of
statements. The paper takes an information retrieval
approach and reports on experiments conducted for re-
trieving code fragments in three different software sys-
tems.

1 Introduction

The localization of programiming patterns and the
identification of code cloning instances are two im-
portant tasks for the re-engineering or the remedi-
ation of a large software system. Cases where the
identification of similar code fragments is useful in-
clude cases of plan recognition for program under-
standing or Y2K remediation [Wills93], [Rugaber96],
system partitioning where code cloning can be used
as a clustering criterion, software migration to object-
oriented environments where instances of cloned code
can be abstracted to class methods [Bowdidge96] and
finally, in software maintenance where similar correc-
tions/enhancements may have to be applied to all in-
stances of similar algorithms in the system [Baker95].

A number of research teams have investigated the
issue of code cloning. In [Baker95] a string based
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approach is proposed where exact or parameterized
matching is achieved based on a modification of the
Bayes-Moore algorithm. In [Johnson96] a string-based
approach which is based on signatures calculated from
the program text allows for exact matching on large
software systems. In [Mayrand96], a clone detection
system using metrics is presented. That system al-
lows for detecting clones according to specific cate-
gories of comparison (control flow, layout, informal
information). In [Wu92], [Muth] a Unix utility called
agrep allows for approximate matching between a reg-
ular expression-like pattern and text in source code or
plain text files. The agrep uses a set of constraints
in terms of allowable insertions/deletions between the
pattern and the code for establishing the limits of
the partial matching process. In [Myers89] a par-
tial matching technique based on regular expressions
and dynamic programming is proposed. It is similar
to the agrep utility but allows for more general pat-
terns to be formulated. Finally, in [Konto96] a partial
matching stochastic technique that is based on syn-
tactic patterns specified in a abstract query language
and Markov models is proposed for identifying similar
code structures. That approach allows for the formu-
lation of patterns that contain data type information
(i.e. date fields for Y2K remediation), and data flow
constraints (i.e. definitions and uses of variables).

The approach discussed in this paper is fast and
allows for matching even in the presence of arbitrary
local changes in the code. Its drawback is that it may
result in lower precision for higher recall rates. How-
ever, the experiments discussed in this paper reveal
that this technique can be used as a fast approxi-
mation for partial code cloning detection, compared
to other techniques that either do not allow for such
matching parameterization or are computationally ex-
pensive.

The distance metric used for the experiments pre-



sented in this paper is the Euclidean distance between
elements on a 5-dimensional space created by the soft-
ware metrics considered. Since the objective of our
experiments was to observe and evaluate the use of
such a metric-based cloning detection technique in the
best case scenario, we examined the behavior of the
matcher (precision, recall) on results obtained at zero
distance values.

Within this framework (zero distance constraint),
Euclidean distance is simple to calculate and produces
the same set of results as compared to the results ob-
tained using other metric distances. Note that in or-
der to define a distance metric that directly reflects
similarity (i.e it is monotonic according to a code sim-
ilarity ordering criterion), one must first define such
a code similarity criterion. In the literature formal
approaches to specify program behavior are presented
[Stoy77]. However, there are no practical definitions
of code similarity that relate to software metrics and
therefore it is difficult to define such a distance met-
ric. In this paper (Section 3), we provide a subjective,
intuitive set of criteria for code cloning. These criteria
conform with the criteria presented in related research
studies [Baker95], [Johnson96}, [Mayrand96].

The paper first gives an overview of the features
used in the matching process, provides the experimen-
tation framework and discusses the results drawn from
a number of experiments using this metrics based tech-
nique.

2 Features For Cloning Detection

The first step towards analyzing a software system
is to represent the code in a higher level of abstraction.
A number of program representation schemes have
been proposed in the relevant literature. These in-
clude frames [Ning94], annotated data and control flow
graphs [Wills93], Abstract Syntax Trees [Newcomb97],
logic formulas on program dependencies [Canfora94]
and, relation tuples based on a language domain model
[Muller93].

We have chosen as a program representation
scheme, the program’s annotated abstract syntax tree
(AST). We believe that this scheme is most suitable
because: a) it does not require any overhead to be
computed as it is a direct product of the parsing pro-
cess and, b) it can be easily analyzed to compute sev-
eral data and control flow program properties.

Nodes of the AST are represented as objects in a
LISP-based development environment?.

!'We are using as our development environment the commer-
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The tree is created during the parsing phase, and
is annotated in a post-processing phase where link-
ing information as well as a number of features for
every statement and function node of the system are
computed. The matching features were selected on
their contribution to the data and control flow of the
system. We aimed for the features to exhibit low cor-
relation (based on the Spearman-Pierson correlation
test) so as to be sensitive to different control and data
flow properties. The features selected for our analyses
include:

1. The number of functions called (Fanout);
2. Global and local variables 2 used and updated;

3. Parameters passed by reference used and up-
dated;

4. Parameters passed by value used and updated;
5. Input/Output operations;

6. External files used;

7. Decision predicates;

These features have been computed compositionally
in the AST from simple statements and expressions
to composite statements, blocks, and functions as dis-
cussed in [Konto96]. The benefit of computing in a
compositional manner the features above is that it al-
lows for matching at different levels of granularity and
type of occurrence. For example a Block statement
that i1s part of the else-clause of an If-Then-Else
statement can be compared with a Block statement
that is part of the body of a While statement and
may be found similar if their corresponding feature
vectors match.

The reason we have chosen these features is that
they provide a global view of both data and con-
trol flow properties of a code fragment, and exhibit
low correlation values. The correlation values of the
features used, computed using the Spearman-Pearson
correlation test, are presented in Table.l. Adding
more features would be of benefit only if these addi-
tional features have low correlation value as compared
with the existing features. It is evident that we could
have used the features instead of the metrics to com-
pute similarity.

However, for our zero distance constraint it is guar-
anteed that using the features instead of metrics we
would have obtained the same results.

cial tool REFINE (a trademark of Reasoning Systems Corp.)
?Variables are also referred in the text as Identifiers



Table 1: The correlation values for the features used.

e McCabe Complexity

Features | Correlation Value Description : MCCABE(a_constr) is equal to
Fanout & Globals 0.65 -
Fanout & Globals-Updated 1 = 059
Fanout & Params-Updated 0.53 €E—n + 2
where € is the number of edges in the control flow
graph of the construct a_constr and n is the number
of nodes in the same graph.
Alternatively McCabe metric can be calculated as
Globals & Files Opened " "7 4 0502
Globals & Formal-Params 0.26
Globals & Tds-Used 1 062 MCCABE(constr) =1+d
‘Globals & Ten-CallsiTo-Construct 0.29
sted & Params-Updated | 054 | where d is the number of control decision predicates
& Read-Tnput 0.56 .
Onaned” B Ry o in the construct a_constr
& mal- 0.29 .
Tds-Used T o7 T Albrecht Metric
Globals-Updated & Fen-Calls-To-Construct | 0.31 .. R . .
ParamsUpdated & Read-Tnpnt 689 Description : ALBRECHT(a_constr) complexity is
Params-Updated & Files-Opened 0.82 equa]_ to
Params-Updated & Formal-Patams | 041
'ﬁar‘:ér;{;;tfi;(:lated & 1ds-Used r 0.46
Params-Updated & Fcn-Calls-To-Construct 0.36 p1 * IGLOBALS(G_COnStT)I+
Read-Input & Files-Opened 70
Read Input & Formal-Params 0.5 p2 * (|(GLOBALS UPDATED(a_constr)|+
Read-Tnput & Ids-Used 0.34 |PARMS_BY _REF UPDATED(a-constr)|)+
Read-Input & Fen-Calls-To-Construct 0.42
Files-Opened & Formal-Params 0.5 p3 * IREAD-STATS(G-CO”StT)|+
Files-Opened & Ids-Used 0.39 *
Files-Opened & Fen-Calls-To-Construct, 0.42 P4 FILES_OPENED(G_COnStT)
Formal-Params & Ids-Used 0.56
Formal-Params & Fen-Calls-To-Construct 0.31 where
Ids-Used & Foen-Calls-To-Construct 0.29

|

|GLOBALS (a-constr)| is the is the number of
individual declarations of global variables used
or updated within the construct a_constr.

~ |GLOBALS . UPDATED(a_constr)| is
the number of individual declarations of global

Let’s consider now the metrics that are calculated variables updated within the construct a_constr.

using the features above. We have considered five well

known metrics, namely: — |PARMS_BY _REF UPDATED(a_constr)] is
the number of pointer type variables in the for-
mal parameter list of the Function in which
a_constr is contained and which variables are up-
dated within the construct a_constr®.

¢ S-Complexity
S_COMPL(a_constr) is equal to

Description :

[FAN _OUT(a_constr)|*

~ |READ_STATS (a_constr)| is the number of in-
put statements in the construct a_constr. These
statements include the C statements : sscanf,
scanf, fscanf, getc, getchar, gets, fgetc, and
fgets.

where |FAN_OUT(a_constr)| is the number of indi-
vidual function calls in the construct (a_constr)

e D-Complexity
Description :
to

D_COMPLEXITY (a_constr) is equal

— FILES_OPENED(a-constr) is the number of
fopen statements in the construct a_constr.

|GLOBALS(a_constr)|
(|JFAN_OUT(a-constr)| + 1)

— The parameters p; have integer values. The
current implementation uses the following
values[Adamov87] : p1 =4, p» =5, p3s = 4 and,
Pa = 7.

where |GLOBALS(a_constr)| is the number of in-
dividual declarations of global variables used or up-
dated within the construct a_constr. A global vari-
able for a Statement or Expression or Function is a
variable which is not declared in the Statement, the
Expression or the Function.

3Updates are calculated based on Assignment, Pre/Post In-
crementation, and Pre/Post Decrementation statements in C
programs
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o Kafura Metric
Description :
equal to

KAFURA(a-constr) complexity is

(KAFURA_IN (a_—constr)«
K AFURA_OUT{a_constr))®

where

1. KAFURA_IN(a_constr) is the sum of

(a) the number of formal parameters
(|JFORMAL_PARMS(a_constr)|)

(b) the number of variables ([IDSUSED
(a_constr)|) used in the construct a_constr,

(c¢) the number of Function Calls to a_constr
(JFUNCTION_CALLS_TO(a_constr)|)

2. KAFURA_OUT(a-constr) is the sum of

(a) number of Functions called by a.constr
(that is the same as |FAN_OUT
(a_constr)|),

{b) the number of individual declarations of
global variables updated within the con-
struct a_constr (that is

|GLOBALS UPDATED(a_constr)|),

(c) the number of pointer type variables in
the formal parameter list of the function
in which a_constr is contained and which
variables are updated within the construct
a_constr, that is

|PARMS_BY _REF UPDATED(a_constr)|.

These metrics provide a 5-element tuple that can
be used as a signature for a particular code fragment.
A more detailed description of these metrics can be
found in [Buss94], [Adamov87].

As the metrics are computed compositionally on
the AST, each AST node (expression,statement, func-
tion) has a metric signature as annotation. Once a
code fragment is chosen, then its signature is retrieved
and matched against all nodes of the AST (i.e. expres-
sion, statement, function) that have the same signa-
ture. Heuristics can be used to speed-up the matching
process (i.e. do not attempt to match an expression
with a function).

In the following sections we adopt an information
retrieval approach for investigating the use of the pro-
posed signatures for the identification of programming
patterns.

3 Information Retrieval Framework

In this section we lay the framework within which
our experiments were conducted.
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Software System | LOC | # of Files | # of Functions
TCSH 44,754 46 658
CLIPS 32,807 40 705
BASH 27393 63 632

ROGER 13,615 39 235

Table 2: The Software Systems Used for Experimen-
tation

The software systems used for evaluating the pro-
posed approach are illustrated in Table.2. Clips is an
expert system shell, developed at NASA’s Software
Technology Center, tcsh, and bash are popular Unix
shells and Roger is a real-time speech recognition sys-
tem developed at McGill University.

An important point for computing Recall and Pre-
cision is the definition of a measure of relevance be-
tween a pattern and a retrieved code fragment. To
our knowledge, there is no formal definition of rel-
evance between two code fragments and there are
no standard criteria to recognize one code fragment
as being a clone of another. In relevant research
studies [Baker95], [Johnson96], [Halst77], [McCabe90],
[Jankowitz88], code cloning has been seen as a problem
of examining statistical, or textual properties of the
code. However, experts make fine distinctions on the
operations and the criteria for code cloning. Program-
mers may argue that textual similarity is the most
important criterion. Others may argue that the se-
mantics of the system and the Input/Output relations
are more important. Within this framework a safe as-
sumption is to: a) use the definitions of code cloning
appearing in the literature [Baker95] and, b) obtain
feed-back from programmmers on establishing the rel-
evant data set for each query. Results obtained for
each query are tested against this set to establish Re-
call, and Precision measurements.

For this paper we consider four different cloning
scenaria between two code fragments Cy, Cs:

1. C3is a clone of C4, if C; and C; are syntactically
identical (e.g. are found identical using the Unix
utility diff). That is, there is an identity func-
tion F; on each non blank and printable character
in the program text such that F;(Ci) = C2. In
this context equality means syntactic equality.

2. C5 is a clone of Cy, if Cy and C; have the same
structure but modified variable names or data
types. That is, there is a substitution 6, of vari-
ables and data types used or defined in a code
fragment such that, C4y = C,|6. Similarly, in this
context equality means syntactic equality.



3. C, is a clone of Cy, if C; and C; have the same
structure but modified statements or expressions.
That is, there is a substitution o of statements
or expressions such that Cy = C3|o. Similarly, in
this context equality means syntactic equality.

4. C, is a clone of Cq, if one differs from the other
on inserted, deleted or substituted statements
and expressions. That is there is a function
F4,(Cy,1,D) and a minimal % set of insertions
and deletions, I, D respectively, of statements or
expressions on Ci such that by applying Fy, we
obtain, Fg,(C1,I, D) = C3. Note that in this con-
text equality means syntactic equality.

These scenaria can be combined (using functional
composition), and comply with the text-based and
measurement-based approaches found in the relevant
literature [Mayrand96], [Baker95], [Johnson96] and,
[Paul94]. Specifically, in [Baker95] and [Johnson96]
exact duplication and parameterized duplication is
covered in scenaria one and two above. In
[Mayrand96], a number of criteria are proposed. The
exact copy name criteria are subsumed by our first
and second scenario respectively. The control flow cri-
terion is subsumed by our second scenario. Finally,
the layout and expression criteria are subsumed by our
third and fourth scenario respectively. In [Paul94], a
regular language is proposed to identify programming
patterns. Cloning can be detected using this system
based on the assumption that if two code fragments
can be generated by the same pattern then they could
be clones. The criteria in [Paul94] for cloning, are sub-
sumed by our second, third and, fourth Scenario. In
particular, in [Paul94] wild characters correspond to
arbitrary insertions and identifier place-holders corre-
spond to substitutions (6, o).

As far as the semantic-based approaches are con-
cerned, we believe that these can be covered mostly
in the framework of language semantics and other
formal techniques that can be used to indicate func-
tional or behavioral similarity between code fragments
[Stoy77]. Note that in general, functional and behav-
ioral equivalence is an undecidable problem, and even
for the relaxed conditions where we may prove be-
havioral similarity most of these techniques are not
tractable [Quilici96]. The ultimate goal of IR is to re-
trieve components to be presented to a user who makes
the final decision on their appropriateness. Further-
more, we feel that the semantics approach exceeds the

4The size of maximum number of allowable insertions and
deletions is defined by the Software Engineer. The more in-
sertions and deletions are allowed the less similar one software
element is to another [Wu92).
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scope of the pattern-matching based framework pro-
posed in this paper.

Following standard Information Retrieval (IR)
practice, consultation with programmers of the sub-
ject systems was performed in advance to select code
fragments that were replicated in the system. Each
replicated component has been tagged by its location
(file, length in lines of code) and content (number and
type of statements it contains). These “tagged” com-
ponents form the basis for evaluating query results and
thus calculating Recall and Precision.

We have considered a space of 940 functions and we
formulated 20 queries in total for each method con-
sidered. This ratio corresponds well with the same
number of queries per number of documents that has
been used in standard Information Retrieval test sets
[Maarek91}, with reported ratios in the range of 2.3%
to 2.6% have been reported. The queries were selected
by programmers that have experience with the struc-
ture and the contents of the subject systems. Essen-
tially, these queries are code fragments for which the
programmers knew to be or, to have cloned instances
in the subject system. Code fragments were selected
based on:

o The knowledge that these were replicated compo-
nents,

e Coverage of the cloning scenaria discussed above.

Obtained results were checked against the set of the
relevant components that have been identified by the
programiners.

Let C be a collection of software components in a
repository (i.e. all functions in an application). For
each query (@), the set C can be partitioned into two
disjoint sets: A containing R relevant to the query el-
ements and A’ containing irrelevant to the query ma-
terial.

Now suppose we apply the query using a match-
ing mechanism. In an ideal scenario we would have
retrieved R components. Suppose that, for each such
query we retrieve a set of ¢ components. Suppose this
set contains 7 relevant to the query components (r < ¢
and ideally r = R). Following the classical Informa-
tion Retrieval (IR) terminology Recall and Precision
are defined as:

T
Il = —
Reca R

.. r
Precision = —
c



In other words, Recall provides the percentage of
elements retrieved, measured against the relevant ele-
ments that exist in the repository and could have been
retrieved with a perfect and ideal matcher. Ideally Re-
call is 100%.

Precision measures the noise we obtain in our re-
sults (i.e. irrelevant documents appearing in the re-
sults of a query).

The relationship between Recall and Precision
shows how well a matching engine performs. In an
ideal matcher, the Precision will remain high as the
Recall increases. However, this does not happen in
practical applications. The more the constraints of
a query are relaxed to retrieve more relevant compo-
nents (i.e. increase Recall), the more noise is presented
in the results (i.e. Precision decreases).

In this study, the relationship between Recall and
Precision has been computed using the standard IR
approach which consists of:

¢ Evaluating Recall and Precision for each query at
given cut-off points,

e Performing macro-averaging [Jones81] so as to ob-
tain a single Recall and Precision value for every
given cut-off point,

o Using linear interpolation to obtain Precision val-
ues for Recall values that were not effectively
achieved.

Linear interpolation was used to compute Precision
values p* for standard Recall values 7* by applying the
following formula :

r* - T1

PP=p+ (p2 — 1)

T2 —T1

where 71, and 75 are the recall values immediately
to the left and to the right of * and p;, ps are the
corresponding precision values.

4 Pattern Matching Experiments

In this paper we present the results of clone detec-
tion using the metrics described above. Alternatively,
we could have used the features instead of the met-
rics as several metrics use common features. However,
we consider in our experiments results obtained with
zero distance, and therefore is irrelevant if we use the
metrics or the features instead. In order to do that
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one must first define a similarity ordering relation be-
tween software elements. Such an ordering relation
could specify when two components are more similar
as opposed to the comparison with other components.

Note that, for the interpretation of the results, the
reader should not consider how the features are used
(quadratically or reciprocally) but should focus on the
fact, the features should perfectly match to give zero
distance results and therefore the significant factor is
that they are used in the calculation of the metric
value. In this case, if the metrics have distance zero,
then the features should also match exactly.

4.1 Precision Per Metric Usage at Max.
Recall Level
This experiment illustrates the Precision ® varia-

tion per metric combination used ©, at Recall level
95.8% (which was the highest effectively achieved Re-
call level in these experiments), and similarity thresh-
old distance 0.07.

e Using One Metric: among the single metric us-
age scenario the Precision is higher when using
the Kafura metric (Fig.1). An explanation for
this behavior is the complexity of the metric in
terms of the variety of the features used to com-
pute it. Note that in percentage values the Pre-
cision is illustrated in Fig.1 where, the Kafura
metric achieves a 1.7% Precision value for 95.8%
Recall.

e Using Two Metrics: the Precision increases when
using the combination of the Kafura metric with
S-Complexity (Fig.2). An explanation is the re-
duction in noise introduced by intersecting the
FANOQUT feature in both metrics. However, it
is interesting to observe how the McCabe met-
ric contributes to the second best Precision value
when combined with the Kafure metric. The rea-
son for this is that McCabe introduces to the
matching process a new low correlated feature
(estimated as 0.288), and namely, the structure
of the Control Flow Graph. At this point it is
useful to distinguish between the two types of in-
fluence when two or more metrics are combined in
the matching process. We refer to the first type

5Please note that the Precision values illustrated in the fig-
ures are given in percentage points

6A-K denotes the combination of Albrecht and Kafura
metric, and D-S the combination of D-Complexity and S-
Complexity metrics

"Distances between code signatures were calculated using the
Euclidean distance in the metric space



Figure 1: Precision values (in percentage points) for
one Metric used (Recall level 95.8%. )

of influence as feature intersection. Feature inter-
section enhances the Precision because it imposes
a common matching criterion. In other words the
resulting candidate components are constrained
to have similar values in one or more of the fea-
tures. We refer to the second type of influence as
feature addition. Feature addition enhances the
Precision because 1t imposes more features in the
matching process to be considered. The exper-
iments indicate that a combination of types of
influence is better than considering feature addi-
tion alone (see S-K, M-K combinations in Fig.2,
and S-A-K, S-M-A in Fig.3). That means by just
adding new features in the matching process does
not always result in significant increase in Preci-
sion.

Using Three Metrics: the Precision increases
when using a combination of the Kafura met-
ric, the McCabe metric and, S-Complezity (Fig.
refm-e3). This result is expected as it includes
the metrics from the first best two metrics com-
binations. The interesting point though is the
high Precision we obtain at high Recall levels by
the use of the D-Complexity or Albrecht instead
of the McCabe metric. This result can be ex-
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Figure 2: Precision values (in percentage points) for
combinations of two Metrics (Recall level 95.8%.)

plained by the nature of the D-Complexity metric,
which essentially imposes a feature intersection
influence, (GLOBALS) with the Kafura metric.
The same can be said for the Albrecht metrics,
which imposes a feature intersection influence on
the PARAMS_BY REF_UPDATED and GLOB-
ALS_UPDATED.

Using Four Metrics: the Precision increases when
using a combination of the Kafura metric, the
McCabe metric, the S-Complexity metric , and
the D-Complerity metric (Fig.4). The interest-
ing point here is the possibility of replacing the
D-Complezity with the Albrecht metric. This re-
placement can be explained by the feature addi-
tion influence of the I/O features (READ_STATS,
FILES.OPEN) of the Albrecht metric. Note that
globals and FANOUT in D-Complexity have al-
ready been covered by the S-Complezity and Ka-
fura metric. At this point the Albrecht metric
adds new matching features and this is the rea-
son it makes such a high contribution.

Using Five Metrics: we can achieve an effective
Recall level of 95.8% and maintain a Precision
level of 10.2% (Fig.5). This is not a discouraging




Figure 3: Precision values (in percentage points) for
combinations of three Metrics (Recall level 95.8%.)

result if one considers that in all of our experi-
ments (involving the samples queries, and brute-
force comparison between all function pairs)® we
did not retrieve more that 11.3% of the total sys-
tem size. That means using this approach we will
retrieve 11.3% of the system for which we know
there are 95.8% of the existing clones, for a given
pattern.

4.2 Recall Per Distance Range

This experiment illustrates the significance of the
distance values to the recognition process. Using all
five metrics with threshold set to 2.5 units® and cut-
off values illustrated in Table.3 we measured the re-
call using our sample queries. The result drawn from
this experiment is that using the metrics-based pat-
tern matching technique we obtain most of the clones
(57.7%), at distance values < 0.6. This result indi-
cates that this technique can be used as a fast first

8For the Clips system we had 248,160 possible pair
comparisons.

9Using the Euclidean distance. Note that, if other distance
metrics had been used, different values in Table.3 would have
been obtained. However, this table presents the general behav-
ior of a metrics-based cloning detection system.
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Figure 4: Precision values (in percentage points) for
combinations of four Metrics (Recall level 95.8%.)

approximation to the clone detection problem, for dis-
tances close to 0.0. Note that on distances close to 0.0
and using all five metrics this technique is the simplest
and fastest to apply when compared on its generality
for approximate matching with the other string-based
techniques. Moreover, the only additional computa-
tion involved in this technique is the comparison of the
metric values as the metrics are calculated right after
parsing, at link time. Note that the Recall/Precision
graph illustrated in the following section suggests for
such Recall level a Precision of 46.5% which is a good
indication for the usefulness of this technique. The
drawback of this technique is that it is language de-
pendent as it requires metrics to be computed first.

4.3 Recall / Precision

Precision values for specific Recall values were com-
puted by performing an Information Retrieval Exper-
iment. Average Recall values and average Precision
values have been used to produce, with linear inter-
polation, Precision values for standard Recall values
(0.0, 0.1, 0.2, .. 1.0). Because of the erratic nature of
low recall values for small samples [Jones81] we assign
ed a Precision value of 1.0 to Recall value of 0.0. We
formulated 20 queries for which programmers, have
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Figure 5: Precision/Recall Graph for different metric
combinations. The metric combinations were selected
among the ones that give the highest precision in their
category class (i.e. the best combination of two met-
rics is S-Complexity and Kafura)

identified replicated components in the source code.
In this experiment we report the relation of linear
Recall to average Precision, using the best combina-
tions obtained by the experiment discussed in Section
4.1.
The obtained results indicate that:

o Using one Metric (Kafura): 0. we have an al-

most linear drop in Precision and we obtain a
low Precision for high Recall values. The match-
ing time using this method is acceptable but was
64% higher than the best time performance we
can obtain. The drawback of using only one met-
ric is the drop in Precision which is almost 7 times
lower than the best we can achieve for the highest
Recall value.

e Using two Metrics (Kafura, S-Complexity): we
have a significant gain in Precision for low to
medium Recall levels. This can be explained by
the common constraint imposed by the FANOUT
feature in both metrics. At higher Recall levels we

10Please refer to the Kafura selection in Fig.1
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Distance Range | Recall
0.0 44.3%
< 0.2 55.4%
<04 57.7%
< 0.6 57.7%
<038 68.2%
< 1.0 68.2%
< 1.2 82.1%
<14 82.1%
< 1.6 82.1%
< 1.8 82.1%
< 2.5 96.0%

Table 3: Recall / Distance Value Range (Metrics)

achieved lower values than the ones achieved us-
ing the Kafura metric alone. We suspect, though,
this is because of the interpolation noise in previ-
ous curve above (one metric).

o Using three Metrics (Kafura, S-Complexity, Mc-
Cabe): we have a new gain in Precision for corre-
sponding Recall values. At this point the McCabe
metric is the factor for the Precision increase as it
adds the Control Flow component to the already
considered features.

o Using Four Metrics(Kafura, D-Complexity, Mec-
Cabe, S-Complexity): we have a new gain in Pre-
cislon that can be explained by the common con-
straints introduced by the common features used
for D-Complezity, S-Complezity, and the Kafura
metric, combined with a new feature introduced
by the McCabe metric.

o Using Five Metrics: we obtain the best curve.
This is the best combination to use among the
metrics we considered. However, it is very close
to the one using four metrics. This may sug-
gest dropping the Albrecht metric altogether or
replace it with S-Complexity. This would be a
reasonable idea, but note that the metrics are
computed at link time at linear complexity on
the AST nodes, and therefore do not constitute a
significant computation bottleneck. In any case,
each metric has its advantages and the choice can
be based on the specific goal (speed over accu-
racy) . D-Complexity is easier and little bit faster
to compute, but Albrecht is sensitive to more fea-
tures and it is better to use in the long run. Ex-
periments at higher levels of granularity (func-
tion level, also shown in Table. 4) indicate that




Metric Potential Clone | Retrieval Time
Combination Pairs Retrieved (Hr:Min:Sec)

K 1,777 0:14:05
A 14,953 0:42:20
D 15,023 0:42:33
B S 17,100 0:54:45
i M 26,526 1:40:53
D-K 529 0:09:07
A-K 534 0:11:08

M-K 608 0:12:33 |
S-K 863 0:11:10
S-D 1,841 0:10:23
S-D 2,365 0:12:57
S-M 3,935 0:12:40

D-M 4.032 0:11:55 |
M-A 4,100 0:13:30
D-A 12,381 0:17:44
D-M-K 283 0:08:24
M-A-K 288 0:10:47
S-A-K 319 0:08:56
S-D-K 321 0:09:27
S-M-K 339 0:10:00
D-A-K 523 0:10:14
S-M-A 942 0:11:14
SD-M 1,034 0:10:29
S-D-A 1,837 0:12:01
D-M-A 3,677 0:11:45
S-M-A-K 231 0:09:31
S-D-M-K 231 0:09:31
D-M-A-K 282 0:09:29
S-D-A-K 319 0:10:12
S-D-M-A 942 0:10:15
S-D-M-A-K 231 0:05:27

Table 4: Metrics-based matching statistics. The size
of all possible pairs for this experiment is 248,160. The
Recall level for this experiment using all five metrics
1s estimated as 44.4%.

when D-Complexity and Albrecht metrics are used
alone, then the Albrecht metric generates fewer
candidates, but when combined with other met-
rics this trend does not always hold (D-K and
A-K, D-M-K and M-A-K, S-M-A-K and S-D-M-
K)*.

The time statistics for the proposed approach is
illustrated in Table.4

The time statistics in Table.4 indicate that when D-
Complezity, McCabe Complexity and the Kafura met-
ric are combined give the highest performance to effort
ratio (i.e. only three metrics are used and we get only
19% noise on the candidates we get when all of our
metrics used in the experiment are considered).

Finally, the cloning detection framework presented
above can be modified so that the features are used
instead of metrics. However, the results for the exper-

U please refer to Table.4
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iments presented above would be identical as if fea-
tures have been used instead of metrics because the
presented framework assumes zero distance values (i.e.
all features, and metrics match exactly). If other sim-
ilarity criteria were adopted (as in [Mayrand96]) then
would make sense to consider individual features (sen-
sitive to the criterion tested) as opposed to combined
metrics. However, similarity criteria, do not imply
that he have achieved a universal way to define what
a clone really is. Merely, such similarity criteria set a
subjective set of axioms for experimentation.

5 Conclusion

We have experimented with a number of program
features that are used to compute five standard soft-
ware engineering metrics that classify and represent a
code fragment. These metrics can be computed com-
positionally by using the Abstract Syntax Tree at link
time. The matching technique discussed in this paper
is based on the assumption that if two code fragments
are clones, then they share a number of structural and
data flow characteristics that can be effectively classi-
fied by these metrics. Our experiments show that the
metrics-based approach provides a fast approximation
of the code cloning recognition problem when partial
and approximate matching are essential requirements.
Experimental results have indicated that we can ef-
fectively retrieve 60% of the code cloning instances
sought, and maintain a Precision of approximately
41.0% at the final results. The strength of this ap-
proach is that it can be easily used, does not depend
on any complex formalism to represent source code en-
tities, and it is time and space efficient, as it is mostly
based on comparison of numeric tuples. We believe we
can speed-up the performance of the matching algo-
rithm by introducing heuristics such as computation of
”hash” values from the five metrics and use this to re-
duce the set of candidates to be fed to more elaborate
and accurate distance measurement algorithms (i.e.
Euclidean distance). The price to pay for the speed
and ease of use of this method is that at higher Recall
levels noise can be introduced and low Precision values
be obtained. At a Recall level of 70.0% the Precision
can drop to 19.2%. However, this is not problematic as
only a small fraction of the system is retrieved (in our
experiments < 11.3% of the total size of the system)
and therefore can be used at a pre-processing stage to
limit the search space when using more accurate but
more computationally expensive methods.
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