
Towards an Integrated Toolset for Program Understandingy

John Mylopoulos Martin Stanley Kenny Wong Morris Bernstein

Renato De Mori Graham Ewart Kostas Kontogiannis Ettore Merlo

Hausi M�uller Scott Tilley Marijana Tomic

Abstract

This paper describes some early results of a
three�year project to develop an integrated
toolset for program understanding� The imple�
mented integration architecture involves both
a global repository for all tools serviced by the
architecture and a software bus serving commu�
nications among tools�

� Introduction

Program understanding is the process of devel�
oping mental models of a software system�s in�
tended architecture� purpose� and behaviour�
Software engineers spend more time under�
standing existing code than they do designing�
programming� testing� or debugging� More�
over� the need for program understanding is
growing in parallel with the amount of legacy
code currently in use� Not surprisingly� there
have been numerous research e�orts to develop
tools that provide assistance during the under�
standing process� These tools adopt a number
of di�erent approaches� including visualization�
pattern�matching� and knowledge�based tech�
niques� Despite successful results from each of
these approaches� it is clear that no one ap�
proach or tool is su�cient by itself� and that the
software engineer can best be served through a
collection of tools that complement each other
in functionality� This observation raises three
research issues� First� what sort of an architec�
ture can best support an integrated set of tools

yThis work was supported in part by the Natural
Sciences and Engineering Research Council of Canada�
the IBM Software Solutions Toronto Laboratory Centre
for Advanced Studies� the Information Technology Re�
search Centre of Ontario� the University of Victoria� and
McGill University�

for program understanding� Second� what are
the concrete bene�ts of this integration� Third�
how well does an integrated toolset support a
software engineer�
This paper reports on early results of a three�

year project� called RevEngE� whose objec�
tives include the development of an integrated
toolset for program understanding� It o�ers
tools for program visualization� system identi�
�cation and discovery� and supports appropri�
ate program understanding processes� The re�
sults to date include a prototype implementa�
tion of an integrated environment and initial
experimentations with legacy code� RevEngE
is part of an ongoing project on program un�
derstanding� based at the IBM Centre for Ad�
vanced Studies 	CAS
 ��� The primary goal
of this larger project �� has been to apply pro�
gram understanding technologies to improve the
quality of software systems�
In this project� the SQL�DS 	Structured

Query Language�Data System
 product is used
as the testbed for all technologies under review�
SQL�DS is a relational database management
system� developed by IBM in the ����s� operat�
ing on IBM�s System���� family of computers
using either VM or VSE� and serving a large
customer base�� SQL�DS is successful and ma�
ture� but is also evolving to run on new environ�
ments and support a growing functionality� For
these reasons� it was deemed to be an excellent
example of a legacy system�
The SQL�DS system consists of over one

thousand compilable units containing roughly
three million lines of source code written
in PL�AS 	Programming Language�Advanced
Systems
� an internal IBM language� PL�AS

�SQL�DS� System����� VM� VSE� and IBM
are trademarks of International Business Machines
Corporation�

is similar in structure and syntax to PL�I� but
has many extensions that make it suitable as a
�deep systems� language� For example� when
necessary� the programmer can mix IBM Sys�
tem���� Assembler code with PL�AS in a mod�
ule�
Progress in the project has been accom�

plished through two vehicles� The �rst is the
Software Re�nery 	also known as REFINE
��

a commercial tool by Reasoning Systems Inc�
that supports a parser for a variety of pro�
gramming languages� The parser�s output is a
data structure representation of abstract syntax
trees� Moreover� REFINE o�ers a rich language
where users can de�ne patterns to be matched
against abstract syntax trees of the code under
analysis� This tool was used extensively in ear�
lier phases of the project in order to discover
certain families of defects in the SQL�DS sys�
tem� The second vehicle is the Rigi system� a
research prototype developed at the University
of Victoria to support program analysis and vi�
sualization� All tools under development in Re�
vEngE are based on either REFINE or Rigi� or
both�
Section � of this paper describes the integra�

tion architecture proposed for RevEngE� while
Section � provides an overview of Rigi� recent
improvements to its functionality� and its appli�
cation to analyzing the structure of SQL�DS�
Section � outlines extensions of REFINE to sup�
port pattern matching operations� Section �
relates this work to other research e�orts� and
Section � summarizes the paper�

� An Integration Architec�

ture

The basic requirement of the overall architec�
ture for the integrated toolset is to support both
data and control integration for a given set of
tools� Data integration is the sharing of data
among a set of tools� control integration is the
ability of tools to notify each other of events�
and to activate other tools when needed� The
design goals for the architecture are that it be
open� modular� and capable of operating either

�Software Re�nery and REFINE are trademarks of
Reasoning Systems Inc�

Local Workspace

Rigi

Local Workspace

Rigi

Local Workspace

REFINE

Machine A

Machine B

Machine C

DATA SERVER
Telos Message Bus
(TMB)

SCHEMA
(Telos Server)

Local Workspace

Rigi

OBJECT BASE
(ObjectStore)

Control Integration Data Integration

Repository
Browser

Figure �� Control and data integration archi�
tecture

on a single host or over a network� An open sys�
tem architecture was adopted because it makes
the toolset served by the architecture extensi�
ble� while modularity facilitates customization
	or even replacement
 of components as needed�
For instance� the underlying message transport
software can be easily changed� if a more desir�
able system is found� It should also be relatively
easy to add new tools�

The integration architecture of the system
consists of two components� The �rst 	labeled
�Telos Server� in Figure �
 is responsible for
data integration among tools� and is realized
through a repository based on a single global
schema that can accommodate all data handled
by any one of the integrated tools� The sec�
ond component 	labeled �TMB�
 consists of a
data server which is responsible for communi�
cating information among tools either through
the repository or directly 	control integration
�

The Telos server is implemented in C�� us�
ing ObjectStore as its persistent storage man�
ager� The global schema is de�ned using
an object�oriented information model 	adopted
from Telos ���
 which supports metaclasses�

�

ObjectClass

RigiClass RefineClass

File

attribute
 singleValue: Proposition
 setValue: Proposition
 sequenceValue: SequenceClass

attribute
 rigiAttribute: Proposition

attribute
 refineNonTreeAttribute: Proposition
 refineTreeAttribute: Proposition

rigiAttribute, setValue
 contains: RigiObject

refineNonTreeAttribute, singleValue
 fileCurrentLineNumber: Integer
 fileName: Symbol
 filePathName: String
 fileToFileSpec: FileSpec

refineNonTreeAttribute, setValue
 fileExports: Identifier
 fileImports: IdentifierLink

refineNonTreeAttribute, sequenceValue
 fileGlobals: IdentifierSequence
 fileIdentifiers: RefineObjectSequence
 fileIncludedBy: IncludeStatementSequence
 fileLocals: IdentifierSequence

refineTreeAttribute, sequenceValue
 fileDefinitions: TopLevelDeclarationObjectSequence

instance ofinstance of

is a is a

Metaclass
Level

Class
Level

Figure �� Portions of the Telos repository
schema

multiple inheritance� and multiple instantia�
tion� In particular� classes are objects and are
instances of metaclasses� For example� an ob�
ject file��� may be an instance of the class
File and RigiModule� re�ecting that it repre�
sents a �le and part of a Rigi module� Moreover�
attributes are treated as objects and� therefore�
are instances of attribute classes 	which in turn
are instances of attribute metaclasses� etc�
�

Figure � shows a portion of the global schema
that has been de�ned in order to integrate
the tools Rigi and REFINE� At the meta�
class level� the schema includes the meta�
class ObjectClass� which has associated at�
tribute metaclasses singleValue� setValue�
sequenceValue� All instances of this meta�
class can have associated attributes� which
are classi�ed under singleValue� setValue�
sequenceValue� depending on the type of value
they take� ObjectClass has two specializa�
tions� RigiClass and RefineClass� The for�
mer has as instances classes that are manip�
ulated by the Rigi tool� while the latter has

instances that are classes manipulated by the
REFINE tool� As indicated in the �gure�
these metaclasses have attribute metaclasses
that identify attributes used by Rigi and ones
used by REFINE�

At the class level� the class File is de�
�ned as an instance of both RigiClass and
RefineClass� This simply declares that a �le
object may be manipulated by both the Rigi
and REFINE tools� File has many attributes
classi�ed under one or more attribute meta�
classes� For instance� fileCurrentLineNumber
is classi�ed under refineNonTreeAttribute

and singleValue� indicating that this attribute
is single valued and that it is a non�tree at�
tribute used by the REFINE tool� An instance
of File� say file���� can now have associ�
ated attribute valued pairs that are classi�ed
under the attribute classes of File� including
fileCurrentLineNumber� contains� etc�

The use of metaclasses for objects as well as
attributes makes it possible to accommodate
new tools as well as new types of information�
The treatment of attributes as objects facili�
tates the partitioning of repository contents to
suit the tools being accommodated and their
users� For instance� a user of REFINE may
want to load into the REFINE workspace all
�le objects with their associated REFINE at�
tributes 	but not their Rigi attributes
� Ex�
pressing such a query in Telos is simple� pre�
cisely because attributes are objects�

The global schema that has been imple�
mented so far can accommodate the two tools
Rigi and REFINE used during program iden�
ti�cation ��� where a given program is parsed
and analyzed syntactically� It also accommo�
dates them during design discovery� where var�
ious abstractions are discovered through pat�
tern matching� An extension to the schema�
planned for the second year of the project� will
accommodate requirements speci�cations� pro�
cess models� and domain knowledge� as well as
the actual patterns used for their discovery�

The data server� called Telos Message Bus
	TMB
� is the kernel of the support system for
tool interconnection and control integration� It
is implemented in C�� using the software bus
MBus �� as the transportation mechanism� We
chose MBus for the project� rather than use a

�

commercial product� primarily because it gives
us a small and simple system upon which we can
build a message transport layer tailored speci��
cally to the project�s requirements� Its capabili�
ties include reliable message transfer with selec�
tive broadcasting� and a simple message typing
scheme�

The design goals of the TMB include exten�
sibility� in the sense that a tool client must be
able to dynamically inform the system that it
can handle a new kind of request� For exam�
ple� when REFINE implements a new complex�
ity measure� it would register this capability so
that other tools can make use of it� In addi�
tion� the TMB is designed to be extensible in
the sense that it is a simple matter to add new
tools to the architecture� A new tool would be
added as another tool class to the currently ex�
isting classes for Rigi� REFINE� and the Telos
Server� Instances of speci�c tools or users in the
environment are uniquely identi�ed by a com�
bination of the login name� tool class� host ID�
and process number�

Another important requirement is that the
TMB supports point�to�point as well as broad�
cast communication� Tools can specify a partic�
ular domain of interest�the kinds of messages
that it is interested in� A domain is a tuple
consisting of a context 	e�g�� analysis update
�
a tool class� and a combination of login name�
host ID� and process number� Domains also al�
low senders to specify particular receiver	s
 of
a message� The registry of contexts is expected
to evolve over the course of the project�

E�cient transmission of bulk data is deemed
to be critical� since that is the intended modus
operandi for the integration architecture� That
is� the repository is currently not optimized for
queries of just single objects� Finally� the data
server has been designed so that it lays the
groundwork for an access control layer and a
policy layer for implementing access control pro�
tocols and program understanding processes�

The TMB o�ers message passing using mes�
sage objects� with client facilities for message
creation� deletion� and archiving� Data is sent
through a TMB message by creating a network
object 	a transportable representation of a Te�
los object
 and sending it to another client on
the TMB� For example� the REFINE tool might

parse a program�s source code� producing an ab�
stract syntax tree representation of the program
and send this tree via a set of network objects
encapsulated in a TMB message to the Telos
Server 	simply another client on the TMB
 for
insertion into the repository� Then later on� the
Rigi tool can request a certain subset of the ob�
jects previously created by REFINE and can
get them through a TMB message containing
the appropriate network objects from the Telos
Server� Later on� the Rigi tool might request
	using a TMB message
 that the REFINE tool
perform some additional analysis of the source
code and that it report the results directly to
Rigi� In this scenario� the REFINE tool sends
a set of network objects in a TMB message to
Rigi� Note that although the tools in this lat�
ter example are not using the repository at all�
they are using the repository�s global schema to
communicate with each other�

� The Rigi Tool

The basic function of the Rigi tool ��� is to
discover abstractions from software representa�
tions and present them in a meaningful way
to software engineers� thereby assisting their
understanding of the subject system� Presen�
tations of information in Rigi are graphical�
and accommodate summarizing� querying� rep�
resenting� visualizing� and evaluating system
structure for large� evolving software systems�
Rigi encompasses a collection of research re�

sults integrated into a number of components�
including a parsing subsystem� a distributed�
multi�user workspace� and an interactive graph
editor ���� Rigi�s representation for software
structure is based on 	k��
�partite graphs ����
thereby making the analysis of program struc�
ture algorithmically tractable� In addition� ���
proposes a reverse engineering methodology�
while ��� de�nes measures for evaluating the
quality of structural abstractions� Also� ���
presents a documentation strategy using up�
to�date views� and ��� o�ers an end�user pro�
grammable approach to extending the system�s
functionality�
The SQL�DS code was a useful testing

ground for the Rigi approach� and led to a dra�
matic change to the underlying philosophy that

�

a semi�automatic reverse engineering environ�
ment is better than a fully automatic one� This
is because human cognitive abilities are still
much more powerful and �exible than �xed al�
gorithms� However� many of the operations per�
formed during the initial decomposition of the
SQL�DS code were repetitive and tedious� The
analyst would still be in charge� but the process
itself could be more automated� These obser�
vations led us to support end�user programma�
bility of the Rigi editor through a scripting lan�
guage� Users can now write scripts to increase
the �exibility of the editor� Complex decompo�
sition or layout tasks are automated for more
consistency� User interfaces and interactions
may be tailored as desired� The editor is ex�
tensible� using the scripting language to trans�
parently integrate existing capabilities�

Previously� the user interface and kernel of
the editor were tightly coupled� We added a
transparent middle layer to allow scripting of
all editor operations� Instead of writing yet an�
other command language� we de�ned the Rigi
Command Language 	RCL
 using Tcl ���� Tcl
provides a powerful� extendible core language
and was speci�cally designed to be embedded
into applications� Since the implementation
is interpreted� there is no need to recompile
an application�very important to ease experi�
mentation during program understanding tasks�
Moreover� scripts are easy to write and are of�
ten fairly short� Tcl is application�independent
and provides two interfaces� a textual one to
users who issue Tcl commands� and a procedu�
ral one to the host application� Using the pro�
cedural interface� Rigi implements and registers
new commands that are indistinguishable from
built�in Tcl commands� We added commands to
access the internal Rigi state� such as the can�
vas size and graph model� as well as commands
to trigger the built�in Rigi operations 	also ac�
cessible through pull�down and pop�up menus
�
RCL scripts have been written in terms of these
commands to provide additional algorithms for
o��line decomposition� analysis� and visualiza�
tion�

Integration is one particularly important ben�
e�t of scripting� Tcl supports inter�application
communication between Tcl�based tools as a
possible avenue for integration� As well� Tcl

provides primitives to access and coordinate
external tools� even to those interactive tools
that were not written with scripting control in
mind� Thus� the toolset available to the analyst
is e�ectively unlimited� For example� visualiz�
ing dependencies is a common operation dur�
ing program understanding� Scripts were writ�
ten to access external tools for spring ��� and
Sugiyama ��� graph layout� The following is
an RCL script for applying a spring layout al�
gorithm to the graph in a Rigi window� The reg�
istered names of the new commands are layout
and spring�

� call a graph layout program on the subgraph

� in the current window and along the given

� arc type

proc layout � program �window �� �arctype any� � �

if ��window �� �� �

� no window given� get current window

set window �get	window	id

�

� compute names of temporary files

set graphin �format ��tmp�s�in� �window

set graphout �format ��tmp�s�out� �window

� write subgraph� call layout program�

� read result

writeGEF �graphin �window �arctype

exec �program � �graphin�gef � �graphout�gef

readGEF �graphout �window

� delete temporary files

exec rm �graphin�gef

exec rm �graphout�gef

�

� run spring layout algorithm on the subgraph

� in the current window and along the given

� arc type

proc spring � �window �� �arctype any� � �

if ��window �� �� �

� no window given� get current window

set window �get	window	id

�

if ��is	connected �window �arctype
� �

� subgraph is connected�

� call spring layout

layout gel�spring �window �arctype

� else �

open	message	panel �Graph not connected�

�

�

The spring script uses the layout command�
The layout script uses the writeGEF script
command to convert the subgraph of the Rigi
graph model portrayed in the active window to

�

a �le conforming to the GEF format expected
by a GraphEd tool called gel spring ���� The
layout script then executes gel spring and
reads the resulting new layout back into the edi�
tor using the readGEF command 	which also ad�
justs the positions of nodes in the graph model
�
The resulting layout from spring is based on
physical properties of attraction and repulsion�
and may help ease the identi�cation of candi�
date subsystems�
The addition of a scripting language migrates

the Rigi editor closer to a highly �exible visu�
alization engine� The editor is a reusable com�
ponent that can be adapted to new application
domains 	and� hence� is domain retargetable
�
This adaptability is important for presenting
the varied program understanding analyses ex�
pected in the RevEngE project� such as clone
detection� data bindings� defect detection� and
subsystem structure identi�cation in a visually
integrated way� Moreover� to be better acces�
sible to other tools� the format for the tuple
streams through which the current Rigi compo�
nents communicate was standardized and bet�
ter de�ned� The editor was also decoupled from
the existing workspace to support the input of
these tuple streams as �at �les� This capabil�
ity provides another avenue of data interchange
with other tools�
Presently� the Rigi parser supports C� C���

COBOL� LaTEX� and� to a certain extent�
PL�AS� One goal was to extend the PL�AS
part by analyzing data types� data dependen�
cies� structures� call dependencies� and pointers
	references
� Our original intent was to trans�
form PL�AS source code into something very
similar to the C language so that the Rigi C
parser would be able to analyse it� Instead�
we decided to take advantage of Rigi�s ability
to read a stream of tuples representing rela�
tions and objects� These tuple streams could
be generated from compiler listings produced
by PL�AS� where information about program
structure is presented in a more regular format
than the source code itself� AWK ��� a well�
known UNIX �le�processing tool� seemed suit�
able� and we wrote AWK scripts to generate the
required tuples from a compiler listing� For ex�
ample�

DATA file�name data�name

CALL file�name procedure�name

PROC file�name procedure�name

STRUCT file�name struct�name

MEMBER struct�name member�name

DATA This tuple represents the declaration of a
named data item in a �le�

CALL This tuple is created for each call in a
module to a procedure that is not de�ned
in the same module�

PROC This tuple is created for each call in a
module to an externally visible procedure
that is de�ned in the same module� No tu�
ples were created for calls to PL�AS built�
in functions� which are usually speci�c se�
quences of ��� assembler instructions�

STRUCT This tuple is created for each com�
pound data type 	array� record� etc�
 found
in a source �le�

MEMBER This tuple is created for each member
of a structure� The naming conventions
used in SQL�DS allow the assumption that
di�erent instances of a structure name ac�
tually represent the same structure� These
occurrences are rare�

These tuples were loaded into Rigi�s reposi�
tory to produce a visual representation of the
SQL�DS system� Figure � depicts a spring lay�
out of a 	logical
 SQL�DS subsystem 	the rou�
tines associated with adding a foreign key to
the database� within the physical component
ARIXI
� In this logical subsystem� three mod�
ules 	ARIXIGK� ARIXIAP� ARIXIUK
 are shown as
well as some of the structures and data variables
they access� A fourth module 	ARIXIAF
 is �l�
tered from the view for clarity� A spring layout
easily shows the data being shared by the mod�
ules� Nevertheless� deducing such a logical sub�
system in SQL�DS at this level of abstraction
	neither too high nor too low
 is very di�cult
because of the structural complexity of the soft�
ware� Thus� there is a need to integrate with
and access alternative clustering methods�

�

Figure �� Spring layout of an SQL�DS subsystem

� Pattern Matching in

REFINE

Pattern matching is involved in every major as�
pect of program understanding� McGill�s con�
tribution to the project has focused on integrat�
ing novel pattern�matching algorithms for pro�
gram analysis and design discovery into the en�
vironment� Adopted is a �exible� generalized�
pattern�matching paradigm that does not limit
maintainers to a �xed plan library ���� Of in�
terest are algorithms to identify useful patterns
e�ciently and visualize pattern matches e�ec�
tively�

As software is maintained� patches of code
tend to be introduced that form hidden rela�
tionships in the program� Subsystem cluster�
ing attempts to group non�contiguous program
fragments that should be considered together�
Two fragments should be clustered together if
and only if one fragment has� or is likely to
have� a signi�cant e�ect on the behaviour of the
other� To date� we have considered structural
elements that indicate the exchange of program
resources� such as data bindings and common

references ���� A data binding is a triplet con�
sisting of two program fragments and a variable
where the variable is set in one fragment and
used in the other� A common reference is where
two or more fragments use or update a partic�
ular variable�

We used REFINE to implement a prototype
clustering algorithm that considers the num�
ber of common references among arbitrary sets
of fragments and a clustering algorithm based
on data bindings on the set of variables in the
software� The program representation scheme
is an object�oriented annotated abstract syn�
tax tree� a grammar is used for parsing and
a domain model is de�ned to specify the ob�
ject hierarchies� During analysis� the tree is an�
notated with information on system structure�
data �ow� and links to informal information 	for
example� local variables� global variables� func�
tions call� and aliasing
�

The results of the analysis can be displayed in
tabular form within REFINE or passed to the
repository for display by Rigi� Figure � presents
the tables of clusters based on data bindings and
common references that REFINE generated for

�

Figure �� REFINE data bindings and common references tables

a game program written in C�

The availability of the clustering algorithms
assist the task of subsystem composition in Rigi�
Figure � depicts the original resource �ow graph
that Rigi�s parsing subsystem extracted from
the same source code� There are icons for the
functions and a data type called player� the
arcs represent function calls or data accesses�
REFINE can augment this information by ex�
tracting the variables as well� computing clus�
ters� and loading this analysis into the reposi�
tory� The process of subsystem composition in
Rigi can subsequently be guided by these clus�
ters� A view of clustering based on data bind�
ings is shown in Figure �� The middle column
are variables extracted by REFINE and the left
and right columns represent clusters of func�
tions that set or use� respectively� those vari�
ables�

The static analysis is non�trivial because of

the aliasing problem in languages such as C and
PL�AS� The current implementation of the clus�
tering algorithms cannot detect relationships
due to aliasing� Instead� it examines global vari�
ables and parameters of functions� This work is
being extended to integrate aliasing information
from McGill�s Compiler Architecture Testbed
	McCAT
 ���� McCAT is a research compiler
for C� designed to test techniques for generating
optimized code on modern RISC and parallel
architectures� One key element of the compiler
is its approach for interprocedural analysis us�
ing �points�to� information ����

� Related Work

SoftBench from Hewlett Packard is a platform
that integrates tools via a mechanism intro�
duced in the Field programming environment

�

Figure �� Rigi resource �ow graph

���� This mechanism allows tools to interact
by sending messages to a message server that
selectively broadcasts them to those tools that
have previously registered a need to be noti�ed�
For close integration with other tools� a new tool
must provide a programmatic message�based in�
terface in addition to its user interface� it must
support request messages for services it provides
and send noti�cation messages announcing the
actions it has performed�
PCTE Workbench from VISTA Technologies

�� is a toolkit for constructing hypermedia�
based environments and applications� It is
based on the Portable Common Tool Environ�
ment 	PCTE
� which provides an extensible
structure for tool integration and the construc�
tion of software development environments ���
Data integration is based on the PCTE Ob�
ject Management System ���� which supports a
hypertext�like data model� Control integration
is provided by broadcast messaging built around
an interpreter for an object�oriented� Lisp�based
scripting language�
Software through Pictures 	StP
� ��� from

Interactive Development Environments is an in�
tegrated software�engineering environment that
provides an open architecture� data sharing
through a central repository� a common graph�
ical editor� and customization through a script�

�Software through Pictures is a registered trademark
of Interactive Development Environments

Figure �� Clustering based on data bindings

ing language� The editor is tailorable to
a particular software engineering methodology
through rule �les� and provides presentation in�
tegration by showing a similar and consistent
user interface for all methodologies structured
or object�oriented�
Work on software repositories includes ��� ���

which discusses a knowledge representation sys�
tem based on the language CLASSIC� which is
used to describe software objects� CLASSIC
is also used by ��� as the representation lan�
guage for a communications software repository�
This repository includes information about the
software code� its intended function� and dis�
covered relationships between them� Finally�
�� presents a similar system based on Telos�
which stores requirements� design� and imple�
mentation information about information sys�
tems� and is intended for reuse�oriented appli�
cation development�

� Summary

This paper described an implementation for in�
tegrating tools developed to support program
understanding activities� The strategy is based
on a software repository using a rich and ex�
tensible global schema to integrate the types of
information handled by a given toolset� The ar�
chitecture supports a software bus intended to

�

accommodate communication among tools and
the repository� In addition� the paper reports
on work with two existing tools� Rigi and RE�
FINE� so that they can be interfaced with the
architecture� Finally� it reports on recent work
within the project on tools for program analysis
and design recovery�
We are only beginning to discover the bene�

�ts of integration� For example� Rigi has a much
more �exible and robust user interface for visu�
alization than REFINE� but it lacks REFINE�s
strengths for detailed syntactic analysis on the
syntax tree of a program� Trying to implement
these capabilities for detailed analysis in the
scripting language of Rigi would be redundant
and perhaps even inadequate� Cloning analy�
sis is another good example where REFINE can
perform the analysis and Rigi can visually high�
light the clones using customizable icons� color
schemes� and placement� An integration archi�
tecture with a global schema is needed to bring
tools with such varied strengths and capabilities
together to form a uni�ed program understand�
ing toolset�uni�ed in terms of data and control
integration�

About the Authors

John Mylopoulos Department of Computer
Science� University of Toronto� � King�s Col�
lege Road� Toronto� Ontario� Canada M�S �A��
jm�ai�utoronto�ca� Dr� Mylopoulos is a pro�
fessor of computer science at the University of
Toronto� He received his Ph�D� degree from
Princeton University in ����� His research in�
terests include knowledge representation and
conceptual modelling� covering languages� im�
plementation techniques for large knowledge
bases� and the application of knowledge bases
to software repositories� He is currently leading
a number of research projects and is principal
investigator of both a national and a provin�
cial Centre of Excellence for Information Tech�
nology� His publication list includes more than
��� refereed journal and conference proceedings
papers and three edited books� He is the recipi�
ent of the �rst ever Outstanding Services Award
given out by the Canadian AI Society 	����
�
and also a co�recipient of a best paper award at
the ��th International Conference on Software

Engineering�

Martin Stanley Department of Computer
Science� University of Toronto� � King�s Col�
lege Road� Toronto� Ontario� Canada M�S �A��
mts�ai�utoronto�ca� Mr� Stanley received his
M�Sc� degree in computer science from the Uni�
versity of Toronto in ����� His research inter�
ests include knowledge representation and con�
ceptual modeling� with particular application to
the building of software repositories� He is cur�
rently a research associate in the Department of
Computer Science at the University of Toronto�
with primary responsibility for the Toronto por�
tion of the RevEngE project�

Kenny Wong Department of Computer
Science� University of Victoria� P�O� Box
	
��� Victoria� BC� Canada V�W 	P��
kenw�csr�uvic�ca� Mr� Wong is a Ph�D� can�
didate in the Department of Computer Science
at the University of Victoria� He worked in the
program understanding project while at CAS
during the summer of ���� and ����� His re�
search interests include program understand�
ing� runtime analysis� user interfaces� object�
oriented programming� and software design� He
is a member of the ACM� USENIX� and the
Planetary Society�

Morris Bernstein School of Computer
Science� McGill University� 	��
 University
Street� Room 	��� Montr�eal� Qu�ebec� Canada
H	A A�� zaphod�cs�mcgill�ca� Mr� Bern�
stein received his B�Sc� and M�Sc degrees
from McGill University� His research inter�
ests include software development� program un�
derstanding� compiler design� and application�
domain languages� He is currently a research
assistant with primary responsibility for the
McGill portion of the RevEngE project�

Renato De Mori School of Computer
Science� McGill University� 	��
 University
Street� Room 	��� Montr�eal� Qu�ebec� Canada
H	A A�� demori�cs�mcgill�ca� Dr� De Mori
received a doctorate degree in Electronic En�
gineering from Politecnico di Torino� Italy� in
����� Since ����� he has been a professor and
the director of the School of Computer Sci�
ence at McGill University� In ����� he became
an associate of the Canadian Institute for Ad�
vanced Research and project leader of the In�
stitute for Robotics and Intelligent Systems� a

��

Canadian Centre of Excellence� His current
research interests are stochastic parsing tech�
niques� automatic speech understanding� con�
nectionist models� and reverse engineering� He
is the author of many publications in the areas
of computer systems� pattern recognition� arti�
�cial intelligence� and connectionist models� He
is on the board of the following international
journals� the IEEE Transactions on Pattern
Analysis and Machine Intelligence� Signal Pro�
cessing� Speech Communication� Pattern Recog�
nition Letters� Computer Speech� and Language
and Computational Intelligence� He is a fellow
of the IEEE Computer Society�

Graham Ewart Centre for Advanced Stud�
ies� IBM Software Solutions Toronto Labora�
tory� ��� Don Mills� North York� ON� Canada
M	C �V�� ewart�vnet�ibm�com� Mr� Ewart is
a senior development analyst of the IBM Soft�
ware Solutions Toronto Laboratory and is cur�
rently the principal investigator for the program
understanding project at CAS� Prior to join�
ing CAS� he was the lead architect for the IBM
C���� family of compilers and runtimes� His re�
search interests include software maintenance�
program understanding� document understand�
ing� and reverse engineering�

Kostas Kontogiannis School of Computer
Science� McGill University� 	��
 University
Street� Room 	��� Montr�eal� Qu�ebec� Canada
H	A A�� kostas�binkley�cs�mcgill�ca�
Mr� Kontogiannis received a B�Sc degree in
Mathematics from the University of Patras�
Greece� and an M�Sc degree in Arti�cial Intel�
ligence from Katholieke Universiteit Leuven in
Belgium� Currently� he is a Ph�D candidate in
the School of Computer Science at McGill Uni�
versity� His interests include plan localization
algorithms� software metrics� arti�cial intelli�
gence� and expert systems�

Ettore Merlo D�epartement
de G�enie �Electrique �DGEGI�� �Ecole Polytech�
nique de Montr�eal� C�P� �
��� Succ� Cen�
tre Ville� Montr�eal� Qu�ebec� Canada H	C 	A��
merlo�rgl�polymtl�ca� Dr� Merlo graduated
from the University of Turin� Italy� in ���� and
obtained a Ph�D� degree in computer science
from McGill University in ����� From ���� un�
til ����� he was the lead researcher of the soft�
ware engineering group at the Computer Re�

search Institute of Montreal� He is currently an
assistant professor of computer engineering at
�Ecole Polytechnique de Montr�eal� where his re�
search interests include software re�engineering�
software analysis� and arti�cial intelligence� He
is a member of IEEE Computer Society�

Hausi A� M�uller Department of Com�
puter Science� University of Victoria� P�O�
Box 	
��� Victoria� BC� Canada V�W 	P��
hausi�csr�uvic�ca� Dr� M uller is an asso�
ciate professor in the Department of Computer
Science at the University of Victoria� where he
has been since ����� He received his Ph�D� in
computer science from Rice University in �����
From mid ���� to mid ����� he was on sabbati�
cal at CAS� working in the program understand�
ing project� His research interests include soft�
ware engineering� software analysis� reverse en�
gineering� re�engineering� programming�in�the�
large� software metrics� and computational ge�
ometry� He is currently a Program Co�Chair of
the International Conference on Software Main�
tenance 	ICSM ���
 in Victoria and the Interna�
tional Workshop on Computer Aided Software
Engineering 	CASE ���
 in Toronto� He is a
member of the editorial board of IEEE Trans�
actions on Software Engineering�

Scott R� Tilley Department of Com�
puter Science� University of Victoria� P�O�
Box 	
��� Victoria� BC� Canada V�W 	P��
stilley�csr�uvic�ca� Mr� Tilley is currently
on leave from the IBM Software Solutions
Toronto Laboratory� and is a Ph�D� candidate
in the Department of Computer Science at the
University of Victoria� His �rst book on home
computing was published in ����� His research
interests include end�user programming� hyper�
text� program understanding� reverse engineer�
ing� and user interfaces� He is a member of the
ACM and the IEEE Computer Society�

Marijana Tomic Centre for Advanced Stud�
ies� IBM Software Solutions Toronto Labora�
tory� ��� Don Mills� North York� ON� Canada
M	C �V�� mtomic�vnet�ibm�com� Mrs� Tomic
is a post�doctoral student from the University of
Victoria� working in the program understanding
project at CAS� Her research interests include
software engineering in general� and software
maintenance� program understanding� reverse
engineering� re�engineering� and re�structuring

��

in particular�

References

��� Aho� A�� Kernighan� B�� and Weinberger� P�
The AWK Programming Language� Addison�
Wesley� �����

�	� Arora� A�K�� Hurst� D�W�� and Ferrans� J�C�

Building Diverse Environments with PCTE
Workbench�� Proc� PCTE ��� ����

�� Arnold� R�S�
Tutorial on Software Re�
Engineering�� IEEE International Conference
on Software Maintenance� �ICSM ����� San
Diego� November �����

��� Boudier� G�� Gallo� F�� Minot� R�� and
Thomas� I�
An Overview of PCTE and
PCTE��� ACM SIGSOFT Software Engineer�

ing Notes� ����� February �����

��� Buss� E� and Henshaw� J�
Experiences in Pro�
gram Understanding�� Proc� CASCON ��	�
Toronto� November ���	�

��� Buss� E� et al�
Investigating Reverse Engi�
neering Technologies� The CAS Program Un�
derstanding Project�� IBM Systems Journal�
��� �����

��� Carroll� A� ConversationBuilder� A Collabo�

rative Erector Set� Ph�D� Thesis� University of
Illinois� ����

��� Constantopoulos� P�� Jarke� M�� Mylopoulos�
J�� and Vassiliou� Y�
The Software Informa�
tion Base� A Server for Reuse�� The VLDB

Journal �to appear��

��� Devanbu� P�� Selfridge� P�� Ballard� B�� and
Brachman� R�P�
Steps Towards a Knowledge�
Based Software Information System�� Proc�
International Joint Conference on Arti�cial In�
telligence� Detroit� August �����

���� Devanbu� P�� Brachman� R�P�� Selfridge� P��
and Ballard� B�
A Classi�cation�Based Soft�
ware Information System�� Proc� IEEE Inter�
national Conference on Software Engineering�
�ICSE �	�� May �����

���� Emami� M�� Ghiya� R�� and Hendren� L�J�

Context�Sensitive Interprocedural Points�to
Analysis in the Presence of Function Pointers��
Proc� Conference on Programming Language
Design and Implementation� �SIGPLAN �����
Orlando� June �����

��	� Fruchtermann� T� and Reingold� E�
Graph
Drawing by Force�Directed Placement�� Tech�
nical Report UIUC CDS�R��������� Depart�
ment of Computer Science� University of Illi�
nois at Urbana�Champaign� �����

��� Gallo� F�� Minot� R�� and Thomas� M�I�

The Object Management System of PCTE
as a Software Engineering Database Manage�
ment System�� Proc� Second ACM Sympo�
sium on Practical Software Development Envi�
ronments �SIGSOFT ����� Palo Alta� Decem�
ber ����� �����

���� Hendren� L�J�� Donawa� C�� Emami� M�� Gao�
G�R�� Justiani� and Sridharan� B�
Design�
ing the McCAT Compiler Based on a Family
of Structured Intermediate Representations��
ACAPS Technical Memo ��� School of Com�
puter Science� McGill University� Montreal�
���	�

���� Himsolt� M�
GraphEd� The Design and Im�
plementation of a Graph Editor�� GraphEd
Distribution Kit� ����

���� Kontogiannis� K�A�� De Mori� R�� Bernstein�
M� and Merlo� E�
Localization of Design Con�
cepts in Legacy Systems�� Proc� IEEE Inter�
national Conference on Software Maintenance�
�ICSM ����� Victoria� BC� September ���	�
���� �to appear��

���� Kontogiannis� K�A�� Tilley� S�R�� De Mori� R�
and M�uller� H�A�
User�Assisted Design Re�
covery for Legacy Software Systems�� Work�
shop on Software Engineering and Arti�cial
Intelligence in IEEE International Conference
on Software Engineering� �ICSE ���� Sorrento�
Italy� May ������ �����

���� M�uller� H�A� Rigi�A Model for Software Sys�

tem Construction� Integration� and Evolu�

tion Based on Module Interface Speci�cations�
Ph�D� Thesis� Rice University� August �����

���� M�uller� H�A�
�k�	��Partite Graphs as a Struc�
tural Basis for the Construction of Hyperme�
dia Applications�� Technical Report DCS�����
IR� University of Victoria� June �����

�	�� M�uller� H�A� and Corrie� B�D�
Measuring the
Quality of Subsystem Structures�� Technical
Report DCS����IR� University of Victoria�
November �����

�	�� M�uller� H�A�� Tilley� S�R�� Orgun� M�A�� Cor�
rie� B�D�� and Madhavji� N�H�
A Reverse

��

Engineering Environment Based on Spatial
and Visual Software Interconnection Models��
ACM SIGSOFT Software Engineering Notes�
������ December ���	�

�		� M�uller� H�A�� Orgun� M�A�� Tilley� S�R�� and
Uhl� J�S�
A Reverse Engineering Approach to
Subsystem Structure Identi�cation�� Journal
of Software Maintenance� Research and Prac�

tice� ����� December ����

�	� Mylopoulos� J�� Borgida� A�� Jarke� M�� and
Koubarakis� M�
Telos� Representing Knowl�
edge About Information Systems�� ACM

Transactions on Information Systems� �����
October �����

�	�� Ousterhout� J�K� An Introduction to Tcl and

Tk� Addison�Wesley� �����

�	�� Reiss� S�P�
Interacting with FIELD��
Software�Practice and Experience� 	�� June
�����

�	�� Selfridge� P�
Knowledge Representation Sup�
port for a Software Information System��
Proc� Seventh IEEE Conference on AI Appli�
cations� February �����

�	�� Sugiyama� K�� Tagawa� S�� and Toda� M�

Methods for Visual Understanding of Hier�
archical Systems�� IEEE Transactions on Sys�

tems� Man� and Cybernetics� ������ �����

�	�� Tilley� S�R�� M�uller� H�A�� and Orgun� M�A�

Documenting Software Systems with Views��
Proc� ��th International Conference on Sys�
tems Documentation� �SIGDOC ��	�� Ottawa�
October ����� ���	��

�	�� Tilley� S�R�� M�uller� H�A�� Whitney� M�J�� and
Wong� K�
Domain�Retargetable Reverse En�
gineering�� Proc� ��� International Confer�
ence on Software Maintenance� �ICSM ����
Montreal� September 	���� ����

��� Wasserman� A�I� and Pircher� P�A�
A Graph�
ical� Extensible Integrated Environment for
Software Development�� Proc� Second ACM
Symposium on Practical Software Develop�
ment Environments �SIGSOFT ����� Palo
Alta� December ����� �����

��

