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Abstract

The effective synergy of a number of different tech-
niques is the key to the successful development of an
efficient Reverse Engineering environment. Compiler
technology, pattern matching techniques, visualization
tools, and software repositories play an important role
for the identification of procedural, data, and abstract-
data-type related concepts in the source code. This
paper describes a number of techniques used for the
development of a distributed reverse engineering en-
vironment. Design recovery is investigated through
code-to-code and abstract-descriptions-to-code pattern
matching techniques used to locate code that may im-
plement a particular plan or algorithm. The code-to-
code matching uses dynamic programming techniques
to locate similar code fragments and is targeted for
large software systems (1M LOC ). Patterns are spec-
ified either as source code or as a sequence of abstract
statements written in an concept language developed
for this purpose. Markov models are used to compute
similarity measures between an abstract description
and a code fragment in terms of the probability that
a given abstract statement can generate a given code
fragment. The abstract-description-to-code matcher is
under implementation and early ezperiments show it
is a promising technique.
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1 Introduction

Program Understanding is the process of examina-
tion of a software system in order to develop repre-
sentations of the system’s intended architecture, be-
haviour, and purpose. The identification and recogni-
tion of concepts related to sequences of computations,
permanent relationships between program’s data, and
operations on classes of data types are focal points in
a reverse engineering environment.

Recognition of sequences of computations is ex-
amined through code-to-code and concept-to-code
matching. Permanent relationships between data, is
investigated through clustering based on data flow
properties. Finaly, code cloning detection may re-
veal important operations on data types, identify sys-
tem clusters, help reorganize the system in an object-
oriented way, and suggest points where potential er-
rors can be found.

For this purpose, an approach is proposed in which,
source code is parsed and represented as an annotated
Abstract Syntax Tree (AST). Nodes in the AST rep-
resent language components (e.g statements, expres-
sions) and arcs represent relationships between these
language components. For example an IF-statement is
represented as an AST node with three arcs pointing
to the condition, the THEN-part, and the ELSE-part.

During the analysis phase each node is annotated
with control and data flow information. It can be a
vector of software metrics [3], a set of data bindings
with the rest of the system, [9], or a set of keywords,
variable names and data types. The REFINE ! en-
vironment is used to analyze and store the AST and
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its annotations. The annotations are computed in a
compositional way from the leaves to the root of the
AST.

Two problems are considered in the following sec-
tions. The first is based on localizing similar code
fragments and we refer to it as code-to-code matching.
It is used for example to perform code duplication de-
tection in large C software systems.

Code-to-code matching is achieved by using a dy-
namic programming (DP) based pattern matcher that
determines the best alignment between two code frag-
ments at the statement level. The distance between
the two code fragments is given as a summation of
comparison values as well as of insertion and deletion
costs corresponding to insertions and deletions that
have to be applied in order to achieve such an align-
ment.

The second problem, abstract-description-to-code
matching, has a more ambitious objective. In this
case, pattern matcher is driven by a Markov model
that describes the similarity between an abstract pat-
tern and a code fragment as a set of probabilities that
a given abstract statement can generate a given source
statement.

2 Code-To-Code Matching

While the general problem of determining if two
functions are the same (i.e. produce the same out-
puts given the same inputs) is known to be undecid-
able, clone detection is a computable approximation
in which a measure of structural similarity is used to
determine if two fragments are in some way equivalent,.
What makes clone detection difficult is that replicas of
the same original code, will be somewhat modified and
it is necessary to definse a metric for computing a “de-
gree of similarity”. Possible modifications which are
captured by the feature vectors we consider and the
matching process include a) deletion of statements, b)
insertion of new statements and, ¢) modification of
existing statements.

The process starts by transforming the AST that
corresponds to the two code fragments into two se-
quences of expressions and statements. For example,
an if-statement will be expanded into the sequence
[condition-expression, THEN-part, ELSE-part].

The comparison at the statement level is based on a
set of features that are calculated during the AST an-
notation phase. Program features ? used in the match-
ing process include (a) software quality and complex-

2Qther features can be used too.
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ity metrics [1] (Fanout, D-Complexity, McCabe Cy-
clomatic Complexity, a variation of Albrecht’s U.F.C
metric, and a variation of Henry-Kafura’s I.F metric)
(b) Global/local variables set/used (c) Files accessed
(e.g. fscanf, forintf statements) (d) Type and num-
ber of formal parameters passed by reference (e) Data
bindings, and (f) Keywords and associated concepts

All the features can be calculated in a composi-
tional way starting from the leaves and working up-
wards to the root of the AST. With this technique we
are able to obtain and classify program features for
every node in the AST. In this way we can examine
and compare at any level of granularity (statement,
block, function, module) data and control flow prop-
erties either as metric values or as AST annotations.

One may ask why these program features have been
selected and what other alternative program features
could have been used instead. The selection of these
program features is based on the type of internal soft-
ware attributes that are orthogonal and fundamental,
as well as being widely and commonly accepted as at-
tributes that classify software quality, structure, devel-
opment effort, and maintainability. These attributes
include:

e Program length (number of comment lines, and
non-comment lines)

e Functionality (the amount of “function” a code
fragment delivers

o Complexity (a measure of how difficult a program
is to test and maintain)

¢ Redundancy (a measure of code cloning, and dead
code)

e Reuse (an indicator of how many times a par-
ticular function or code fragment is used in the
system, either via a function call or as a cut-and-
paste operation)

Additional features that may have been used are
annotations based on alias information, value range
analysis, redundant expression elimination, data de-
pendency graphs, and slicing. The reason we have not
included these features in the initial analysis (Reverse
Engineering in the Large) is that they are very ex-
pensive to be calculated for large ( 10KLOC) code
fragments. Instead we want to provide tools that fo-
cus attention on smaller program components so that
the maintainer can apply well established techniques
(static data flow analysis, debuggers, profilers) to un-
derstand their functionality — Reverse Engineering in
the Small.



As it is not always possible to have a complete
plan base, the user can select at run time a se-
quence of statements to be used as a model (e.g.
Py, Py, P3, Py, Ps in Fig.1). The matching process will
find similar code fragments that may implement the
same algorithm or plan as the model selected.

For calculating the distance between two code frag-
ments we have investigated the idea of using a dynamic
programming based algorithm that computes the best
alignment between two code fragments in terms of in-
sertions, deletions, and substitutions of individual ex-
pressions and statements in the two code fragments
compared. A program feature vector is used for the
comparison of two statements. The features are stored
as attribute values in a frame-based structure repre-
senting expressions and statements in the AST. The
curmulative similarity measure D between two code
fragments P, M, is calculated using the function

D : Feature-Vector X Feature-Vector — Real
where:

Alp,,i—1,P, M)+
D(£(1,p,P),E(1,5 ~ 1,M))

I(p~1,4,P,

D(e(1,p, D(EQ,p -1, 7’)) £(1,5,M))

P), (1,5, M)) = Min

C(p-1,j—1,P, M)+
D(EQ1,p —1,P), E(1,j - 1, M))

and,

e M is the model code fragment

e 7P is the input code fragment to be compared with
the model M

£(i, j, Q) is a program feature vector between po-
sitions ¢ and jin code fragment Q

D(z,y,P, M) is the the distance between the fea-
tures x of the code fragment P and features y of
the the model M ,

A(i, j, P, M) is the cost of deleting the jth state-
ment of M, at the ith statement of the fragment
P

I(i, j,P, M) the cost of inserting the ith state-
ment of P at the jth statement of the model M
and

C(i,j,P, M) is the comparison cost that of the
ith statement of the code fragment P and the jth
statement of the model M. The comparison cost
is calculated by comparing the corresponding fea-
ture vectors. Currently, we compare ratios of vari-
ables set, used per statement, data types used or
set, and comparisons based on metric values.
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01 Q, 03 04 Input Program
Figure 1: The matching process between two code
fragments. The diagonal in position P;, Q1 represents
a match between statement Py, @1, while the vertical
at position Py, Qs the deletion of statement Qsin of
the input fragment at position P, of the model.

Note that insertion and deletion costs are used by
the dynamic programming algorithm to calculate the
best fit between two code fragments. An intuitive in-
terpreataion of the best fit using insertions and dele-
tions is “if we insert (delete) statement ¢ (j) of the
input (model) at position j (i) of the model (input)
then the model and the input have the smallest differ-
ence”

The quality and the accuracy of the comparison
cost is based on the program features selected and the
formula used to compare these features. For simplicity
in the implementation we have attached constant real
values as insertion and deletion costs.

Figl. illustrates the warping function of the match-
ing process between fragments P consisting of the
individual statements Py, Py, P3, Ps, P; (used as the
model) and Q consisting of the individual statements
Q1,Q2, @3, Q4, representing a source code fragment to
be matched against the model P.

As an example consider clone detection in the
source code of the expert system shell CLIPS [5] that
consists of approximately 40KLOC distributed in 41
files and 700 functions. Code cloning and similar-
ity detection at the function level revealed afrer in-
vestigation 70 related clusters of potential clones. In
60 clusters elements found to implement related con-
cepts within each cluster. Examples of concepts found
include print routines for object hierarchies, assert-
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Figure 2: Dynamic Programming based code-to-code matching. Code cloning detection reveals collections of
functions that correspond to same class of “functionality” or procedural concepts. In the upper part collections
of functions related to print concepts are shown. In the lower part pairs of functions related to accessing/updating

attribute values is shown.

ing/deleting elements in the fact list, debugging com-
mands, rule and fact management functions (e.g. aci-
vate and maintain the rule agenda, add and delete
facts), retrieve/update/delete attribute values etc. Our
experiments have shown that code cloning detection
can be used for initial system clustering as a useful re-
documentation technique that does not require apriori
knowledge of the system. In Fig.2 collections of func-
tions that have been identified as clones reveal asso-
ciated concepts relating with Print routines for object
hierarchies and pretty print routines (upper part), or
accessing attribute values routines (lower part). More-
over, using different feature vectors for comparison we
obtain different results. Function pairs with disimilar-
ity measure 0.0 (upper part) may have different disim-
ilarity measures (lower part) when additional features
are presented (e.g lexicographical distances in variable
names).

3 Concept-to-Code Matching

The concept assignment [2] problem consists of as-
signing concepts described in a concept language to
program fragments. Concept assignment can also be
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seen as a matching problem.

In our approach concepts are represented as
abstract-descriptions using a concept language. An
abstract-description is parsed and a corresponding
AST T, is created. Similarly source code is rep-
resented as an annotated AST T.. Both 7, and
T. are transformed into a sequence of abstract and
source code statements respectively using transforma-
tion rules. We use REFINE to build and transform
both ASTs.

The associated problems with matching concepts
with code include :

o The choice of the conceptual language.
o The measure of similarity.

o The selection of a fragment in the code to be com-
pared with the conceptual representation

These problems are addressed in the following sec-
tions.



4 Language for Abstract Representa-
tion

A number of research teams have identified the
problem of code localization using query pattern lan-
guages, pattern matching on program text, and pat-
tern matching on control and data flow graphs [13],
[11], [4], [6], [14]. In our approach we give weight to a
stochastic pattern matcher that allows for partial and
approximate matching. A concept language specifies
in an abstract way sequences of design concepts.

The concept language contains:

e abstract statements that correspond to one or
more statement types in the source code language

e abstract statement descriptions that contain the
feature vector data used for matching purposes

o wild character statements +-Satetement and
*.Statement for specifying partial matching, (e.g.
abstract statements that match zero or more code
statements). The +-Statement represents a pos-
sible match with one more code statements, while
the *.Statement represents a match with zero or
more code statements.

e typed variables for dynamically linking variables
from pattern fragments to code fragments.

e operators: { ||, ®, ; } for specifying the order of
the matching process. The (||) operator indicates
statements that can be interleaved (i.e. share no
data dependencies). The (@) operator is used to
indicate alternative choices while the (;) operator
indicates sequencing.

A typical example of a pattern code is given below:

Iterative-Statement (abstract-description
uses : [ 7x : #*list],
keywords : [ "NULL" 1)
{
+-Statement
abstract-description
uses : [?y : string, ..]
keywords : [ "member" 1;
Assignment-Statement
abstract-description
uses : [7x, ..1,
defines : [?7x],
keywords : [ "next" ]

Here the query or pattern searches for an
Iterative-Statement (e.g. a while, a for, or a
do-while loop) that has in its condition an expres-
sion that uses variable ?x that is a pointer to the ab-
stract type list (e.g. array, linked list) and the ex-
pression contains the keyword “NULL”. The body of
Iterative-Statement contains a sequence of one or
more statements (+-Statement) that in its body uses
at least variable ?y (which binds to the variable obj
in the code match below) and contains the keyword
member. The Assignment-Statement uses at least
variable 7x, defines variable 7x which in this exam-
ple binds to variable £ield, and contains the keyword
next.

A code fragment that matches the pattern is:

{
wvhile (field != NULL)
{
if (!strcmp(obj,origlbj) ||
(‘strcmp(field->AvalueType, "member") &&
notInOrig ) )
if (strcmp(field->Avalue,"method") != 0)
INSERT_THE_FACT (o~>ATTLIST [num] . Aname,
origObj, field->Avalue);
field = field->nextValue;
}
}

5 Concept-to-Code Distance Calcula-
tion

Let T, be the AST of the code fragment and T, be
the AST of the abstract representation.

A measure of similarity between T, and T, is the
following probability

P (Te|Ts) =

Pr(reyyy o Tegy Ter|Tayy - Tayy o Tay) (1)

where,

(Peyy .eTeis...Te;) is the sequence of rewriting rules
used for generating T, and (ra,,...7;, ...7a,) is the se-
quence of rules used for generating 7,. An approxi-
mation of the (1) is obtained by replacing a rule with
its left-hand side symbol.

Let S;,,..S;, be a string of program statements
(represented as AST objects in the local workspace)
corresponding to the yield of the non-terminal sym-
bol ¢; in T.. Similarly, let A;,,..A; be a string of
concept descriptions (represented as AST objects in



Figure 3:
Al; A2*; A3*

A dynamic model for the pattern

the local workspace) corresponding to the yield of the
non-terminal symbol a; in T,.

The matching process is guided by two categories
of automata. The first type is dynamic as it is built
at run time while parsing the abstract code descrip-
tion. Nodes represent abstract statements and arcs
represent allowable transitions between the abstract
statements. The dynamic model is a network of con-
nected models of the second type.

The second type, a Markov model, is static and rep-
resents the probability a particular abstract statement
generates a code statement. There are as many static
Markov models as the abstract statement types in the
abstract language.

The sequence of abstract descriptions A; is used to
build dynamically the first type Markov model an ex-
ample of which is given in Fig.3 This model is built
at run time when A; is found in the conceptual rep-
resentation. It is constructed from the given pattern
and is called Abstract Pattern Model (APM). Each
transition of the APM is linked to a static, perma-
nently available Markov model called Source Code
Model (SCM).

The best alignment between S; and A; may be com-
puted by the Viterbi [16] dynamic programming al-
gorithm using the SCM for evaluating the following
probability:

P(Sl, Sa, ...SklAj)

The probability P(Sy, Sa, ...Sk|4;) is interpreted as
“The probability that the code fragment represented
by the sequence of statements Sy;Ss; ...Sx can be gen-
erated (matched) by the abstract statement state A;
of the APM automaton”.

For exampie given the APM of Fig.3 the following

probabilities are computed:

P(S1]4;) = 1.0
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P(S1, Sa|Az) = P(S1]A1) - P(Ss|A43)
P(S1, SalAs) = P(S1|A1) - P(Ss]4s)
P(S1, 52, S3]43) =

P(81,5:|Az2) - P(S5]43)
Mazx
P(S1,52|A3) - P(S3|As)

P(S1, 53, 83142) = P(S1,S2]A3) - P(S3|A2)

Note that when two program statements have al-
ready tried, two transitions have been consumed (two
matches have been tried with entities in the source
code) and the reachable active states are A2 or A3.

The way to calculate similarities between individual
abstract statements and code fragments is given in
terms of probabilities of the form P(S;|A;) interpreted
as the probability of abstract statement A; generating
statement S;.

This static model SCM is used to calculate the
P(Si|A;) probabilities. On the other hand the dy-
namic model is created at run-time while parsing the
abstract pattern (section 3). With each transition we
associate a list of probabilities based on the type of the
expression likely to be found as the next expression
to be matched in the code for the plan that we con-
sider. For example in the Traversal of a linked
list plan the while loop condition, which is an ex-
pression, most probably involves an inequality of the
form (list-node-ptr /= NULL) which contains an iden-
tifier reference and the keyword NULL.

An example of a static model for the expression-
pattern is given in Fig. 4. where 4; is a
Pattern-Expression abstract statement, and S; is
an expression in the source code.

The initial probabilities in the static model are pro-
vided by the user who either may gives a uniform dis-
tribution in all outgoing transitions from a given state
or provide some subjectively estimated values. These
values may come from the knowledge that a given plan
is implemented in a specific way. For example a traver-
sal of linked-list plan usually is implemented with a
while loop. The Iterative abstract statement can be
considered to generate a while statement with higher
probability than a for statement. Once the system
is used and results are evaluated these probabilities
can be adjusted to improve the performance.

Probabilities can be dynamically adapted to a spe-
cific software system using a cache memory method
originally proposed (for a different application) in [8].
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Figure 4: The static model for the expression-pattern.
example the traversal of linked-list plan may have higher probability attached to the is-an-inequality transition
as the programmer expects an inequality expression of the form (field /= NULL) in the condition of the iterative

statement.

A cache is used to maintain the counts for most fre-
quently recurring statement patterns in the code being
examined. Static probabilities can be weighted with
dynamically estimated ones as follows:

P(SilAj) =X Pcache(SiIAj) + (1 - A) . Pstatic(SiIAj)

In this formula Pegepe(Si|A;) represents the fre-
quency that A; generates S; in the code examined at
run time while Pyatic(S;|A;) represents the a-priori
probability of A; generating S; given in the static
model. A is a weighting factor.

Finally, the selection of a code fragment to be
matched with an abstract description is based on the
following criteria : @) the first source code statement
can be generated by the first pattern statement b)
keywords and literal variable names should match ¢)
metric values (if provided) should be within the given
threshold values

Once a candidate list of code fragments has been
chosen the actual pattern matching takes place in or-
der to select only these code fragments that best fit
the pattern.
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Different models may exist for different plans. For

6 Conclusion

Pattern matching plays an important role for plan
recognition and design recovery. In this paper we have
presented two types of pattern matching techniques
that are used for code-to-code and concept-to-code
matching. Code-to-code matching is used for clone
detection and for computing similarity distances be-
tween two code fragments. It is based on an dynamic
programming pattern matcher that computes the best
alignment between two code fragments in terms of in-
sertion, deletion, and substitution costs between state-
ments of a model code fragment and an input code
fragment. We have experimented with different code
features for comparing code statements. These in-
clude, metric values, data and control flow program at-
tributes, keywords, and lexicographical distances be-
tween variable names. Using this technique, we are
able to detect clones in large software systems > 300
KLOC. Clone detection is used to identify “conceptu-
ally” related operations in the source code, and iden-
tify redundancy in large systems.

Concept-to-code matching is a more ambitious ob-
Jjective and uses an abstract language to represent code
operations at an abstract level. Markov models and
the Viterbi algorithm are used to compute similar-
ity measures between an abstract statement and a



code statement in term of the probability that the
abstract statement can generate the particular code
statement. Program features that are used to com-
pute similarity are based on statement type, keywords,
variable names, data types, metrics, and bindings be-
tween abstract variables and variables in the source
code. Concept-to-code matching is under evolution
using the REFINE environment to support plan lo-
calization in C programs.
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