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Abstract

Cooperative information systems consist of existing
legacy systems integrated in terms of a generic architec-
ture which supports data integration and coordination
among the integrated components. This paper presents
a proposal for a generic integration architecture named
CoopWARE. The architecture is presented in terms of
the mechanisms it provides for data integration, and
coordination. Data integration is supported by an in-
formation repository with an extensible schema, while
coordination is facilitated by a rule set and an event-
driven rule execution mechanism. In addition, the pa-
per describes implementation and application experi-
ences for the architecture in the contert of a 8J-year
software engineering project.
keywords: cooperative information systems

1 Introduction

Traditionally, information systems have been de-
fined as software systems consisting of databases, appli-
cation programs and user interfaces. However, current
trends in business organizations point to a paradigm
shift in organizational structures, away from tradi-
tional, task-based forms and towards goal- or customer-
oriented processes [16]. These trends are forcing a new
view of information systems, hereby referred to as co-
operative information systems. According to this view,
the effectiveness of an information system within an
organization is not determined solely by the quality of
its components, which may have been developed inde-
pendently and may pre-date the cooperative informa-
tion system, but also (and perhaps most importantly)
by the architecture through which the system is inte-
grated with the rest of the organization so that it can
contribute to global business processes and organiza-
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tional objectives. A cooperative information system
consists of legacy systems, workflows and other soft-
ware components developed independently and chang-
ing over time. All these are integrated through an ar-
chitecture so that the overall system continuously pro-
vides useful information services to the organization
within which it functions.

Such tntegration architectures are being explored in
several different areas of computer science, including
Databases where the emphasis is on interoperation
and data integration [19], Software Engineering where
tool and environment integration issues dominate [5],
AT where systems consisting of distributed intelligent
agents are being developed and explored [3] and of
course, Information Systems [23].

This paper proposes Coop WARE, a generic integra-
tion architecture, based on active database technology.
It presents a natural, flexible and easy to set mecha-
nism for supporting cooperative information systems.
In particular, CoopWARE supports a cooperation with
different levels of data integration, which results in a
highly flexible tool for emerging cooperation among in-
formation systems. Our reported experiences are based
primarily on a project whose aim has been to integrate
a varlety of reverse engineering tools in support of re-
verse engineering tasks [31].

2 The CoopWARE Integration Archi-
tecture

In a nutshell, an integration architecture provides a
generic framework for information exchange and co-
ordination among a variety of existing software sys-
tems. A primary requirement for the integration archi-
tecture is that it provides a set of information services
which may not have been anticipated during develop-
ment of any of the component software systems. More-
over, these services evolve over time to meet changing



Figure 1. The Iintegration Architecture

business requirements. To be general, the framework
must make as few assumptions as possible about the
software systems being integrated. In particular, the
framework should require as little as possible in modi-
fications of the components being integrated. Finally,
the framework needs to be open in the sense that com-
ponent systems can be added and/or removed easily
without drastically affecting the functionality or the ef-
fectiveness of the overall system. Two primary design
goals for the integration architecture proposed here are
modularity and the ability to operate either on a sin-
gle host or over a network. Modularity was adopted
because it facilitates customization (or even replace-
ment) of implementation components as needed. For
instance, the underlying message transport software (in
our case mbus, see below) can be easily changed, if a
more desirable system is found.

These requirements are addressed in the Coop-
WARE Integration Architecture through a centralized
architecture which consists of an information reposi-
tory for representing and maintaining a variety of in-
formation generated or used by any of the integrated
components, also a coordination mechantsm through
which the integrated components can participate and
contribute in a coordinated fashion to global informa-
tion services provided by the cooperative information
system.

Figure 1 presents the general structure of Coop-
WARE. A particular instance of CoopWARE consists
of a coordinator which contains an information schema
based on an extensible information model, a coordina-
tion rule set, a rule execution engine, also a collection of
interfaces, one for each integrated software component
and one for the coordinator. Each interface defines a
set of services which can be executed by the compo-
nent associated with the interface, also a set of events
through which the component signals the beginning or

1We use the term information model in the sense that data
model is used in databases, i.e. an information model that pro-
vides a set of data structures and associated operations and con-
straints for representing information.
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end of execution of an internal process. One set of
services common to all interfaces provides facilities for
message passing among components.

As a concrete example of the integration architec-
ture, suppose that we wish to integrate two reverse
engineering tools, Refine and Rigi. Refine is a commer-
cial code analysis tool [21] which provides facilities for
parsing the code being reverse engineered to generate
abstract syntax trees, as well as a high level language
for specifying patterns to be matched against abstract
syntax trees. Such patterns can be defined to support
the analysis of code by determining, for example, the
call- or use-graph structure of a given piece of code.
Rigi, on the other hand, is a research prototype [25]
whose primary function is to assist in program under-
standing by offering useful visualizations of code struc-
ture. Rigi also offers a set of code analysis functions.
One would ideally want to use either Refine or Rigi to
analyze code and then display the results of the anal-
ysis using Rigi. Hence, there is a need to integrate the
two tools in support of a reverse engineering activity.

In integrating a new component into the environ-
ment, there are three steps that need to be taken, pos-
sibly in an iterative fashion, namely data integration,
definition of services, events and rules and finally reg-
istration.

Data Integration determines the information needs
of each new component to be integrated and up-
dates the information schema as appropriate. In
the case of the reverse engineering project, this
step determines what information is input or pro-
duced by each tool. For instance, both Rigi and
Refine operate on files, but treat them differently
and associate to file objects. different informa-
tion. If there already exists a schema integrating
k components, data integration of the (k+1)st
component involves extending this schema to ac-
commodate the information used by the (k-+1)st
tool. To properly support the data integration
activity, an information model needs to be exten-
sible and to provide for annotations of attributes,
so that one can note which component is using
which attribute.

Services, Events and Rules: This step determines
what services will be offer by the new compo-
nent to the cooperative information system, also
what internal events it will report on. In ad-
dition, this step determines what coordination
needs to exist between the newly integrated com-
ponent and others. This is accomplished through
event-condition-action rules which trigger certain
rules when certain events-condition pairs occur.



Rige services:

Parse: (Source-Code)

SG-Analysis: (Rigi-AST, Grouped-Components)
Rigi-Upload: (KB-Name, Query)
Rigi-Download: (KB-Name, Set-of-Tuples)

Rigt events:

Rigi-Parses: (Source-Code)
AST-updated: {Rigi-AST)

Refine services:

Parse: (Source-Code)

CBC-Analysis: (Refine-AST)
Refine-Upload: {(KB-Name, Query)
Refine-Download: (KB-Name, Set-of-Tuples)

Refine events:

Grouped-Components-Updated:
{Grouped-Components)

Figure 2. The services, events and messages
of the case study

Figure 2 presents an example of some of the ser-
vices and events that might be declared for Rigl
and Refine. Each service has a name, possibly fol-
lowed by a set of parameters, some of which may
be part of the information schema. For instance,
Parse is a service offered by both tools and takes
source code to generate an abstract syntax tree.
SG-Analysis performs a code structure analysis
by taking as input an abstract syntax tree and
generating a graph. CBC-Analysisis a Refine ser-
vice that performs a clone-based-clustering anal-
ysis on code data, measuring a number of met-
rics on code fragments and then clustering the
code fragments according to the metric values re-
turned. Both components have upload and down-
load operations for retrieving and updating data.
Services are activated through messages. In gen-
eral, the coordinator needs to maintain a map-
ping from the service logical name to the physical
procedure which carries out this service within
a particular component. For example, Refine
can translate a Parse operation to a command as
given in an Emacs environment. Each such ser-
vice execution results in a success/failure message
from the tool to the coordinator.

Events represent occurrences of some phe-
nomenon happening within a tool. For example,
Rigi-Parse informs the world each time Rigi per-
forms a parse operation. This event has as associ-
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ated information a pointer to the source code that
is being parsed. Rigi’s AST-updated informs the
world that an abstract syntax tree has been up-
dated. The event Grouped-Components-Updated
notifies the world of a change in Refine’s grouped
components.

Registration make use of an existing interface library

to provide a message-based communication inter-
face between a new component and the coordi-
nator, (...and through the coordinator, commu-
nication with any other integrated component).
How each component actually connects to the
architecture depends on what kind of access to
its internals is available. We support a range of
methodologies from black bor to white bor [30]
and various shades of gray in between. For ex-
ample, given that Refine runs on top of LISP,
we may want to treat Refine as a black box with
which we communicate through an external me-
diator program. In the case of Rigi, on the other
hand, where we have full access to its source code,
we may be able to integrate directly. From the
point of view of the coordinator and the integra-
tion architecture in general, both tool interfaces
operate identically.

Once the communication architecture is in place,
the new component then registers with the coor-
dinator. This is done dynamically and becomes
effective immediately. Thus, components can be
added to the architecture at any time and they
can also modify their capabilities at will. As each
component registers its capabilities with the co-
ordinator, the capabilities of the cooperative in-
formation system grow.

The architecture can evolve both because of
changes in the registration profile of particular
components or because of changes in the coor-
dinator’s information schema. For example, the
notion of Request-Message may be added to the
schema so that the coordinator can deal with a
new type of messages. For the current imple-
mentation, there are a number of generic mes-
sage types and events, e.g. Request and Response
messages, and Message-Delivered events. If one
wanted to define a new, special purpose message
type, it 1s a simple matter to specialize the Mes-
sage class, adding whatever message handling is
required for the new message type through coor-
dinator rules.
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Figure 3. The three layers of the repository
schema

3 The Information Repository

An information repository is a computer-based sys-
tem which stores, accesses and manages information
about information sources and/or information pro-
cesses. These information sources may be computer-
based files, databases and other data structures, while
information processes may be application programs or
other procedures which operate on information sources
to update or retrieve information. An information
repository is different from a database in that, like data
dictionaries and data warehouses, it stores information
about computerized information, rather than informa-
tion about some application external to computers.

The repository’s main function is to facilitate data
integration among the various components of the ar-
chitecture. As such, it needs to provide an informa-
tion model that is expressive, extensible and efficient.
It needs to be expressive so that it can model the
data sharing needs of the components easily and un-
derstandably; it needs to be extensible so that it can
accommodate run-time changes (in particular it needs
to support dynamic schema evolution). The informa-
tion model needs to be supported with an efficient im-
plementation so it does not become a bottleneck.

The information model adopted for CoopWARE is
based on Telos [26]. Its features include an object-
oriented framework which supports generalization (in-
cluding support for multiple inheritance), classification
(including support for multiple instantiation) and attri-
bution (with multi-valued attributes), a general meta-
modelling facility whereby classes are objects too and
are instances of metaclasses and a novel treatment of
attributes including multiple inheritance and instanti-
ation of attributes and attribute classes. This treat-
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ment of attributes provides a powerful mechanism for
defining multiple overlapping views of an information
object. This allows the repository to have a consis-
tent and singular representation of information that is
shared among the components in the integration archi-
tecture and at the same time allow for each compo-
nent’s unique perspective on that information.

Figure 3 presents a schema to facilitate information
sharing among the integrated tools to share data for the
reverse engineering project. It consists of three layers.
The top layer exploits the meta-modelling facilities of
Telos to define: (i) the types of attribute values that
the repository will support; and (ii) useful groupings
of attributes for purposes of distinguishing informa-
tion that is pertinent to each of the individual tools.
The use of this layer facilitates schema evolution and
provides a filtering mechanism by which each tool can
access its own view of a common data object. The mid-
dle layer defines the repository schema with the aid of
the metaclasses and attribute definitions from the top
layer. The bottom layer stores the actual data shared
among the individual tools.

Figure 4 shows a detailed example of a portion of
this global schema. At the metaclass level, the schema
includes the metaclass ObjectClass which has associ-
ated attribute metaclasses single Value, setValue, and
sequence Value. All instances of this metaclass can have
associated attributes which are classified under one (or
more) of these categories, depending on the range of
values intended. ObjectClass has two specializations,
RigiClass and RefineClass. The former has as instances
classes that are manipulated by the Rigi tool, while
the latter has instances that are classes manipulated
by the Refine tool. As indicated in Figure 4, these
metaclasses have attribute metaclasses which identify
attributes used by Rigi and ones used by Refine.

At the class level, the class File is defined as an in-
stance of both RigiClass and RefineClass. This declares
that a file object may be shared (and manipulated)
both by Rigi and Refine. File has many attributes clas-
sified under one or more attribute metaclasses. Each
of these attribute metaclasses define capabilities (at-
tributes) specific to their respective tool. For exam-
ple, the attribute metaclass rigiAttribute, when used
in the class File, serves to group together all the Rigi
attributes. In the Refine case, we have sub-divided
its attributes into two classes, mirroring the way Re-
fine represents its data (either as a tree or non-tree
attribute). Having done this we are now able to easily
and efficiently “filter” objecis so that, if desired, each
tool gets only the attributes it is interested in.
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ObjectClass
attribute
singlaValua: Proposition
satValus: Proposition
sequencaValue: SequenceClass
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rigiAttribute, setValue
contains: RigiObject
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fileName: Symbel;
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fileToFileSpec: FileSpec
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fileDefiniti TopLevelD
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Figure 4. The File class description

4 The Control Rule Set and Rule Exe-
cution Engine

The coordinator is a set of tools and mechanisms
that enables an active monitoring, coordination and co-
operation among systems. The coordinator is designed
to provide services while enabling the required level
of local autonomy. It does not require full data inte-
gration, although the more integrated the cooperative
information system is, the better the performance of
the coordinator would be. The coordinator uses rules
to define cooperation among information systems. Its
intellectual origins resides in the active database re-
search area, and it uses latest advances in this research
area [14] to generate a mechanism that maintains the
relationships among information systems in a cooper-
ative environment. This section presents the control
rule set and its use in the cooperative information sys-
tem architecture environment (Section 4.1), and the
execution engine for rules (Section 4.2).

4.1 Rules

Rules are programiming constructs which make it
possible to specify the activation of services in re-
sponse to event occurrences. In accordance with active
database conventions [10], each rule consists of three
parts, namely an event, a condition and an action. An
event is a logic formula that consists of system events
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Figure 5. Possible cooperation scenarios be-
tween Refine and Rigi

and messages. Events can capture an occurrence ex-
ternal to the system as well as the starting and ending
of services. Each rule is associated with one or more
event types. A condition is a Boolean formula that
consists of data values, constants, etc. An action is a
set of services to be activated, each service with the
appropriate parameters.

For example, consider again the reverse engineering
case study. While each system can perform the parsing
and analysis of a source code independently, the combi-
nation of the analysis results of both systems provides
the user with a better understanding of the source code.
Figure b presents two possible scenaria of cooperation
among the two tools. Data elements are represented
using rectangles, and operations are represented using
circles. Parse,. and CBC-Analysis are the operations
associated with Refine, while Parse,; and SG-Analysis
are the operations associated with Rigi. The indepen-
dent analysis scenario represents a scenario where each
tool analyzes and stores its own data. The sequential
analysis scenario represents a scenario where Rigi gen-
erates a structure graph based on the analysis of Refine
and its own. In the latter scenario, the results of CBC-
Analysis is combined with Rigi’s source code represen-
tation. Consequently, nodes that are considered clones
collapse into a single node in the graph forming mod-
ules. Following this scenario, links in the graph rep-
resent multiple calls between subsystems to generate
a more abstract system decomposition. This scenario
can be easily achieved by combining Rigi’s and Refine’s
analysis capabilities; through the use of two rules, as
given in Figure 6. Whenever a Rigi-Parses event oc-
curs, Refine parses the source code and performs the
CBC-Analysis service. One result of this analysis is
the instantiation of the Grouped-Components-Updated
event. This event, combined with the AST-updated
event, activates the SG-Analysis.



Rigi FEvent: Refine-Grouped-Components
updated (Refine-AST)
and AST updated (Rigi-AST)
Condition: none
Action:  5G-Analysis (Rigi-AST,

Grouped-Components)
Rigi-Parses (Source-Code)
none

Parsere (Source-Code);
CBC-Analysis (Refine-AST)

Refine Event:
Condition:
Action:

Figure 6. Rules of the case study

The use of the ECA (Event-Condition-Action)
model enables us to make use of existing execution
models for activating rules. In the case of coopera-
tive information systems, the use of an explicit event
clause is essential. Since the event is generated by the
information system, while the condition is verified by
the coordinator, it is important to differentiate the con-
~ dition clause from the event clause.

4.2 The Rule Execution Engine

Rules are triggered by events. An event detection
results in the evaluation of a condition. If a condition
is evaluated to be true, the services in the action part
of the rule are activated. If there is no condition for
activating a rule, the action part is activated as a direct
result of an event detection. For example, the detection
of the event Rigi-Parses results in the direct activation
of the first service Parsepe.

The rule execution engine in the CoopWARE envi-
ronment differs from the rule execution engine of an
active database. While an active database performs all
of the operations of the action part of the rule, the co-
ordinator activates services of the related information
systems. Consequently, the relationships among ser-
vices is far more vague than the relationships among
actions in an active database. A well defined semantics
for these relationships is currently devised, based on
previous works (e.g. [12]) to support priorities among
services. The relationships between a detection of an
event and an evaluation of a condition, and the rela-
tionships between an evaluation of a condition and an
activation of an action generate a special case of inter-
transaction relationships that define the atomicity of
the operations within CoopWARE. An algorithm is de-
vised to generate and maintain a correct set of inter-
related atomic transactions based on the relationships
among events and services. A similar approach was
taken in transaction models dealing with long transac-
tions (e.g. [20]).
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5 Implementation and Experiences

This section presents some implementation issues
(Section 5.1) and some of the experiences in the frame-
work of the reverse engineering case study (Section
5.2))

5.1 Implementation

The Information Repository (IR) has been im-
plemented in C++ and uses ODI’s object-oriented
database ObjectStore for persistence. The IR imple-
ments a Telos language interpreter for data modeling
and offers services such as object creation, deletion and
update, also object retrieval through a query facility.
The IR is currently being re-implemented as a main-
memory version using flat files for persistence.

Turning to the implementation of the coordinator,
we have implemented the coordinator layer architec-
ture from the TMB (Telos Message Bus) layer down
(Figure 7) and are currently in the process of imple-
menting the Services & Events layer. The TMB layer,
implemented in C++4, is an extensible message server
through which all tools can communicate, both with
the coordinator and with each other, using the com-
mon schema. These messages form the basis for all
communication in the system. The message server has
been implemented on top of mbus, an existing public
domain software bus technology [6]. This, in turn, is
dependent on the presence of Unix software sockets;
these protocols have been ported to almost all mod-
ern computer platforms, including Dos/Windows and
Apple machines. Since the basis for integration is this
communication, our architecture can incorporate tools
running in heterogeneous environments.

The TMB offers message-passing using message ob-
jects with client facilities for message creation, deletion
and archiving. The design goals of the TMB included
extensibility, in the sense that a client can dynamically
inform the system that it can handle a new kind of



request (for example, when Refine implements a new
complexity measure it would register this capability,
and thereafter other tools could make use of it). An
important requirement is that the TMB support point-
to-point as well as broadcast communication so that
tools, for example, can send messages to a particular
tool or to all tools of a certain type. Efficient transmis-
sion of bulk data was deemed to be critical (rather than
object-by-object retrieval), since that is the intended
modus operandi for the integration architecture.

The implementation of the rule language and exe-
cution engine is currently under design. It is based
on work reported in [15], notably the notion of a de-
pendency graph, built by analyzing given rules and
data elements. Figure 8 presents a partial dependency
graph for the rules of the reverse engineering case study.
Events are depicted as triangles, operations as circles,
and data elements as rectangles. Triggering edges con-
nect an event with a condition and a condition with
an action of the same rule. In case there is no condi-
tion part in a rule, a triggering edge connects an event
directly with an action. For example, the event Rigi-
Parses triggers a rule of Rigi and therefore a triggering
edge connects the event with the first action of this rule
Parse. Update edges connect actions with the data
elements they update. For example, CBC-Analysis
updates Grouped-Components, resulting in an update
edge from CBC-Analysis to Grouped-Components. Re-
quest edges are depicted using dotted lines, and repre-
sent data element that a service uses, yet its modifica-
tion does not trigger the service.

The dependency graph is used by the coordinator
at run-time, based on an execution model as given in
[14]. The results of events and messages are evalu-
ated and any outgoing edges are triggered. For exam-
ple, consider the dependency graph as given in Figure
8. Whenever a Rigi-Parses event occurs, Refine’s rule
is activated. Refine parses the source code and per-
forms the CBC analysis: The result of this analysis
is the update of Grouped-Components. This update
is informed through the event Grouped-Components-
Updated event. This event, in addition to the AST-
updated activates Rigi’s rule, which performs the SG-
Analysis. .

The generation of the dependency graph is a
straight-forward procedure. The time-complexity of
generating a dependency graph is bounded by O(|V]
-+ |E|). It should be noted that the number of nodes
and edges reflects the number of schema elements and
the relationships among them, and not the number of
actual objects in the information systems. Thus, the
space complexity of the graph, which i1s bounded by
O(|V] + |E]) is relatively small. It is also worth noting
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Figure 8. A partial dependency graph of the
case study

that the generation of the dependency graph is carried-
out only whenever there is a change in the schema def-
initions or changes in operation clauses. The complex-
ity of the coordination depends more on the number
of rules than on the number of attributes devised as a
result of the data integration. Therefore, scaling up de-
pends on an efficient implementation of the rule engine
rather than on the result of the data integration.

5.2 Experiences

Our experiences in integrating Refine and Rigi was
gained over a three-year period and involved use of
the integration architecture by three different research
groups which used Refine or Rigi and wanted to in-
tegrate their code analysis tools with others, in order
to support more sophisticated reverse engineering sce-
naria.

We found that data integration involves not only the
identification of commonly used information by differ-
ent tools, but also the identification of a number of
possible use scenaria for this information. For exam-
ple, the analysis that is carried out by combining Rigi’s
and Refine’s capabilities requires a more complex in-
formation schema than that used for other purposes.
Moreover, the use of browsers and user friendly in-
terfaces made it possible to experiment with different
types of analyses in order to understand the contents of
the repository. Consequently, a customized repository



browser was built.

As claimed, the integrated environment provided
more functionality than each of the individual tools
working on its own. By combining analyses from the
two tools we obtained results that would not be easily
obtained by using only one tool. For example, a Re-
fine cluster analysis based on use of common resources,
that when imported to Rigi and combined with clusters
obtained by analyzing the call graph and data types in
the Rigi environment we generated system views that
are not available by using Refine or Rigi separately.
Moreover, the integrated system allows for a number
of developers working with different machines and en-
vironments to cooperate for the analysis of a software
system, thus leveraging the capabilities and the exper-
tise of maintainers at different sites inside an organi-
zation. The repository allows for more than one user
to access the analysis environment allowing for multi-
ple analyses to be performed simultaneously at differ-
ent machines. This is especially important for compu-
tationally expensive analyses applied to large systems

(>1MLOCQC).
6 Related Work

The CoopWARE architecture relates to a number
of different research areas. Distributed databases,
heterogeneous databases, multidatabases, federated
databases, multi-view systems, workflows, global infor-
mation systems, Internet applications and many other
types of information systems are considered to be co-
operative information systems.

Global information systems [24] are systems that
involve a large number of information resources dis-
tributed over computer networks, with autonomous
maintenance of data. Global information systems are
similar to multidatabases (e.g. [27]) in their approach.
Both system types seek to support global updates,
while preserving site autonomy. Distributed databases
[7], unlike global information systems, do not have a
full autonomy of their data. Issues in structuring het-
erogeneous databases are discussed in [4], and oth-
ers. Federated databases [28] can be implemented
based on several architectures. For example, feder-
ated databases can be implemented using loosely cou-
pled systems, where the responsibility for understand-
ing the semantics of the global system is transferred
to the user. Federated databases can also be imple-
mented using tightly coupled systems, where a global
conceptual schema is used to define the semantics of
the global schema. Research in the workflow area has
been influenced by the concepts of long running ac-
tivities [11], multi-system applications [1], polytrans-
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Figure 9. Distribution of information systems

actions [29], and application multiactivities {18]. ME-
TEOR [22] is an example of a project whose objective
1s to support multi-system workflow applications.

Having considered the common features of the above
mentioned models, we design the integration architec-
ture to support common features while enabling dif-
ferent levels of autonomy, rigid structure and data in-
tegration. Figure 9 presents the distribution of these
information system types on a two-axis grid. The hor-
izontal axis depicts the level of local autonomy given -
in each information system type and the vertical axis
represents the rigidity level of the information system’s
data structure.

The architecture is aimed at serving as an under-
lying architecture for systems with different levels of
local autonomy, different rigidity levels of data struc-
ture, and different levels of data integration. Assuch, it
provides a mechanism for the cooperation among infor-
mation systems, without loosing the model generality.
Such a model enables research in this area to be more
focused on issues that are common to all the above
mentioned systems, such as alternative paths of opera-
tions in case of network failures and the application of
meta-data.

MARVEL [2] is a process-centered environment that
supports teams of users working on medium to large
scale projects. An instantiated environment is created
by an administrator who provides the data schema,
process model, tool envelopes (which are equivalent to
components), and coordination model for a specific ap-
plication. The process is described in a process mod-
eling language. Each process step is encapsulated in a
rule. The body of a rule consists of a query to bind lo-



cal variables; a logical condition that is evaluated prior
to initiating the activity; an optional activity in which
an arbitrary external tool or application program may
be invoked through an envelope; and a set of effects
that each assert one of the activity’s alternative results.
While CoopWARE use events to generate an automati-
cally triggered environment, the MARVEL model does
not use events as part of the model. In addition, the
model imposes a rigid structure of rules, while Coop-
WARE assumes a rule where its last phase (the ser-
vices) conclude the liability of the central mechanism,
thus enabling a simpler transaction model.

ARCHON (Architecture for Cooperative Heteroge-
neous On-line Systems) [17] aimed to develop an ar-
chitecture, software framework and methodology for
multi-agent systems for real-world industrial applica-
tions in the area of power system control supervision.
The technology is based on a distributed Al approach,
where coordination and responsibility are transferred
to the components (termed subsystems in ARCHON)
rather than being handled by a central mechanism.
This approach may require major modifications to the
components, and therefore far less useful in the envi-
ronment of existing softwares.

In ARCHON, tasks are grouped together into
recipes, which are production rules, with TRIGGER,
ACTIONS and RESULTS. The trigger part combines
events and conditions. This method, in many cases is
less effective that the separation of events and condi-
tions to different elements, evaluated at different steps.
In addition, the recipes requires a long-term control,
while rules in CoopWARE enable a flexible mechanism
with short term atomicity enforcement.

CORBA [9] provides a widely accepted formalism
for specifying process communication in a client-server
environment. In the CORBA model objects provide
services, and clients issue requests. Object references
are used for a client to locate the appropriate servers,
so that it can direct its requests to them. The architec-
ture proposed in this paper targets the enhancement of
a CORBA by providing a formalism for modeling com-
munication.in terms of rules that allow for the specifi-
cation of data dependencies between processes as well
as high level task scheduling. Moreover, the approach
is not tightly coupled to a particular language or imple-
mentation (i.e. CORBA/C++) and treats any process
or tool as a black box that offers in the environment a
set of services as well as data via a registered interface.

The area of active databases has gained an increas-
ing interest in the research community during the last
few. years, resulting in numerous models and proto-
types. The leading paradigm-in this area is the ECA
(Event-Condition-Action) that was proposed in the
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framework of the HiPAC project [8]. Many of the ECA-
based systems lack global control of an application’s set
of rules. This may result in non-deterministic behavior
which would have disastrous consequences in coopera-
tive information systems.

An alternative approach to the ECA paradigm was
proposed in the framework of the PARDES model [13]
that is almed at providing a high-level tool for derived
data using a data-driven invariant language. The ac-
tive model, as given in this work, is an extension of
the PARDES and other similar models [14]. It uses
the analysis and control capabilities of these models to
generate a deterministic, well-understood cooperative
architecture.

7 Conclusions

We have presented a view of cooperative information
systems which is based on the premise that such sys-
tems consist of legacy components integrated through
an architecture. The paper then proposed a generic ar-
chitecture for cooperative information systems called
CoopWARE. The architecture supports facilities for
data integration of the components constituting the
cooperative information system, also mechanisms for
coordination and policy enforcement among these com-
ponents. The novelty of the proposed architecture lies
in the integration of concepts from data modelling, ac-
tive databases and organizational systems. In addition
to the proposal, the paper reports on a (partial) proto-
type implementation of the architecture and some ex-
periences in applying it to build an integrated reverse
engineering environment.

Several issues require further research. Firstly, the
design of the rule execution engine with an appropriate
transaction mechanism and the implementation on top
of the TMB is currently under way. Secondly, we need
to study several other cooperative information system
applications to establish the adequacy of the proposed
architecture, or to further refine the current proposal.
Thirdly, we would like to study the co-existence of sev-
eral coordinators within one cooperative information
system, each of which manages a partial information
repository and only supports some coordination and
policy enforcement activities. This will form a dis-
tributed CoopWARE environment; we are currently
studying how this might be applied to Internet services
and data.
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