FILENAME.APP = 6911MS00.tex

Computer Aided Software Engineering

Ladan Tahvildari, Kostas Kontogiannis
Dept. of Elect. and Comp. Eng.
University of Waterloo
Waterloo, Ontario
Canada, N2L 3G1
{Itahvild kostas} @swen.uwaterloo.ca

Tel: (519)-888-4567-x3819
Fax: (519)-746-3077

Introduction

It is more and more recognized by researchers and software practitioners alike that the process
of developing large software applications is so complex that it requires tight process control.
The process of establishing requirements and translating them into designs, computer code,
and operational procedures is in many respects error prone, slow and laborious. Incomplete,
ambiguous, and conflicting requirements are some of the reasons why software development is
such a difficult task. These problems can be traced to many factors. First, clients may not
understand fully the functional and non-functional requirements for the system they would like
to develop until they actually see a prototype. Second, business executives and management are
not familiar with the technical issues related to software development, and how they can best
apply technology to address specific business needs. On the antipode, computer professionals
are not likely to fully understand all aspects of business needs. Under these conditions, there
is a high likelihood that system requirements and designs will have to be changed several times
during the life cycle of the project in order to accommodate end-users, business needs, and at

the same time to be technically feasible.

The end result is that these laborious and error-prone aspects of software development make
software brittle and difficult to maintain. It is of no surprise that more and more time and
money are spent on maintaining previously developed software. This is referred to as the
“software maintenance crisis”. A possible solution to this problem is to utilize highly flexible
computer-assisted development environments that allow software engineers and managers to
better perform specific design, test, and maintenance tasks. Such environments are referred to

as Computer Aided Software Engineering (CASE) environments.

CASE by definition is a technology by itself and aims on providing automated support to
software specifications, design, development, testing, maintenance, and project management
for the information technology sectors [9]. The ability to even partially automate the en-

gineering of large software systems allows for greater flexibility for the software development

process in a way that may better accommodate business requirements. It has been argued that
CASE technology can substantially reduce the design and development complexity inherent in
medium and large software projects. This can be achieved by automating creation of many
software artifacts (i.e., designs, specifications, test cases) specified by the software architects

and software engineers.

This article 1s intended to provide an overview of the Computer Aided Software Engineering
technology and discusses the basic requirements for CASE environments and the fundamental
issues these environments attempt to address. Several illustrations and examples are included
in order to explain the related issues and concepts. Readers interested in pursuing topics in

more depth are invited to review the bibliography at the end of this article.
The Software Development Process

There are many steps and activities involved in specifying, designing, building, deploying, and
maintaining a software product. These steps are referred to as the “software life cycle” as
illustrated in Figure 1. The order in which these steps and activities are performed defines a
specific process model or software production process [1,12,22]. In the relevant software engi-
neering literature, several such process models have been proposed. These include the Rapid

Prototyping Model, the Waterfall Model, and the Spiral Model [1,12,22].

Production and manufacturing processes models have been investigated in any discipline whose
goal is to produce high quality products. The goal of a process model is to make production re-
liable, predictable, repeatable, and efficient. A well-defined production process model, as used,
for example, in automobile production, has many benefits including support for automation
and standardization. By defining a model for the software production process, we can achieve
simpler benefits. However, one must also keep in mind the distinguishing characteristics per-
taining specifically to software, that is, software is characterized by complex behavior, and

lacks any measurable physical characteristics to determine its quality. Moreover, requirements

change constantly and as a consequence, the end-products themselves are often become an

amalgamation of conflicting requirements.

Overall, we can identify three major phases for software development. The three phases, illus-
trated in Figure 1, definition, development, and maintenance, are encountered in all software
development, regardless of application area, project size, or complexity. The sections below
discuss these phases in the light of CASE technology and further elaborate on the issues in-

volved.

The Definition Phase

The definition phase focuses on what the software system is supposed to do, and not on how
its functionality can be achieved. That is, during the definition phase, the software architect
identifies what information needs to be processed, what functions and performance enhance-
ments are required, what interfaces must be established, what design constraints exist, and
what validation criteria are needed to measure whether the delivered system would meet its
requirements and design objectives. In this phase, the key requirements of the system and the
software must be clearly identified. Although the specific techniques applied during the defini-
tion phase will vary depending upon the software engineering paradigm (or the combination of

paradigms) applied, two specific activities will most probably occur in this phase. These are:

o Feasibility Study : The purpose of this activity is to produce a feastbility study document
that evaluates the costs and benefits of the proposed application. To do so, it is first
necessary to analyze the problem, at least at a global level. Obviously, the more the prob-
lem is understood, the better one can identify alternative solutions, their costs, and their
potential benefits to the user. Therefore, software engineers must perform a thorough
analysis of the problem domain and a well-founded feasibility study. Unfortunately, this
is often too ideal in industrial settings because of time, budget, and personnel constraints.

In a nutshell, the feasibility study aims on presenting definitions as well as, time and cost

4

ground rules and assumptions for the development of the specific application. The result
of this study is a document that should contain at least: (1) the definition of the problem,
(2) alternative solutions and their expected benefits, (3) ground rules, assumptions, and
rough estimates of required resources for each proposed alternative solution (i.e. develop

from scratch, out-source, by off-the-shelves, maintain existing status).

o Requirements Analysis and Specification : The purpose of a requirements analysis is to
identify the functional and non-functional characteristics of the application, in terms of
functionality, performance, ease of use, portability, and so on. In this step, the focus
is on what qualities the application must exhibit, and not how such qualities can be
achieved by design and implementation. The reason is that requirements should not
unduly constrain the software engineer in the consequent design and implementation
activities. The first deliverable of this phase is a requirement specification document, that
presents the functional and non-functional characteristics of the system to be developed.
The purpose of this document is twofold. First, it provides means for the customer to
verify whether the intended system conforms with all of the customer’s expectations. On
the other hand, it is used by the software engineers to develop a design and a consequent
implementation of the system in a way that it meets the agreed requirements. Second, the
requirements analysis phase is intended to produce a definition of the system test plan. In
fact, during system testing the system is expected to be tested against its requirements.
The way testing will eventually be done may be agreed upon with the customer at this

stage, and documented along with the requirements specification document.

The Development Phase

The development phase focuses on how the software system delivers its functionality and how
it can conform with its functional and non-functional requirements. That is, during devel-

opment the software engineers architect the system, design the data structures to be used,

specify procedural details to be implemented into source code, and define how testing will be
performed. The methods applied during the development phase may vary depending upon the
software engineering paradigm (or combination of paradigms) that are deemed appropriate to

apply for each specific project. However, three specific steps will always occur as follows :

o Design and Specification : Design involves decomposing the system into modules that
each one is intended to deliver specific functionality. The result is a design specifica-
tion document, which contains a description of the software architecture that is, what
each module is intended to do and what are the data and control dependencies among
modules. The specification process may proceed iteratively in a bottom-up or top-down
way and can be described through different levels of abstraction or different architectural
views. Each module identified at some step may be decomposed into submodules. Some
models place a limit into the number of levels of design that can be specified. However,
it is customary to distinguish between preliminary (or high-level) design and detailed de-
stgn, but the meaning of these terms varies considerably from case to case. Preliminary
design is intended to describe the modular structure in terms of relations (such as USES,
IS_.COMPOSED_OF, and INHERITS_FROM), whereas detailed design deals with speci-
fying module interfaces (both syntactically and semantically) [12]. Others use the terms
to imply a distinction between a logical decomposition (high-level design) and a physical
decomposition of the program into programming language units [22]. Still, others refer
to module decomposition as preliminary design, and refer to detailed design as defining
the main data structures and algorithms for each module [1]. The exact format of the
design specification document is usually defined by company-wide, or process specific
standards [20]. These standards may also propose specific design methods and practices,
along with notations that should be used to document the design of the system being

built.

o Coding and Module Testing : Coding and module testing is the activity in which software

engineers actually implement and test their designs using a programming language. Until

recently, it was the only recognized step in the development phase. However, it is merely
just one out of several steps as these are specified in various process models such as the
Waterfall Process [22] illustrated in Figure 2. The output of this phase is a collection of
source files and compilation units. In addition to the guidelines provided by the selected
process model for this phase, coding can be also subject to company-wide standards,
which may define the suggested layout of programs, such as the headers for comments
in every unit, naming conventions for variables and subprograms, the maximum number
of lines of executable source code in each unit, and other aspects that the company
deems worthy of standardization. Module testing is also a task that encompasses precise
definitions of a test plan, the definition of testing criteria to be followed (e.g., black-box
versus white-box, or a mixture of the two), the definition of completion criteria (when
to stop testing), and the evaluation of test results. Module testing is the main quality
control activity that is carried out in this phase. Other related activities may include
code inspection to check adherence to coding standards, and software qualities other than

functional correctness (e.g., performance, maintainability).

Integration and System Testing : Integration amounts to assembling the application from
the set of its components that were developed and tested separately. This step is not
always recognized as being separate from coding. In fact, incremental developments
may progressively integrate and test components as they are developed. Although the
two stages may be integrated, they differ conceptually in the scale of problems that
they try to address. The former deals with programming-in-the-small, while the latter
with programming-in-the-large. The integration testing occurs after unit testing has
commenced and aims on assuring that a group of modules when linked into forming a
coherent application will perform a computational task as designed. Often, this is done
not in a single step, but incrementally by including progressively new sets of modules,
until the entire system is built. At the final stage, the development organization performs

system testing on the running application. Once the application has undergone system

testing, it may be put through “actual” use within the development organization. Internal
standards may be adopted both on the way integration is to be performed, such as top
down or bottom up, and on how to design test data and document the testing activity.
The purpose of this step is to test the system under simple but realistic conditions. This
kind of testing is called alpha testing. The initial delivery of software system after alpha
testing is often done in two stages. In the first stage, the application is distributed among
a selected group of customers prior to its official release. The purpose of this procedure is
to perform a kind of controlled experiments to determine, on the basis of feedback from
users, whether any changes are necessary prior to the official release. This kind of system
testing done by selected customers is called beta testing. In the second stage, the system

is distributed to the customers and the product enters its official maintenance phase.

The Maintenance Phase

The maintenance phase focuses on all issues related to the evolution of the system, and is
associated with error correction, adaptation to new platforms, and modifications due to new
functionality that needs to be added. Overall, maintenance is defined as the set of activities
that are performed after the system is delivered to the customer. The maintenance encompasses
many steps taken on the development phase (e.g., design, testing), but does so in the context
of the constraints of an existing software system. In literature, three types of maintenance

activities have been identified [12]:

o Corrective. Even with the best quality assurance standards and tasks, it is likely that
the customer will discover defects in the software. Corrective maintenance attempts to

correct these defects.

e Adaptive. Over time the original environment (e.g. CPU, operating system, peripherals)
for which the software was developed is likely to change. Adaptive maintenance results

in modifications to the software to accommodate changes in its operating environment.

e Perfective. As software is used, the customer/user may define additional functionalities
that may be of future benefit. Perfective maintenance extends the software beyond its
original functional requirements, by adding new functionality or improving the existing

one.

In the recent studies, it has been found that the cost of maintenance requires more than
60% of the total cost of software development. Out of this cost, about 20% of maintenance
costs may be attributed to each of corrective and adaptive maintenance, while over 50% may
be attributed to perfective maintenance. Based on this breakdown, the software engineering
community has indicated that evolution is probably a better term than maintenance, although
the latter is used more widely. In this respect, CASE technology may play an important role

on minimizing software costs and yielding higher quality products.

CASE Technology

Since the early days of developing software, there has been an awareness of the need for au-
tomated tools to help the software developer. Initially, the focus was on tools interfacing the
programming language source code with the hardware platform that run the application. These
included translators, compilers, assemblers, macro processors, linkers, and loaders. However,
as computers became more powerful and the software that ran on them grew larger and more
complex, the range of support tools began to expand. In particular, the use of interactive
time-sharing systems for software development encouraged the development of syntax directed
program editors, debuggers, code analyzers, and program-pretty printers. As computers be-
came more reliable and of greater use, the need for a broader notion of software development

became apparent.

Software development came to be viewed as a large-scale engineering activity involving signifi-

cant effort to establish requirements, design an appropriate solution, implement that solution,

test the solution’s correctness against the specifications, and finally provide high quality doc-
umentation for the end system. This engineering activity is viewed as a long-term process
that aims on producing software that is subject to “continuous engineering” or evolution that
occurs throughout its operational lifetime. The implication is that the structure of a software
system must enable new functionality to be added easily, and detailed records of the require-
ments, designs, implementations, and testing results to be kept in a way that assists software
engineers to efficiently develop and maintain a system. In addition, multiple versions of all
artifacts produced during a project must be able to be shared among many software engineers
in order to facilitate collaborative software development. Finally, it is recognized that soft-
ware development is a group activity involving interaction among a number of different people.
Team members must be able to cooperate in a controlled manner, and have consistent views

on the state of the project.

This view of “programming-in-the-large” generated the need for the development and deploy-
ment of a wide range of support tools as illustrated in Figure 3. These tools can help to sub-
stantially reduce the complexity that is inherent in medium and large scale software projects
by automatically generating and maintaining important software artifacts for the project such
as specifications, designs, source code, testing results, source code revisions, and customer

reports.

Definition and Objective

Computer Aided Software Engineering (CASE) technology has only become recognizable to
system and data-processing professionals in the last ten years, although its beginnings can be
traced well back into the 1970s [21]. In the research literature, many definitions and descriptions
of CASE have been provided [7,9,14,28]. We choose to present a broad definition as this is

found in [19]:

10

A CASE tool is a computer-based product aimed at supporting one or more software

engineering activities within a software development process.

A common analogy is one that compares CASE for developing software systems to Computer-
Assisted Design(CAD) and Computer-Assisted Manufacturing(CAM). The introduction of
CAD and CAM revolutionized the manufacturing design process. These technologies have
helped accelerate the design process, improve design artifacts, and reduce errors and manu-
facturing expenses. CASE aims on addressing similar issues for the information technology
industry. The ultimate goal of CASE technology is to separate the application program’s de-
sign from program’s code implementation. Generally, the more detached the specification and
design process is from the actual code generation, the better the potential for a high quality

product is.

The objective of CASE is to maintain software requirements, designs, and implementation
artifacts in a consistent and usable state, and to support the transformation of system require-
ments to complete design and testable source code. CASE technology aims to provide project
management tools and a flexible environment that facilitates change and automates labour
intensive, repetitive and error prone tasks. CASE also aims on introducing automated design

verification prototyping, code generation, maintenance, and documentation.

Environment

A typical CASE environment consists of a number of CASE tools operating on a common
hardware and software platform. In addition, there are a number of different categories of
users of a CASE environment. Some users such as software developers and managers, wish to
make use of CASE tools to obtain support in developing application systems and monitoring
the progress of a project respectively. On the other hand, administrators are responsible

for ensuring that the tools operate on the software and hardware platform available. The

11

system administrator’s role is to maintain and update the hardware and software platform
itself. Therefore, we can define a CASE environment by emphasizing the importance of these

interactions.

A CASE environment is a collection of CASE tools and infrastructure that supports
most or all of the interaction that occurs among the environment components, and

between the users of the environment and the environment itself.

The different ways of providing the “glue” that links CASE tools together inevitably leads to
a spectrum of approaches for implementing a CASE environment. A complete CASE environ-

ment system includes the following:

e Support for the common specification, design, implementation, and testing practices with

built-in audit capabilities that ensure compliance to a selected process model [2].

e An information repository for storing the elements of software engineering process, in-

cluding specifications, design, graphics, and pseudo code [25].

o A graphical interface for drawing specification artifacts structure diagrams, flow dia-

grams, data structures, and project management support data.
o Automated code and dictionary generation from design specifications.

e Prototyping of new designs and reverse engineering (converting existing software back

into design specifications for modification and software regeneration).

o A highly integrated set of tools to manage every phase of the development life cycle and

provide vital statistics and metrics for the projects.

12

Benefits

This section presents some of the benefits of CASE technology. However, it should be realized
that much of the actual value received from Computer Aided Software Engineering largely
depends on how well it is integrated into the software development processes of an organization
as 1s discussed in “CASE Adoption” section later. Bellow, a more detailed look at the benefits

of applying CASE technology is presented.

In a nutshell, there are two areas of benefits CASE is recognized for. First, the qualitative
benefits that pertain to the improvement of specific measurable qualities of the system being
built, or the process model being followed. These qualities include time to completion, per-
formance, robustness, testing coverage, and maintainability characteristics of the system to be
delivered. Second, the qualitative benefits that pertain to the enhancements in the non mea-
surable qualities of the software life cycle. These include the creation of well documented steps
that can be followed for the completion of specific tasks, the ease of monitoring and controlling
the different phases of the project, and the ease of repeating the process for similar projects.
Other qualitative benefits include increased morale for software developers and management,
and better understanding of the process followed. Below, we list some of the qualitative and

quantitative benefits of CASE.

e Quality. CASE aims to improve end-product quality by automating the transformation
of the output from each life cycle phase into an input for the next phase. For example,

CASE tools can assist turning designs into source code, or source code into test cases.

e Flexibility. CASE aims to improve flexibility by simplifying software changes and test-
ing by automating “what-if’ scenaria. A central issue in CASE technology is the concept
of a repository that maintains specifications, designs, and source code artifacts. This
repository allows CASE practitioners to alter design specifications or source code arti-

facts and examine the impact these changes may have on specific product qualities.

13

e Productivity. CASE aims to accelerate the availability of software by automating
software development. Repositories of design can be used to generate skeleton source
code that is highly reusable. CASE aims to improve productivity by utilizing a reposi-
tory for reusable system design elements, by automating labour intensive aspects of the
development cycle (such as coding and documentation), and by automating software

maintenance [5].

e Practical Prototyping. CASE aims to make prototyping practical. Software devel-
opers have long been aware that it is difficult for end users to visualize the impact of
systems until they see the end result. The labor-intensive nature of software develop-
ment makes prototyping impractical. With the introduction of CASE technology, this

technique becomes more practical.

e Simplified Maintenance. CASE aims to simplify maintenance in two ways. Applica-
tions can be regenerated from a design repository as specification changes are identified.
CASE also provides an opportunity for reverse engineering. Reverse engineering takes
existing software and generate part or whole of the design specifications for this soft-
ware, and consequently store these specifications in a repository for future analysis and

modification [16].

e Project Management. CASE aims on providing the necessary tools and measure-
ments for the management to follow the progress of the project and identify areas of

improvement.

CASE Categories

During the software development cycle, any number of failures can occur. Most failures,
however, result from poor planning, insufficient requirements analysis, and ill-conceived design

specifications. A good indicator of improper requirements analysis and design specifications is

14

when the implementation phase exceeds the time duration for which it was originally planned.
The more effort invested in the requirements specification and software design, the lower the

risk of a failed and prolonged implementation phase is.

Table 1 lists common problems and their symptoms occurring at different points in the soft-
ware development cycle. This illustrates why and where the software development process
is likely to break down. As Table 1 illustrates, the cause of most implementation shortfalls
and reliability problems stem from improper or insufficient requirements analysis and design
specification. During the 1960s and 1970s, several structural methodologies were developed to
impose rigid structures on the requirements analysis and design specification phase of the soft-
ware development cycle. These formal, structured mythologies form the backbone of Computer
Aided Software Engineering. CASE tools provide automatic support to labor intensive manual
tasks. CASE tools also help enhance creativity by enabling software engineers to construct

more thoughtful designs in a shorter amount of time.

In this context, CASE tools are divided into two categories: toolkits or workbenches [7]. The
differentiation is based on whether the tool supports a phase of the development life cycle

(toolkit) or provides automated support for the full development life cycle (workbench).

Toolkits

A toolkit is a set of tools that support one or more of the software development functions:
planning, analysis, programming, maintenance, and project management. Toolkits may be
generic or they may support one or more design methods. The functions and the interfaces
within one toolkit are tightly integrated. As a result, toolkits can be used alone or in con-
junction with other toolkits. Toolkits provide the option of mixing and matching the best
products from different vendors and thereby the ability to implement CASE technology in a
piecemeal manner [18]. The disadvantages of this fragmented approach are that there is no

single repository for the automated design and that the toolkits do not offer a view of the

15

global state of the system being built. Moreover, manual interfaces between toolkits tend to

decrease the quality of the process and affect productivity in a negative way.

Planning Toolkit

Information technology planning toolkits automate the process of identifying, categorizing,
and prioritizing the areas in which information technology can contribute to the objectives of
an organization. Such toolkits provide facilities for documenting and analyzing organizational
information requirements. They also provide facilities for decomposing these requirements
into data elements and then for structuring the data elements into databases and system

requirements.

Analysis Toolkit

Analysis toolkits automate the process of defining system requirements and converting them
into corresponding conceptual and functional system designs. Such toolkits typically include
facilities such as diagrammatic tools, prototyping facilities, an audit or checking facility to
guarantee completeness, a repository to store data flow diagrams, data entity relations, screens,
and reports, and a link to a data dictionary or other repositories. The outputs from an analysis
toolkit are functional requirements, data structures, database or dataset designs, and screen

and report definitions.

Programming Toolkit

Programming tools automate the process of converting a system design into a fully tested and
executable program code. Such toolkits include Integrated Development Environments (IDEs)

and facilities for generating, maintaining, and checking pseudo code against specifications.

16

Because automatically generated code is difficult to understand in some cases, such tools have

limited appeal to developers.

Maintenance Toolkit

Maintenance toolkits aim to provide support for the software evolution activities. Both types
of activities are concerned with the analysis and re-engineering of existing software systems to
meet new specifications [17]. A maintenance toolkit includes facilities such as: (1) a mainte-
nance facility to manage and document all changes, (2) an effort, time, risk analysis, and cost
estimation facility, (3) a testing facility for generating test data and analyzing output and a
code analyzer for analyzing program logic. A maintenance toolkit may also include tools to

ensure a smooth transition from test to operational status of the new enhanced system.

Project Management Toolkit

A project management toolkit provides automated software development project management
tools. It provide facilities such as: (1) project definition forms, (2) time, cost, and and
action plans, (3) task assignment system estimating tools, (4) change and version control
mechanisms, (5) project status reporting facilities. It also can include stand-alone tools such

a word processing, spreadsheets, and interface into electronic mail.

General Characteristics of a Toolkit

Fundamentally, CASE tools must meet several criteria in order to be successfully adopted and
be used in the software development process. Meeting these criteria is essential for the tools
to be integrated into the organization’s standard practices. It is therefore important for CASE

tools to address the following issues [7]:

17

e Task complexity reduction. A major goal of CASE technology is to decompose
requirements and designs into manageable components. Their functions is to simplify,

explain, and reduce.

e Presentation flexibility. CASE tools must provide artifacts that can be easily un-
derstood by all parties involved that is by software engineers, managers, and end-users.
CASE tools should be to software engineering what CAD (Computer Aided Design) pro-
grams are to mechanical and electrical engineering. For end-users and developers alike,
it 1s much easier to comprehend a graphical illustration than to read several pages of

textual descriptions.

e Cost reduction. Using a CASE tool should be cheaper and more efficient in the long
run than building the software system using traditional methods. CASE tools should
substantially reduce implementation and maintenance efforts by yielding higher-quality

specifications and design.

e Quantitative and verifiable specifications. The specifications and designs gener-
ated by CASE tools must accurately and concisely articulate the software features and
components to be built. Each requirement in the software implementation must be verifi-
able and traceable back to the requirements document. Performance criteria, boundaries,
and error conditions must be established as part of the design. Specifications and designs
built or produced by a CASE tool must be adaptable as the requirements and design
goals of the project change. A design document that falls out of synchronization with
the underlying code becomes useless and may actually cause developers to waste time

while maintaining the software.

e Ease of adoption. The development of relevant skills and sufficient knowledge to as-
similate a technological innovation such as CASE is an iterative process that evolves over
time. The longer an organization adopts a technology, the greater will be its accumulated

experience and learning. Training and ease of adoption for CASE technology is a corner-

18

stone issue for the successful application of CASE in an organization. Moreover, training
into new technology is a very expensive task, and there are many different groups that
each may have its unique training needs [13]. CASE tools to be successful must be well
supported and easy to use. Furthermore, they must adhere to the basic principles of one

of the widely adopted and of successful software process model.

Workbenches

A workbench is an integrated software development environment that supports either the full
range of software development life cycle or a large portion of the front-end or back-end of the
software development life cycle. Like a toolkit, a workbench can be used in direct support of
one or more structured design methods, or it can be generic. The more important advantage
of a workbench is the automated output of deliverables from one system development phase

into the next phase.

Front-End Workbench

A front-end workbench supports the system specification portion of the software development
life cycle from requirements to detailed design. A front-end workbench includes tools to au-
tomate the requirement specification, conceptual design, and system design. In some cases, a
front-end workbench may include the generation of pseudo code as input to a code generator.
The results of this automated process are stored in an automated repository, which is a system
specification database available to all system development staff. The system specifications can

be used as raw input for generating new systems or for regenerating an existing system.

A front-end workbench includes facilities such as: (1) data, system flow, and logic diagram-

ming tools to facilitate the development of logical system and data flow structures, (2) an

19

automated repository to store and manage system and program specifications that makes the
specifications maintainable and reusable, (3) the ability to create or use external databases
and dictionaries, (4) interfaces for visual representation of output data, and (5) automatic

source code generation utilities.

Back-End Workbench

A back-end workbench supports the code generation portion of the software development life
cycle from system design to code generation and testing. A back-end workbench includes
tools to automate the generation of the pseudo and actual source code, test cases, and doc-
umentation. The output from a back-end workbench is thoroughly tested, documented, and
executable programming code. The code is available for the development staff to maintain by
using artifacts related to the system that are stored in a repository. In a nutshell, a back-end

workbench supports program code generation and testing.

A back-end workbench includes facilities such as: (1) a facility for the input, change, stor-
age, and control of program specifications, (2) prototyping data modeling and data dictionary
facilities, (3) screen and report tools for visual representation and code generation of out-
put medium, (4) the ability to create or use external databases and dictionaries, (5) a code

generation and documentation facility, and finally (6) testing and debugging tools.

Integrated Workbench

An integrated workbench supports the complete system generation process from requirement
specification to program code generation and testing. The workbench combines the tools
included in both front-end and back-end workbenches. No single vendor provides an integrated

workbench that adequately encompasses all the features of the development process. However,

20

some vendors have developed open interfaces that may result in reasonably complete integrated

workbench.
Issues in CASE Adoption

The adoption of new technology into an organization is not a simple matter. This is especially
true when adopting a new CASE technology into a large organization. There are many factors
that have an impact on the ultimate success or failure of a new CASE tool. Potential users
should be aware of these factors, so they can consider what ramifications these may have in

their organization.

Any decision to bring a CASE tool into an organization should be made after analyzing both
short-term and long-term implications tool adoption may have on the existing process [8]. Over
the short-term, organizations adopting CASE tools should be willing to accept issues such as:
a potential decrease in productivity, dissatisfaction on the part of employees adopting the new
technology, changes to process and methods, potentially extensive training, and significant
expense. Over the longer term, CASE organizations must address issues such as: longterm
maintenance costs of CASE tools, frequent releases of new versions of the tool, and continuous
costs for training new staff and upgrading the skills of existing staff. The success or failure of a
CASE adoption effort depends largely on the ability of an organization to manage these short
and long term costs. Organizations which have addressed these problems in a well conceived
adoption process stand the best chance of success. This approach contrasts with others which

focus primarily on the mechanics of choosing a particular tool.
CASE Adoption Stages

Tornatzky in [27] outlines the stages of incorporating a new tool or practice as a variant of
a recurring pattern: awareness-problems, matching-selection, adoption commitment, imple-

mentation, and routinization. Moreover, the Software Engineering Institute (SEI) has built

21

on findings presented in [27], and has modified them specifically for CASE technology [19].
The resulting model postulates six stages for the CASE adoption process such as: awareness,
commitment, selection, trial implementation, and frequency of use. These stages illustrated in
Figure 4, represent a cycle where each stage provides the input for the next. Depending on the
maturity of an organization prior to the adoption effort, some of the preliminary stages may

be already achieved.

Awareness and Commitment

Most organizations perform a preliminary search for information about CASE tools before
they make any commitment to adopt CASE technology. The commitment stage consists of
the decision process to adopt CASE tools. Commitments from both management and those
who will be using, or otherwise being affected by the tool adoption decision, is essential. A
common pitfall in this phase is to diminish the importance of commitment from the managers,
engineers and support personnel whose daily activities will be affected by the incorporation of

this new technology.

Ironically, one of the greatest barriers to achieve increased productivity by utilizing CASE
tools is the slow transition to practices required to introduce the organizational changes needed
for the successful implementation of CASE [11]. The easiest way to proceed with CASE tool
adoption is to dedicate resources for the required changes and to prove that substantial gains in
productivity and quality can be achieved. Unfortunately, this evidence is not readily available
in most organizations. Other methods of increasing the commitment of tool adoption include
developing precise definitions about the changes required and the methods of measuring them,
providing education about the need for tool support, and establishing common goals and

objectives for the project.

22

Selection

While most CASE tools can be (and often have been) purchased in isolation, a more effective
approach is first the adoption of a standardized strategy, for CASE tool adoption and use,
throughout on corporate-wide organization. The strategy should aim to address both the short
and long term needs of the organization, based on overall process and technology improvement

models and directions.

Based on the needs identified in a corporate-wide CASE tool strategy, the choice of an individ-
ual tool can begin. An appropriate tool selection approach includes steps such as: narrowing
down the list of available tool options to a small number of tools, determining how the new
tool will interact with other tools in the environment, analyzing candidate tools according to

both technical and non-technical criteria, and testing the candidate tools.
Trial Implementation

Once a tool has been tentatively selected, it is important to try out the tool on a test project.
Many organizations skip this step, as it entails devoting significant resources, including per-
sonnel, time, and money [13]. However, only a test project carried out under actual conditions,
can help to determine what the tools offer, how they work, how effectively perform their tasks,
and what are their shortcomings. These issues are simply too complex to make an informed
decision without a trial evaluation. Vendor demonstrations can be helpful, but are not suffi-
cient for making informed decisions. Although most vendors will provide an evaluation copy
at little or no cost, organizations must ensure that the evaluation copy of the tool reveals all
aspects of the tool. Tools best demonstrate their true capabilities and shortcomings with real

data and not in the contrived environment of a vendor’s tutorial.

If management deems that the tool assists the development process during a test project, they

may support its adoption. However, management and users must be clearly informed about

23

CASE technology and hold realistic expectations for the potential of the new technology they

are about to adopt.

During the hands-on testing period, it is important to perform an objective analysis through
a full development cycle, with realistic simulations of database size and multiple users. This
type of hands-on testing can give a better idea of the specific functions provided by individual

tools and the way various tools can work together.

It has been argued that proper adoption of CASE tools can lead to better quality software [14].
However, finding the best way to use these tools is a difficult process. Small test projects can

facilitate training and step-wise tool adoption can allow for confidence building.
Frequency of Use

It has been argued by researchers and practitioners alike, that software maintenance is the
longest and most expensive phase of the software life cycle. For a successful and cost effective
maintenance process, an infrastructure should be built to facilitate the incorporation of periodic
upgrades, provide training, and support corporate decisions related to new process models.
Frequent use of a tool is important for its successful adoption. A number of efforts to adopt
tools have failed because of the inability to incorporate the tool into the day to day activities

and planning.

A major challenge of CASE adoption is the indoctrination of new employees into the system and
the continuous enhancement of skills of existing employees. A common pitfall in tool adoption
is to provide initial training for a group of early users, that is followed by only minimal ongoing
training. Unfortunately, it is the larger group of users who are not CASE tool “pioneers” and

potentially require more training.

Another common pitfall is to underestimate the resources necessary to support continual use

of complex CASE tools. Many CASE tools require experienced personnel capable of managing

24

the tool databases and responding to problems. A second factor involves possible frequent
releases of a CASE tool that are potentially non compatible with each other. While many
of the tools have matured to the point where incompatibility problems between versions are
minimized, there are still be problems related to configuration mismatches between the tool

and its operating environment (i.e., other tools, operation system dependencies, etc).
CASE Tools Integration

While this article is not intended as a tutorial on CASE tool integration, a background in
the types and techniques of tool integration may be insightful. A thorough analysis of the
issues pertaining to the CASE tool integration can be found in [4], while a more complete
explanation of the types of integration is available in [26]. The most widely known model
of integration is the five-dimensional one that distinguished five areas [30] namely : platform,
presentation, control, data, and process integration classification. However, analysis of CASE
tool integration is usually separated only into three functional areas of those five types, namely
data, control, and presentation integration [29]. The following subsections describe each of them

in detail.
Platform Integration

Platform integration refers to the incorporation of a tool with a common set of services provided
by the computing environment. In some respect, this is the least interesting form of integration

because it does not deal directly with tool-to-tool integration [23].
Presentation Integration

Presentation integration refers to the provision of a consistent user interface across various

tools. Such consistency can greatly simplify the use of a tool-set as illustrated in Figure 5.

25

In addition, the time and the cost of comprehensive training and support can be reduced.
Standardization of user interfaces can ultimately lead to greater frequency of use and better
adoption. Organizations have long tried to achieve a form of presentation integration by
developing user interface standards for internal tools and by providing graphical user interface

“wrappers” around (primarily command line based) external tools [3].
Control Integration

Control integration refers to the ability of tools to inform other tools of their actions and to
request actions by other tools through a trigger mechanism as shown in Figure 6. A very
rudimentary form of control integration is represented by command line invocation of one
tool by another. Unfortunately, command line invocation is inadequate to provide the level
of integration required by users. Users require that integration occurs at the programmatic
interface of each individual tool. Thus, at the moment of an action taken within a CASE tool,
notification to other tools and the maintenance of a global consistent state between tools would

ideally be immediate.

Organizations have long achieved a rudimentary form of control integration by using mech-
anisms such as UNIX shell scripts to invoke tools in order to achieve an ordering of tool
functioning. An increasing number of tools are incorporating more sophisticated mechanisms
such as programmatic interfaces (APIs) that provide access to the inner-working of each tool.
Unfortunately, the use of these interfaces often leads to point-to-point-integration of individual
tools. This is also amplified by the fact that there is no universal standard for the format and
functionality of programmatic interfaces of CASE tools. Such point-to-point integration is ex-
pensive both to create and maintain, and effectively limit the user’s flexibility when replacing

a tool.

A more complex but promising mechanism includes a monitor that receives event notifications

or requests and subsequently send appropriate notifications and requests to other tools in the

26

environment. The technique requires that the monitor maintain a global state of both the
tools in the environment and the actions that need to be triggered. This technique offers
the advantage of centralizing control integration processing. Unfortunately, tool vendors have
yet to agree on the events involved in the sending and receiving of a message, however there
is industry interest in generating such standards. Markup languages and XML (eXtensible
Markup Language) based protocols such as SOAP, WSDL, WSFL may play an important role

in the near future towards control integration [31].

Data Integration

Data integration refers to the transfer of data between tools, and the definition of relationship
mappings between data schemas utilized by different tools. One common method of data
integration requires that individual tools to agree on specific interchange formats or interfaces.
This approach is relatively simple to implement and widely applicable to many types of tools.
Perhaps the most common of such interchange formats is represented by ASCII files. More
elaborate interchange standards, such as CDIF (CASE Data Interchange Format) [6] are also
supported by a number of tool vendors. Such methods, however, provide only for the exchange
of data and are not effective at establishing links between data maintained by different tools

or at maintaining the semantic context of data.

The second approach to data integration has been the development of filters which extract
portions of data from individual tools and store this data into a secondary database for pro-
cessing by other tools. This approach has been commonly used to extract data from tools,
organize the data along some schema, store it in a central database, and then use the data to
generate reports and documents as shown in Figure 7. This approach allows for the generation
of arbitrary relationships between data but like the previous approach results in point-to-point
integration(between filters and tools), as well as duplication of data in the individual tools and

in central databases.

27

A third method for achieving data integration involves the development of a shared repository
in which a variety tools store information. A fully functioning repository would provide the ca-
pability of maintaining a core semantic content of objects together with tool-specific views, and
because of the common dictionary would permit several tools to work together [15]. Markup
languages and standards such as RDF and XML schema may play an important role in the

near future towards data integration [31].

Process Integration

Process integration refers to the automation of the sequence of activities to support the organi-
zation’s defined process for the software life cycle. To achieve a high level of process integration,
mechanisms for presentation, control, and data integration are used. While process integration
had been the overall goal of many integration attempts, little is known about the character-
istics and parameters to assess the quality of process integration. Ideally, a well integrated
process would support an organization’s activities without mandating a single process model.
A well integrated process would ensure that milestones and standards are met, and provide

flexibility to its users to alter specific task for meeting their objectives.

Corporations involved in the development of integrated environments must address the con-
flicting requirements for standardization and flexibility. In this sense, an environment which
provides an adequate degree of process integration, while at the same time allowing adequate

flexibility to support a wide customer base needs to be considered.

CASE Impact

The potential impact of a tool on an organization is difficult to predict because many factors
are involved. The impact of CASE technology depends on a collection of interrelated factors as

illustrated in Figure 8. Although much has been published about CASE, the early anecdotal

28

studies of the impact of CASE tools did not distinguish among the effects of tools, associated
changes to the organization’s process and methods, or the way in which tools were adopted.
Such factors can have major effects on productivity or quality. Additional research will be

needed to investigate these factors.

Figure 8 suggest that tool characteristics, while important, represent only one of the factors that
determine the effectiveness of tools. There is a need to carefully account for the organization
specific factors, such as size, resources, and culture [10]. The way in which tools are adopted

can also have an additional long term impact.
Technological Trends in CASE

In the past, CASE technology focused on general purpose requirements analysis and design
specification tools. Nowadays new developments in CASE technology are emphasizing on spe-
ctalty development tools [24]. As with all developing technologies, certain parts of Computer
Aided Software Engineering are more advanced than others. This makes it difficult to sum-
marize today’s state of the art. However, as Figure 9 illustrates, there is a general trend of
emerging tools being built to cover the entire software development cycle, including automatic

code generation.

Ideally, we would like to write as fewer code as possible. We may imagine a software develop-
ment environment so powerful and robust that we simply input the application’s requirements
specification, push a magic button, and out comes the implemented code, ready for release to
the end-user community. Testing would be unnecessary because this magic “application gen-
erator” produces perfectly correct software. If the application’s requirements changed at some
point, we would merely update the requirements specification, push the magic button again,
and out would come fresh code implementing the new requirements. It means that even the
beta testing phase can be bypassed because the generated code is “bug free”. The framework

for bridging the automatic code generation gap is already in place. The ability to facilitate the

29

generated software is the key to making the next generation CASE environment a successful
commercial reality. Unfortunately, we are still far from this ideal scenario. However, it is not
unlikely to see in the future tools in which specifications are converted to source code much

like nowadays source code is converted to machine code by using a compiler.

Conclusion

The term Computer Aided Software Engineering (CASE) was first applied to tools that pro-
vided support for the analysis and design phases of software development cycle. Many of the
early tools assisted software developers on fundamental tasks but were infrequently used due

in part of the lack of automated support.

Other categories of tools that have emerged the past decade provide support for every phase
of the software life cycle. Currently, the vision of CASE is that of an interrelated set of tools
which provide specialized support in different aspects and phases of the software development
process. These include tools which support analysis, design, project management, source code,

configuration management, documentation, and maintenance.

Finally, because of the nature of the software development problem, many organizations are
attempting to increase the productivity and quality of their software development efforts. Some
have turned their attention to CASE tools as an aid in developing better software. Initially,
CASE tools were hailed as a panacea for software development problems, with the assumption
that the use of tools would by themselves produce dramatic increase in productivity. Recently,
there has been a recognition that tools represent only one factor in the improvement of the
software development process. As an epilogue, CASE tool technology provides a promising
trend on standardizing and automating labour intensive and error-prone tasks in the software
development process and deserves with no doubt the continuous attention of the software

engineering community.

30

FILENAME.APP = 6911BI00.tex

Bibliography

1. E.J. Braude, Software Engineering : An Object-Oriented Perspective, John-Wiley & Sons,
2001.

2. AW. Brown, Why evaluating CASE environments is different from evaluating CASE
tools, In Proceedings of the IEEE Symposium of Quality Software Development Tools,
Los Alamitos, CA, USA, pp. 4-13, 1994.

3. AW. Brown, D.J. Carney, E.J. Morris, D.B. Smith, and P.F. Zarrella, Principles of
CASE Tool Integration, New York: Oxford University Press, 1994.

4. AW. Brown and J.A. McDermid, On integration and reuse in a software development
environment, Software Engineering Environments’91, F.Long and M. Tedd (Editors),
Ellis Horwood, March 1991.

5. T. Bruckhaus, N.H. Madhavji, I. Janssen, and J. Henshaw, The impact of tools on

software productivity, IEEE Software, pp. 29-38, September 1996.

6. C. Chappell, V. Downes, and T. Tully, CDIF - Integrated Meta-model, Common Subject

Area, Interim Standard, Electronic Industries Association (EIA), 1996.

7. E. Chikofsky, Computer Aided Software Engineering, Los Alamitos: IEEE Computer
Society Press, 1993.

8. A.M. Christie, Software Process Automation: The Technology and its Adoption, Berlin :

Springer-Verlag, 1995.

9. A.S. Fisher, CASE : Using Software Development Tools, New York: John Wiley & Sons,
1991.

31

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. T. Flecher, J. Hunt, Software Engineering and CASE : Bridging the Culture Gap, New
York : McGraw-Hill, 1993.

G. Forte, CASE: an industry in flux (Part 2), CASE Outlook, 2(4), pp. 1-17, 1988.

C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software Engineering, New
Jersey: Prentice-Hall, 1991.

C.F. Kemerer, How the learning curve affects CASE tool adoption, IEEE Software, pp.
23-28, May 1992.

T.G. Lewis, CASE: Computer Aided Software Engineering, New York: Van Nostrand
Reinhold, 1991.

P.K. Linos, ToolCASE: a repository of computer-aided software engineering tools, ACM
SIGSOFT Software Engineering Notes, pp. 74-78, April 1992.

J. Mayrand, C. Leblanc, E.M. Merlo, Experiment on the automatic detection of func-
tion clones in a software system using metrics, in Proceedings of IEEE International

Conference on Software Maintenance, pp. 224-253, 1996

E.M. Merlo, K. Kontogiannis, J.F. Girard, Structural and behavioral code representation

for program understanding, In Proceedings of 5" International Workshop on Computer-

Aided Software Engineering (CASE), pp. 106-108, 1992.

R. Mylls, Information Engineering : CASE, Practices and Techniques, New York: John
Wiley & Sons, 1994.

K.S. Oakes, D. Smith, and E. Morris, Guide to CASE adoption, Technical Report
CMU/SEI-92-TR-15, Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA, USA. November 1992.

R.W. Peach, The ISO 9000 Handbook, Chicago: Irwin Professional Publication, 1997.

32

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

S.L. Pfleeger and W. Menezes, Marketing technology to software practitioners, IEEE
Software, pp. 27-33, January/February 2000.

R.S. Pressman, Software Engineering: A Practitioner’s Approach, Boston: McGraw-
Hill, 2000.

D. Schefstrom and G. Van Den Broek, Tool Integration: Environments and Frameworks,

John Wiley & Sons, 1993.

K. Spurr and P. Layzell, CASE : Current Practice, Future Prospects, Chichester: John
Wiley & Sons, 1992.

A. Tannenbaum, Implementing a Corporate Repository: The Methods Meet Reality, New
York: John Wiley & Sons, 1994.

I. Thomas and B.A. Nejmeh, Definition of tool integration for environments, IEEE Soft-

ware, 9(2), pp. 15-23, 1992.

L. Tornatzky and M. Fleischer, The Process of Technological Innovation, Lexington
Books, 1990.

L.E. Towner and J. Ranade, CASE : Concepts and Implementation, New York : Intertext
Publications - IBM Series, 1989.

K.C. Wallnau, Issues and techniques of CASE integration with configuration manage-
ment, Technical Report CMU/SEI-92-TR-5, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, USA, March 1992.

A. Wasserman, Tool integration in software engineering environment, F.Long (Editor),

Lecture Notes in Computer Science, Vol. 467, Springer-Verlag, pp. 137-149, 1990.

World Wide Web Consortium (W3C): Leading the Web to its Full Potential, available

at: http://www.w3.org/.

33

FILENAME.APP = 6911FL00.tex

Figure 1. A Generic View of the Software Life Cycle.

Figure 2. Waterfall Model with Feedback.

Figure 3. Evolution of Software Tools.

Figure 4. CASE Adoption Stages.

Figure 5. Presentation Level of CASE Integration.

Figure 6. Control Level of CASE Integration.

Figure 7. Data Level of CASE Integration.

Figure 8. Factors that Influence CASE Impact.

Figure 9. The CASE Bottleneck.

34

FILENAME.APP = 6911TBO01.tex

Table 1: Failure Points in the Software Life Cycle.

Software Development Process Failure Symptom

Requirements Analysis No written requirements
Incompletely specified requirements
No user interface mock-up

No end-user involvement

Design Specification Lack of, or insufficient, design documents
Poorly specified data structures and file formats

Infrequent or no design reviews

Implementation Lack of, or insufficient, coding standards
Infrequent or no code reviews

Poor in-line code documentation

Unit Test & Integration Insufficient module testing
Lack of proper or complete test suites

Lack of an independent quality assurance group

Beta Test Release Complete lack of a beta test
Insufficient duration for beta test
Insufficient number of beta testers

Wrong beta testers selected

Maintenance Too many bug reports

Fixing one bug introduces new bugs

35

FILENAME.APP = 6911FGO01.eps

Definition

Development

Maintenance

36

Feasibility
study

\

FILENAME.APP = 6911FG02.eps

N

Requirements
analysis and
specification

\

N

Design and

specification

\

N

Coding and
module
testing

\

N

Integration &
system testing

37

\

N

Delivery &
maintenance

FILENAME.APP = 6911FG03.eps

Compilers,
Interpreters

Sophistication

Assmblers,

Code Dump
Analysers

DeSbuggers,

Source Code
Generators

Source Code Design Spec.

Y

38

Time

FILENAME.APP = 6911FG04.eps

Start

|

Awareness

Frequency .
of Use Commitment

A

Y

Trial |
[ImplementationJ‘ L Selection J

39

FILENAME.APP = 6911FG05.eps

Based on Common Tool Access Mechanism

Common User Interface

Tool Tool

Translator

40

FILENAME.APP = 6911FG06.eps

Based on Trigger Mechanism

Common User Interface

Tool ‘ Tool ‘ Tool ‘
A B C
| | |
L — — — — — — — — I - — — — |
Triggers

41

FILENAME.APP = 6911FG07.eps

Based on Data Sharing Mechanism

Common User Interface

Shared Data
(Repository)

42

FILENAME.APP = 6911FG08.eps

Impact
A
Perceived Adoption Life Tool &
Needs Cycle Vendor
| /
Technical
Characteristics
A
[Culture J<—>[Organization Project J

43

FILENAME.APP = 6911FG09.eps

Requirement
Analysis
Design
Spec.
Autonatic
Code
Generation
Error-Free
Software

44

