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Abstract

This paper describes some early results of a
three�year project to develop an integrated
toolset for program understanding� The imple�
mented integration architecture involves both
a global repository for all tools serviced by the
architecture and a software bus serving commu�
nications among tools�

� Introduction

Program understanding is the process of devel�
oping mental models of a software system�s in�
tended architecture� purpose� and behaviour�
Software engineers spend more time under�
standing existing code than they do designing�
programming� testing� or debugging� More�
over� the need for program understanding is
growing in parallel with the amount of legacy
code currently in use� Not surprisingly� there
have been numerous research e�orts to develop
tools that provide assistance during the under�
standing process� These tools adopt a number
of di�erent approaches� including visualization�
pattern�matching� and knowledge�based tech�
niques� Despite successful results from each of
these approaches� it is clear that no one ap�
proach or tool is su�cient by itself� and that the
software engineer can best be served through a
collection of tools that complement each other
in functionality� This observation raises three
research issues� First� what sort of an architec�
ture can best support an integrated set of tools
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for program understanding� Second� what are
the concrete bene�ts of this integration� Third�
how well does an integrated toolset support a
software engineer�
This paper reports on early results of a three�

year project� called RevEngE� whose objec�
tives include the development of an integrated
toolset for program understanding� It o�ers
tools for program visualization� system identi�
�cation and discovery� and supports appropri�
ate program understanding processes� The re�
sults to date include a prototype implementa�
tion of an integrated environment and initial
experimentations with legacy code� RevEngE
is part of an ongoing project on program un�
derstanding� based at the IBM Centre for Ad�
vanced Studies 	CAS
 ��� The primary goal
of this larger project �� has been to apply pro�
gram understanding technologies to improve the
quality of software systems�
In this project� the SQL�DS 	Structured

Query Language�Data System
 product is used
as the testbed for all technologies under review�
SQL�DS is a relational database management
system� developed by IBM in the ����s� operat�
ing on IBM�s System���� family of computers
using either VM or VSE� and serving a large
customer base�� SQL�DS is successful and ma�
ture� but is also evolving to run on new environ�
ments and support a growing functionality� For
these reasons� it was deemed to be an excellent
example of a legacy system�
The SQL�DS system consists of over one

thousand compilable units containing roughly
three million lines of source code written
in PL�AS 	Programming Language�Advanced
Systems
� an internal IBM language� PL�AS
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is similar in structure and syntax to PL�I� but
has many extensions that make it suitable as a
�deep systems� language� For example� when
necessary� the programmer can mix IBM Sys�
tem���� Assembler code with PL�AS in a mod�
ule�
Progress in the project has been accom�

plished through two vehicles� The �rst is the
Software Re�nery 	also known as REFINE
��

a commercial tool by Reasoning Systems Inc�
that supports a parser for a variety of pro�
gramming languages� The parser�s output is a
data structure representation of abstract syntax
trees� Moreover� REFINE o�ers a rich language
where users can de�ne patterns to be matched
against abstract syntax trees of the code under
analysis� This tool was used extensively in ear�
lier phases of the project in order to discover
certain families of defects in the SQL�DS sys�
tem� The second vehicle is the Rigi system� a
research prototype developed at the University
of Victoria to support program analysis and vi�
sualization� All tools under development in Re�
vEngE are based on either REFINE or Rigi� or
both�
Section � of this paper describes the integra�

tion architecture proposed for RevEngE� while
Section � provides an overview of Rigi� recent
improvements to its functionality� and its appli�
cation to analyzing the structure of SQL�DS�
Section � outlines extensions of REFINE to sup�
port pattern matching operations� Section �
relates this work to other research e�orts� and
Section � summarizes the paper�

� An Integration Architec�

ture

The basic requirement of the overall architec�
ture for the integrated toolset is to support both
data and control integration for a given set of
tools� Data integration is the sharing of data
among a set of tools� control integration is the
ability of tools to notify each other of events�
and to activate other tools when needed� The
design goals for the architecture are that it be
open� modular� and capable of operating either

�Software Re�nery and REFINE are trademarks of
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Figure �� Control and data integration archi�
tecture

on a single host or over a network� An open sys�
tem architecture was adopted because it makes
the toolset served by the architecture extensi�
ble� while modularity facilitates customization
	or even replacement
 of components as needed�
For instance� the underlying message transport
software can be easily changed� if a more desir�
able system is found� It should also be relatively
easy to add new tools�

The integration architecture of the system
consists of two components� The �rst 	labeled
�Telos Server� in Figure �
 is responsible for
data integration among tools� and is realized
through a repository based on a single global
schema that can accommodate all data handled
by any one of the integrated tools� The sec�
ond component 	labeled �TMB�
 consists of a
data server which is responsible for communi�
cating information among tools either through
the repository or directly 	control integration
�

The Telos server is implemented in C�� us�
ing ObjectStore as its persistent storage man�
ager� The global schema is de�ned using
an object�oriented information model 	adopted
from Telos ���
 which supports metaclasses�
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multiple inheritance� and multiple instantia�
tion� In particular� classes are objects and are
instances of metaclasses� For example� an ob�
ject file��� may be an instance of the class
File and RigiModule� re�ecting that it repre�
sents a �le and part of a Rigi module� Moreover�
attributes are treated as objects and� therefore�
are instances of attribute classes 	which in turn
are instances of attribute metaclasses� etc�
�

Figure � shows a portion of the global schema
that has been de�ned in order to integrate
the tools Rigi and REFINE� At the meta�
class level� the schema includes the meta�
class ObjectClass� which has associated at�
tribute metaclasses singleValue� setValue�
sequenceValue� All instances of this meta�
class can have associated attributes� which
are classi�ed under singleValue� setValue�
sequenceValue� depending on the type of value
they take� ObjectClass has two specializa�
tions� RigiClass and RefineClass� The for�
mer has as instances classes that are manip�
ulated by the Rigi tool� while the latter has

instances that are classes manipulated by the
REFINE tool� As indicated in the �gure�
these metaclasses have attribute metaclasses
that identify attributes used by Rigi and ones
used by REFINE�

At the class level� the class File is de�
�ned as an instance of both RigiClass and
RefineClass� This simply declares that a �le
object may be manipulated by both the Rigi
and REFINE tools� File has many attributes
classi�ed under one or more attribute meta�
classes� For instance� fileCurrentLineNumber
is classi�ed under refineNonTreeAttribute

and singleValue� indicating that this attribute
is single valued and that it is a non�tree at�
tribute used by the REFINE tool� An instance
of File� say file���� can now have associ�
ated attribute valued pairs that are classi�ed
under the attribute classes of File� including
fileCurrentLineNumber� contains� etc�

The use of metaclasses for objects as well as
attributes makes it possible to accommodate
new tools as well as new types of information�
The treatment of attributes as objects facili�
tates the partitioning of repository contents to
suit the tools being accommodated and their
users� For instance� a user of REFINE may
want to load into the REFINE workspace all
�le objects with their associated REFINE at�
tributes 	but not their Rigi attributes
� Ex�
pressing such a query in Telos is simple� pre�
cisely because attributes are objects�

The global schema that has been imple�
mented so far can accommodate the two tools
Rigi and REFINE used during program iden�
ti�cation ��� where a given program is parsed
and analyzed syntactically� It also accommo�
dates them during design discovery� where var�
ious abstractions are discovered through pat�
tern matching� An extension to the schema�
planned for the second year of the project� will
accommodate requirements speci�cations� pro�
cess models� and domain knowledge� as well as
the actual patterns used for their discovery�

The data server� called Telos Message Bus
	TMB
� is the kernel of the support system for
tool interconnection and control integration� It
is implemented in C�� using the software bus
MBus �� as the transportation mechanism� We
chose MBus for the project� rather than use a
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commercial product� primarily because it gives
us a small and simple system upon which we can
build a message transport layer tailored speci��
cally to the project�s requirements� Its capabili�
ties include reliable message transfer with selec�
tive broadcasting� and a simple message typing
scheme�

The design goals of the TMB include exten�
sibility� in the sense that a tool client must be
able to dynamically inform the system that it
can handle a new kind of request� For exam�
ple� when REFINE implements a new complex�
ity measure� it would register this capability so
that other tools can make use of it� In addi�
tion� the TMB is designed to be extensible in
the sense that it is a simple matter to add new
tools to the architecture� A new tool would be
added as another tool class to the currently ex�
isting classes for Rigi� REFINE� and the Telos
Server� Instances of speci�c tools or users in the
environment are uniquely identi�ed by a com�
bination of the login name� tool class� host ID�
and process number�

Another important requirement is that the
TMB supports point�to�point as well as broad�
cast communication� Tools can specify a partic�
ular domain of interest�the kinds of messages
that it is interested in� A domain is a tuple
consisting of a context 	e�g�� analysis update
�
a tool class� and a combination of login name�
host ID� and process number� Domains also al�
low senders to specify particular receiver	s
 of
a message� The registry of contexts is expected
to evolve over the course of the project�

E�cient transmission of bulk data is deemed
to be critical� since that is the intended modus
operandi for the integration architecture� That
is� the repository is currently not optimized for
queries of just single objects� Finally� the data
server has been designed so that it lays the
groundwork for an access control layer and a
policy layer for implementing access control pro�
tocols and program understanding processes�

The TMB o�ers message passing using mes�
sage objects� with client facilities for message
creation� deletion� and archiving� Data is sent
through a TMB message by creating a network
object 	a transportable representation of a Te�
los object
 and sending it to another client on
the TMB� For example� the REFINE tool might

parse a program�s source code� producing an ab�
stract syntax tree representation of the program
and send this tree via a set of network objects
encapsulated in a TMB message to the Telos
Server 	simply another client on the TMB
 for
insertion into the repository� Then later on� the
Rigi tool can request a certain subset of the ob�
jects previously created by REFINE and can
get them through a TMB message containing
the appropriate network objects from the Telos
Server� Later on� the Rigi tool might request
	using a TMB message
 that the REFINE tool
perform some additional analysis of the source
code and that it report the results directly to
Rigi� In this scenario� the REFINE tool sends
a set of network objects in a TMB message to
Rigi� Note that although the tools in this lat�
ter example are not using the repository at all�
they are using the repository�s global schema to
communicate with each other�

� The Rigi Tool

The basic function of the Rigi tool ��� is to
discover abstractions from software representa�
tions and present them in a meaningful way
to software engineers� thereby assisting their
understanding of the subject system� Presen�
tations of information in Rigi are graphical�
and accommodate summarizing� querying� rep�
resenting� visualizing� and evaluating system
structure for large� evolving software systems�
Rigi encompasses a collection of research re�

sults integrated into a number of components�
including a parsing subsystem� a distributed�
multi�user workspace� and an interactive graph
editor ���� Rigi�s representation for software
structure is based on 	k��
�partite graphs ����
thereby making the analysis of program struc�
ture algorithmically tractable� In addition� ���
proposes a reverse engineering methodology�
while ��� de�nes measures for evaluating the
quality of structural abstractions� Also� ���
presents a documentation strategy using up�
to�date views� and ��� o�ers an end�user pro�
grammable approach to extending the system�s
functionality�
The SQL�DS code was a useful testing

ground for the Rigi approach� and led to a dra�
matic change to the underlying philosophy that
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a semi�automatic reverse engineering environ�
ment is better than a fully automatic one� This
is because human cognitive abilities are still
much more powerful and �exible than �xed al�
gorithms� However� many of the operations per�
formed during the initial decomposition of the
SQL�DS code were repetitive and tedious� The
analyst would still be in charge� but the process
itself could be more automated� These obser�
vations led us to support end�user programma�
bility of the Rigi editor through a scripting lan�
guage� Users can now write scripts to increase
the �exibility of the editor� Complex decompo�
sition or layout tasks are automated for more
consistency� User interfaces and interactions
may be tailored as desired� The editor is ex�
tensible� using the scripting language to trans�
parently integrate existing capabilities�

Previously� the user interface and kernel of
the editor were tightly coupled� We added a
transparent middle layer to allow scripting of
all editor operations� Instead of writing yet an�
other command language� we de�ned the Rigi
Command Language 	RCL
 using Tcl ���� Tcl
provides a powerful� extendible core language
and was speci�cally designed to be embedded
into applications� Since the implementation
is interpreted� there is no need to recompile
an application�very important to ease experi�
mentation during program understanding tasks�
Moreover� scripts are easy to write and are of�
ten fairly short� Tcl is application�independent
and provides two interfaces� a textual one to
users who issue Tcl commands� and a procedu�
ral one to the host application� Using the pro�
cedural interface� Rigi implements and registers
new commands that are indistinguishable from
built�in Tcl commands� We added commands to
access the internal Rigi state� such as the can�
vas size and graph model� as well as commands
to trigger the built�in Rigi operations 	also ac�
cessible through pull�down and pop�up menus
�
RCL scripts have been written in terms of these
commands to provide additional algorithms for
o��line decomposition� analysis� and visualiza�
tion�

Integration is one particularly important ben�
e�t of scripting� Tcl supports inter�application
communication between Tcl�based tools as a
possible avenue for integration� As well� Tcl

provides primitives to access and coordinate
external tools� even to those interactive tools
that were not written with scripting control in
mind� Thus� the toolset available to the analyst
is e�ectively unlimited� For example� visualiz�
ing dependencies is a common operation dur�
ing program understanding� Scripts were writ�
ten to access external tools for spring ��� and
Sugiyama ��� graph layout� The following is
an RCL script for applying a spring layout al�
gorithm to the graph in a Rigi window� The reg�
istered names of the new commands are layout
and spring�

� call a graph layout program on the subgraph

� in the current window and along the given

� arc type

proc layout � program �window �� �arctype any� � �

if ��window �� �� �

� no window given� get current window

set window �get	window	id


�

� compute names of temporary files

set graphin �format ��tmp�s�in� �window


set graphout �format ��tmp�s�out� �window


� write subgraph� call layout program�

� read result

writeGEF �graphin �window �arctype

exec �program � �graphin�gef � �graphout�gef

readGEF �graphout �window

� delete temporary files

exec rm �graphin�gef

exec rm �graphout�gef

�

� run spring layout algorithm on the subgraph

� in the current window and along the given

� arc type

proc spring � �window �� �arctype any� � �

if ��window �� �� �

� no window given� get current window

set window �get	window	id


�

if ��is	connected �window �arctype
� �

� subgraph is connected�

� call spring layout

layout gel�spring �window �arctype

� else �

open	message	panel �Graph not connected�

�

�

The spring script uses the layout command�
The layout script uses the writeGEF script
command to convert the subgraph of the Rigi
graph model portrayed in the active window to
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a �le conforming to the GEF format expected
by a GraphEd tool called gel spring ���� The
layout script then executes gel spring and
reads the resulting new layout back into the edi�
tor using the readGEF command 	which also ad�
justs the positions of nodes in the graph model
�
The resulting layout from spring is based on
physical properties of attraction and repulsion�
and may help ease the identi�cation of candi�
date subsystems�
The addition of a scripting language migrates

the Rigi editor closer to a highly �exible visu�
alization engine� The editor is a reusable com�
ponent that can be adapted to new application
domains 	and� hence� is domain retargetable
�
This adaptability is important for presenting
the varied program understanding analyses ex�
pected in the RevEngE project� such as clone
detection� data bindings� defect detection� and
subsystem structure identi�cation in a visually
integrated way� Moreover� to be better acces�
sible to other tools� the format for the tuple
streams through which the current Rigi compo�
nents communicate was standardized and bet�
ter de�ned� The editor was also decoupled from
the existing workspace to support the input of
these tuple streams as �at �les� This capabil�
ity provides another avenue of data interchange
with other tools�
Presently� the Rigi parser supports C� C���

COBOL� LaTEX� and� to a certain extent�
PL�AS� One goal was to extend the PL�AS
part by analyzing data types� data dependen�
cies� structures� call dependencies� and pointers
	references
� Our original intent was to trans�
form PL�AS source code into something very
similar to the C language so that the Rigi C
parser would be able to analyse it� Instead�
we decided to take advantage of Rigi�s ability
to read a stream of tuples representing rela�
tions and objects� These tuple streams could
be generated from compiler listings produced
by PL�AS� where information about program
structure is presented in a more regular format
than the source code itself� AWK ��� a well�
known UNIX �le�processing tool� seemed suit�
able� and we wrote AWK scripts to generate the
required tuples from a compiler listing� For ex�
ample�

DATA file�name data�name

CALL file�name procedure�name

PROC file�name procedure�name

STRUCT file�name struct�name

MEMBER struct�name member�name

DATA This tuple represents the declaration of a
named data item in a �le�

CALL This tuple is created for each call in a
module to a procedure that is not de�ned
in the same module�

PROC This tuple is created for each call in a
module to an externally visible procedure
that is de�ned in the same module� No tu�
ples were created for calls to PL�AS built�
in functions� which are usually speci�c se�
quences of ��� assembler instructions�

STRUCT This tuple is created for each com�
pound data type 	array� record� etc�
 found
in a source �le�

MEMBER This tuple is created for each member
of a structure� The naming conventions
used in SQL�DS allow the assumption that
di�erent instances of a structure name ac�
tually represent the same structure� These
occurrences are rare�

These tuples were loaded into Rigi�s reposi�
tory to produce a visual representation of the
SQL�DS system� Figure � depicts a spring lay�
out of a 	logical
 SQL�DS subsystem 	the rou�
tines associated with adding a foreign key to
the database� within the physical component
ARIXI
� In this logical subsystem� three mod�
ules 	ARIXIGK� ARIXIAP� ARIXIUK
 are shown as
well as some of the structures and data variables
they access� A fourth module 	ARIXIAF
 is �l�
tered from the view for clarity� A spring layout
easily shows the data being shared by the mod�
ules� Nevertheless� deducing such a logical sub�
system in SQL�DS at this level of abstraction
	neither too high nor too low
 is very di�cult
because of the structural complexity of the soft�
ware� Thus� there is a need to integrate with
and access alternative clustering methods�
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Figure �� Spring layout of an SQL�DS subsystem

� Pattern Matching in

REFINE

Pattern matching is involved in every major as�
pect of program understanding� McGill�s con�
tribution to the project has focused on integrat�
ing novel pattern�matching algorithms for pro�
gram analysis and design discovery into the en�
vironment� Adopted is a �exible� generalized�
pattern�matching paradigm that does not limit
maintainers to a �xed plan library ���� Of in�
terest are algorithms to identify useful patterns
e�ciently and visualize pattern matches e�ec�
tively�

As software is maintained� patches of code
tend to be introduced that form hidden rela�
tionships in the program� Subsystem cluster�
ing attempts to group non�contiguous program
fragments that should be considered together�
Two fragments should be clustered together if
and only if one fragment has� or is likely to
have� a signi�cant e�ect on the behaviour of the
other� To date� we have considered structural
elements that indicate the exchange of program
resources� such as data bindings and common

references ���� A data binding is a triplet con�
sisting of two program fragments and a variable
where the variable is set in one fragment and
used in the other� A common reference is where
two or more fragments use or update a partic�
ular variable�

We used REFINE to implement a prototype
clustering algorithm that considers the num�
ber of common references among arbitrary sets
of fragments and a clustering algorithm based
on data bindings on the set of variables in the
software� The program representation scheme
is an object�oriented annotated abstract syn�
tax tree� a grammar is used for parsing and
a domain model is de�ned to specify the ob�
ject hierarchies� During analysis� the tree is an�
notated with information on system structure�
data �ow� and links to informal information 	for
example� local variables� global variables� func�
tions call� and aliasing
�

The results of the analysis can be displayed in
tabular form within REFINE or passed to the
repository for display by Rigi� Figure � presents
the tables of clusters based on data bindings and
common references that REFINE generated for
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Figure �� REFINE data bindings and common references tables

a game program written in C�

The availability of the clustering algorithms
assist the task of subsystem composition in Rigi�
Figure � depicts the original resource �ow graph
that Rigi�s parsing subsystem extracted from
the same source code� There are icons for the
functions and a data type called player� the
arcs represent function calls or data accesses�
REFINE can augment this information by ex�
tracting the variables as well� computing clus�
ters� and loading this analysis into the reposi�
tory� The process of subsystem composition in
Rigi can subsequently be guided by these clus�
ters� A view of clustering based on data bind�
ings is shown in Figure �� The middle column
are variables extracted by REFINE and the left
and right columns represent clusters of func�
tions that set or use� respectively� those vari�
ables�

The static analysis is non�trivial because of

the aliasing problem in languages such as C and
PL�AS� The current implementation of the clus�
tering algorithms cannot detect relationships
due to aliasing� Instead� it examines global vari�
ables and parameters of functions� This work is
being extended to integrate aliasing information
from McGill�s Compiler Architecture Testbed
	McCAT
 ���� McCAT is a research compiler
for C� designed to test techniques for generating
optimized code on modern RISC and parallel
architectures� One key element of the compiler
is its approach for interprocedural analysis us�
ing �points�to� information ����

� Related Work

SoftBench from Hewlett Packard is a platform
that integrates tools via a mechanism intro�
duced in the Field programming environment

�



Figure �� Rigi resource �ow graph

���� This mechanism allows tools to interact
by sending messages to a message server that
selectively broadcasts them to those tools that
have previously registered a need to be noti�ed�
For close integration with other tools� a new tool
must provide a programmatic message�based in�
terface in addition to its user interface� it must
support request messages for services it provides
and send noti�cation messages announcing the
actions it has performed�
PCTE Workbench from VISTA Technologies

�� is a toolkit for constructing hypermedia�
based environments and applications� It is
based on the Portable Common Tool Environ�
ment 	PCTE
� which provides an extensible
structure for tool integration and the construc�
tion of software development environments ���
Data integration is based on the PCTE Ob�
ject Management System ���� which supports a
hypertext�like data model� Control integration
is provided by broadcast messaging built around
an interpreter for an object�oriented� Lisp�based
scripting language�
Software through Pictures 	StP
� ��� from

Interactive Development Environments is an in�
tegrated software�engineering environment that
provides an open architecture� data sharing
through a central repository� a common graph�
ical editor� and customization through a script�

�Software through Pictures is a registered trademark
of Interactive Development Environments

Figure �� Clustering based on data bindings

ing language� The editor is tailorable to
a particular software engineering methodology
through rule �les� and provides presentation in�
tegration by showing a similar and consistent
user interface for all methodologies structured
or object�oriented�
Work on software repositories includes ��� ���

which discusses a knowledge representation sys�
tem based on the language CLASSIC� which is
used to describe software objects� CLASSIC
is also used by ��� as the representation lan�
guage for a communications software repository�
This repository includes information about the
software code� its intended function� and dis�
covered relationships between them� Finally�
�� presents a similar system based on Telos�
which stores requirements� design� and imple�
mentation information about information sys�
tems� and is intended for reuse�oriented appli�
cation development�

� Summary

This paper described an implementation for in�
tegrating tools developed to support program
understanding activities� The strategy is based
on a software repository using a rich and ex�
tensible global schema to integrate the types of
information handled by a given toolset� The ar�
chitecture supports a software bus intended to
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accommodate communication among tools and
the repository� In addition� the paper reports
on work with two existing tools� Rigi and RE�
FINE� so that they can be interfaced with the
architecture� Finally� it reports on recent work
within the project on tools for program analysis
and design recovery�
We are only beginning to discover the bene�

�ts of integration� For example� Rigi has a much
more �exible and robust user interface for visu�
alization than REFINE� but it lacks REFINE�s
strengths for detailed syntactic analysis on the
syntax tree of a program� Trying to implement
these capabilities for detailed analysis in the
scripting language of Rigi would be redundant
and perhaps even inadequate� Cloning analy�
sis is another good example where REFINE can
perform the analysis and Rigi can visually high�
light the clones using customizable icons� color
schemes� and placement� An integration archi�
tecture with a global schema is needed to bring
tools with such varied strengths and capabilities
together to form a uni�ed program understand�
ing toolset�uni�ed in terms of data and control
integration�
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