
Notes in Software Architecture

ECE 756-3

♦ Sources used in preparing these slides:
Lecture slides on Architecture by David Garlan, see
http://www-2.cs.cmu.edu/afs/cs/academic/class/17655-s02/www/

Lecture slides on Architecture by Marc Roper and Murray Wood, see
https://www.cis.strath.ac.uk/teaching/ug/classes/52.440/

M. Shaw and D. Garlan. Software Architecture: Perspectives on a Emerging
Discipline. Prentice Hall, Englewood Cliffs, NJ, 1996
F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
Pattern-Oriented Software Architecture. A System of Patterns. John Wiley &
Sons Ltd., Chichester, UK, 1996
B. Bruege, A. Duboit, Object Oriented Software Engineering Using UML,
Patterns, and Java, Prentice Hall, 2004
K. Czarneski, Lecture Notes, Software Engineering, ECE 355, U. Waterloo

Design
“There are two ways of constructing a software
design: One way is to make it so simple that there are
obviously no deficiencies, and the other way is to
make it so complicated that there are no obvious
deficiencies.”

- C.A.R. Hoare

What Is Design?
♦ Requirements specification was about the WHAT the system will do

♦ Design is about the HOW the system will perform its functions
provides the overall decomposition of the system
allows to split the work among a team of developers
also lays down the groundwork for achieving non-functional requirements
(performance, maintainability, reusability, etc.)
takes target technology into account (e.g., kind of middleware, database
design, etc.)

Software Development Activities
• Requirements Elicitation

• Requirements Analysis (e.g., Structured Analysis, OO Analysis)
• analyzing requirements and working towards a conceptual model without taking the target

implementation technology into account
• useful if the conceptual gap between requirements and implementation is large
• part of requirements engineering (but may produce more than what is going to be part of the

requirement spec)

• Design
• coming up with solution models taking the target implementation technology into account

• Implementation
• Test
• ...

Levels of Design

• Architectural design (also: high-level design)
• architecture - the overall structure: main modules and their connections
• design that covers the main use-cases of the system
• addresses the main non-functional requirements (e.g., throughput, reliability)
• hard to change

• Detailed design (also: low-level design)
• the inner structure of the main modules
• may take the target programming language into account
• detailed enough to be implemented in the programming language

Why is Design so Difficult?
• Analysis: Focuses on the application domain

• Design: Focuses on the solution domain
• Design knowledge is a moving target
• The reasons for design decisions are changing very rapidly

• Halftime knowledge in software engineering: About 3-5 years
• What I teach today will be out of date in 3 years
• Cost of hardware rapidly sinking

• “Design window”:
• Time in which design decisions have to be made

• Technique
• Time-boxed prototyping

The Purpose of System Design

♦ Bridging the gap between desired
and existing system in a
manageable way

♦ Use Divide and Conquer
We model the new system to be
developed as a set of subsystems

Problem

Existing System

New
System

System Design
System Design

2. System

Layers/Partitions
Cohesion/Coupling

5. Data

1. Design Goals
Definition
Trade-offs

4. Hardware/

Special purpose

Software

Buy or Build Trade-off
Allocation
Connectivity

3. Concurrency

Data structure

Persistent Objects
Files
Databases

Management
Access control
Security

6. Global
Resource Handling

8. Boundary
Conditions

Initialization
Termination
Failure

Decomposition

Mapping

7. Software
Control

Identification of
Threads

Monolithic
Event-Driven
Threads
Conc. Processes

Overview
System Design I (Today)

0. Overview of System Design
1. Design Goals
2. Subsystem Decomposition

System Design II: Addressing Design Goals (next lecture)
3. Concurrency
4. Hardware/Software Mapping
5. Persistent Data Management
6. Global Resource Handling and Access Control
7. Software Control
8. Boundary Conditions

List of Design Goals
♦ Reliability
♦ Modifiability
♦ Maintainability
♦ Understandability
♦ Adaptability
♦ Reusability
♦ Efficiency
♦ Portability
♦ Traceability of requirements
♦ Fault tolerance
♦ Backward-compatibility
♦ Cost-effectiveness
♦ Robustness
♦ High-performance

Good documentation
Well-defined interfaces
User-friendliness
Reuse of components
Rapid development
Minimum # of errors
Readability
Ease of learning
Ease of remembering
Ease of use
Increased productivity
Low-cost
Flexibility

Relationship Between Design Goals

Reliability

Low cost
Increased Productivity
Backward-Compatibility
Traceability of requirements
Rapid development
Flexibility

Client

End User

(Customer,

Portability
Good Documentation

Runtime
Efficiency

Sponsor)

Developer/
Maintainer

Minimum # of errors
Modifiability, Readability
Reusability, Adaptability
Well-defined interfaces

Functionality
User-friendliness
Ease of Use
Ease of learning
Fault tolerant
Robustness

Nielson
Usability Engineering

MMK, HCI
Rubin

Task Analysis

Typical Design Trade-offs
♦ Functionality vs. Usability

♦ Cost vs. Robustness

♦ Efficiency vs. Portability

♦ Rapid development vs. Functionality

♦ Cost vs. Reusability

♦ Backward Compatibility vs. Readability

NFRs and the use of Design Patterns

♦ Read the problem statement again
♦ Use textual clues (similar to Abbot’s technique in Analysis) to

identify design patterns

♦ Text: “manufacturer independent”, “device independent”,
“must support a family of products”

Abstract Factory Pattern
♦ Text: “must interface with an existing object”

Adapter Pattern
♦ Text: “must deal with the interface to several systems, some of

them to be developed in the future”, “ an early prototype must
be demonstrated”

Bridge Pattern

Textual Clues in NFRs
♦ Text: “complex structure”, “must have variable depth and

width”
Composite Pattern

♦ Text: “must interface to an set of existing objects”
Façade Pattern

♦ Text: “must be location transparent”
Proxy Pattern

♦ Text: “must be extensible”, “must be scalable”
Observer Pattern

♦ Text: “must provide a policy independent from the mechanism”
Strategy Pattern

Section 2. System Decomposition
♦ Subsystem (UML: Package)

Collection of classes, associations, operations, events and constraints
that are interrelated
Seed for subsystems: UML Objects and Classes.

♦ (Subsystem) Service:
Group of operations provided by the subsystem
Seed for services: Subsystem use cases

♦ Service is specified by Subsystem interface:
Specifies interaction and information flow from/to subsystem
boundaries, but not inside the subsystem.
Should be well-defined and small.
Often called API: Application programmer’s interface, but this
term should used during implementation, not during System
Design

Why modularize a system?

♦ Management: Partition the overall development effort
divide and conquer (actually: “Divide et impera” = “Divide and rule”)

♦ Evolution: Decouple parts of a system so that changes to one part are isolated from changes to
other parts

Principle of directness (clear allocation of requirements to modules, ideally one requirement (or
more) maps to one module)
Principle of continuity (small change in requirements triggers a change to one module only)

♦ Understanding: Permit system to be understood
as composition of mind-sized chunks

e.g., the 7±2 Rule
with one issue at a time

Principle of locality, encapsulation, separation of concerns

♦ Key issue: what criteria to use for modularization

Information hiding (Parnas)
♦ Hide secrets. OK, what’s a “secret”?

Representation of data
Properties of a device, other than required properties
Implementation of world models
Mechanisms that support policies

♦ Try to localize future change
Hide system details likely to change independently
Separate parts that are likely to have a different rate of change
Expose in interfaces assumptions unlikely to change

Further Principles
♦ Explicit interfaces

make all dependencies between modules explicit (no hidden coupling)

♦ Low coupling - few interfaces
minimize the amount of dependencies between modules

♦ Small interfaces
keep the interfaces narrow

combine many parameters into structs/objects
divide large interfaces into several interfaces

♦ High cohesion
a module should encapsulate some well-defined, coherent piece of functionality
(more on that later)

What Is an Interface?
♦ Whatever is published by a module that clients can depend on

♦ Syntactic interface
How to call operations

list of operation signatures
sometimes also valid orders of calling operations

♦ Semantic interfaces
What the operations do, e.g.,

pre- and post-conditions
use cases

performance specification
...

Services and Subsystem Interfaces
♦ Service: A set of related operations that share a common

purpose
Notification subsystem service:

LookupChannel()
SubscribeToChannel()
SendNotice()
UnscubscribeFromChannel()

Services are defined in System Design

♦ Subsystem Interface: Set of fully typed related operations.
Subsystem Interfaces are defined in Object Design
Also called application programmer interface (API)

Choosing Subsystems
♦ Criteria for subsystem selection: Most of the interaction should

be within subsystems, rather than across subsystem boundaries
(High cohesion).

Does one subsystem always call the other for the service?
Which of the subsystems call each other for service?

♦ Primary Question:
What kind of service is provided by the subsystems (subsystem
interface)?

♦ Secondary Question:
Can the subsystems be hierarchically ordered (layers)?

♦ What kind of model is good for describing layers and
partitions?

Subsystem Decomposition Example

Is this the right
decomposition or
is this too much ravioli?

Modeling

Authoring

Workorder Repair

Inspection

Augmented
Reality

Workflow

Definition: Subsystem Interface
Object

♦ A Subsystem Interface Object provides a service
This is the set of public methods provided by the
subsystem
The Subsystem interface describes all the methods of the
subsystem interface object

♦ Use a Facade pattern for the subsystem interface
object

System as a set of subsystems
communicating via a software bus

Authoring
Modeling

Augmented
Reality

WorkorderRepair

Inspection

Workflow

A Subsystem Interface Object publishes the service (= Set of public methods)
provided by the subsystem

Coupling and Cohesion
♦ Goal: Reduction of complexity while change occurs
♦ Cohesion measures the dependence among classes

High cohesion: The classes in the subsystem perform similar tasks and
are related to each other (via associations)
Low cohesion: Lots of miscellaneous and auxiliary classes, no
associations

♦ Coupling measures dependencies between subsystems
High coupling: Changes to one subsystem will have high impact on the
other subsystem (change of model, massive recompilation, etc.)
Low coupling: A change in one subsystem does not affect any other
subsystem

♦ Subsystems should have as maximum cohesion and minimum
coupling as possible:

How can we achieve high cohesion?
How can we achieve loose coupling?

Degrees of Cohesion
1. Coincidental cohesion
2. Logical cohesion
3. Temporal cohesion
4. Procedural cohesion
5. Communicational cohesion
6. Functional cohesion
7. Informational cohesion

High cohesion - good

Low cohesion - bad

Coincidental cohesion
♦ The result of randomly breaking the project into modules to gain the

benefits of having multiple smaller files/modules to work on
Inflexible enforcement of rules such as: “every function/module shall be
between 40 and 80 lines in length” can result in coincidental coherence

♦ Usually worse than no modularization
Confuses the reader that may infer dependencies that are not there

Logical cohesion
♦ A “template” implementation of a number of quite different operations that share

some basic course of action
variation is achieved through parameters
“logic” - here: the internal workings of a module

♦ Problems:
Results in hard to understand modules with complicated logic
Undesirable coupling between operations

♦ Usually should be refactored to separate the different operations

Example of Logical Cohesion
void function(param1, param2, param3, ..., paramN)
{

variable declarations....
code common to all cases... [A]
if (param1 == 1) [B]

...
else if (param1 == 2)

...
else if (param1 == n)

...
end if
code common to all cases... [C]
if (param == 1) [D]

...
else if (param1 == 5)

...
end if
code common to all cases... [E]
if (param1 == 7)

...
}

Temporal Cohesion
♦ Temporal cohesion concerns a module organized to contain all those operations

which occur at a similar point in time.

♦ Consider a product performing the following major steps:
initialization, get user input, run calculations, perform appropriate output, cleanup.

♦ Temporal cohesion would lead to five modules named initialize, input, calculate,
output and cleanup.

♦ This division will most probably lead to code duplication across the modules, e.g.,
Each module may have code that manipulates one of the major data structures used
in the program.

Procedural Cohesion
♦ A module has procedural cohesion if all the operations it performs are related to a

sequence of steps performed in the program.

♦ For example, if one of the sequence of operations in the program was “read input
from the keyboard, validate it, and store the answers in global variables”, that would
be procedural cohesion.

♦ Procedural cohesion is essentially temporal cohesion with the added restriction that
all the parts of the module correspond to a related action sequence in the program.

♦ It also leads to code duplication in a similar way.

Procedural Cohesion

operationA()
{ readData(data,filename1);

processAData(data);
storeData(data,filename2);

}

operationB()
{ readData(data,filename1);

processBData(data);
storeData(data,filename2);

}

readData(data,filename)
{ f := openfile(filename);

readrecords(f, data);
closefile(f);

}
storeData(data,filename)
{...}
processAData(data)
{...}

readData(data,filename)
{ f := openfile(filename);

readrecords(f, data);
closefile(f);

}
storeData(data,filename)
{...}
processBData(data)
{...}

Module A Module B

Communicational Cohesion
♦ Communicational cohesion occurs when a module performs operations

related to a sequence of steps performed in the program (see procedural
cohesion) AND all the actions performed by the module are performed on
the same data.

♦ Communicational cohesion is an improvement on procedural cohesion
because all the operations are performed on the same data.

Functional Cohesion
♦ Module with functional cohesion focuses on exactly one goal or “function”

(in the sense of purpose, not a programming language “function”).

♦ Module performing a well-defined operation is more reusable, e.g.,
modules such as: read_file, or draw_graph are more likely to be applicable to
another project than one called initialize_data.

♦ Another advantage of is fault isolation, e.g.,
If the data is not being read from the file correctly, there is a good chance the error
lies in the read_file module/function.

Informational Cohesion
♦ Informational cohesion describes a module as performing a number of actions, each

with a unique entry point, independent code for each action, and all operations are
performed on the same data.

In informational cohesion, each function in a module can perform exactly one
action.

♦ It corresponds to the definition of an ADT (abstract data type) or object in an
object-oriented language.

♦ Thus, the object-oriented approach naturally produces designs with informational
cohesion.

Each object is generally defined in its own source file/module, and all the data
definitions and member functions of that object are defined inside that source file
(or perhaps one other source file, in the case of a .hpp/.cpp combination).

Levels of Coupling
5. Content Coupling (High Coupling - Bad)
4. Common Coupling
3. Control Coupling
2. Stamp Coupling
1. Data Coupling (Low Coupling - Good)
(Remember: no coupling is best!)

Content Coupling
♦ One module directly refers to the content of the other

module 1 modifies a statement of module 2
assembly languages typically supported this, but not high-level languages
COBOL, at one time, had a verb called alter which could also create self-
modifying code (it could directly change an instruction of some module).

module 1 refers to local data of module 2 in terms of some kind of offset
into the start of module 2.

This is not a case of knowing the offset of an array entry - this is a direct offset
from the start of module 2's data or code section.

module 1 branches to a local label contained in module 2.
This is not the same as calling a function inside module 2 - this is a goto to a
label contained somewhere inside module 2.

Common Coupling
♦ Common coupling exists when two or more modules have read and write

access to the same global data.

♦ Common coupling is problematic in several areas of design/maintenance.
Code becomes hard to understand - need to know all places in all modules
where a global variable gets modified
Hampered reusability because of hidden dependencies through global
variables
Possible security breaches (an unauthorized access to a global variable
with sensitive information)

♦ It’s ok if just one module is writing the global data and all other modules
have read-only access to it.

Common Coupling
♦ Consider the following code fragment:

while(global_variable > 0)
{ switch(global_variable)

{ case 1: function_a(); break;
case 2: function_b(); break;
...
case n: ...

}
global_variable++;

}

Common Coupling
♦ If function_a(), function_b(), etc can modify the value of global variable,

then it can be extremely difficult to track the execution of this loop.

♦ If they are located in two or more different modules, it becomes even more
difficult

potentially all modules of the program have to be searched for references
to global variable, if a change or correction is to take place.

♦ Another scenario is if all modules in a program have access to a common
database in both read and write mode, even if write mode is not required in
all cases.

♦ Sometimes necessary, if a lot of data has to be supplied to each module

Control Coupling
♦ Two modules are control-coupled if module 1 can directly affect the

execution of module 2, e.g.,
module 1 passes a “control parameter” to module 2 with logical cohesion,
or
the return code from a module 2 indicates NOT ONLY success or failure,
but also implies some action to be taken on the part of the calling module 1
(such as writing an error message in the case of failure).

♦ The biggest problem is in the area of code re-use: the two modules are not
independent if they are control coupled.

Stamp Coupling
♦ It is a case of passing more than the required data values into a module,

e.g.,
passing an entire employee record into a function that prints a mailing
label for that employee. (The data fields required to print the mailing label
are name and address. There is no need for the salary, SIN number, etc.)

♦ Making the module depend on the names of data fields in the employee
record hinders portability.

If instead, the four or five values needed are passed in as parameters, this
module can probably become quite reusable for other projects.

♦ As with common coupling, leaving too much information exposed can be
dangerous.

Data Coupling
♦ Data coupling exhibits the properties that all parameters to a

module are either simple data types, or in the case of a record
being passed as a parameter, all data members of that record
are used/required by the module. That is, no extra information
is passed to a module at any time.

What Is Software Architecture?
♦ Captures the gross structure of a system

How it is composed of interacting parts
How the interactions take place
Key properties of the parts

♦ Provides a way of analysing systems at a high level of
abstraction

♦ Illuminates top-level design decisions

Definition by Shaw and Garlan
♦ Abstractly, software architecture involves the description of elements from

which systems are built, interactions among those elements, patterns that
guide their composition, and constraints on these patterns. In general, a
particular system is defined in terms of a collection of components and
interactions among these components. Such a system may in turn be used as
a (composite) element in a larger system design. [Garlan&Shaw]

Definition by Buschmann et al.
♦ A software architecture is a description of the subsystems and components

of a software system and the relationships between them. Subsystems and
components are typically specified in different views to show the relevant
functional and nonfunctional properties of a software system. The software
architecture of a system is an artifact. It is the result of the software
development activity. [POSA]

♦ See http://www.sei.cmu.edu/architecture/definitions.html for 60+ other definitions…

Issues Addressed by an
Architectural Design

♦ Gross decomposition of a system into interacting components
Typically hierarchical
Using rich abstractions for “glue”
Often using common design idioms/styles

♦ Emergent system properties
Performance, throughput, latencies
Reliability, security, fault tolerance, evolvability

♦ Rationale
Relates requirements and implementations

♦ Envelope of allowed change
“Load-bearing walls”
Design idioms and styles

Good Properties of an Architecture
♦ Good architecture (like much good design):

Result of a consistent set of principles and techniques, applied
consistently through all phases of a project

Resilient in the face of (inevitable) changes

Source of guidance throughout the product lifetime

Reuse of established engineering knowledge

Architecture Development
♦ Unified Process:

Focus on implementing the most valuable and critical use cases first
Produce an architectural description by taking those design
elements that are needed to explain how the system realizes these
use cases at a high level

♦ Use past and proven experience by applying architectural
styles and patterns

Architectural Styles
♦ The architecture of a system includes

Components: define the locus of computation
Examples: filters, databases, objects, ADTs

Connectors: define the interactions between components
Examples: procedure call, pipes, event announce

♦ An architectural style defines a family of architectures
constrained by

Component/connector vocabulary
Topology
Semantic constraints

Architectural Styles and Patterns
♦ An architectural style defines a family of architectures

constrained by
Component/connector vocabulary, e.g.,

layers and calls between them
Topology, e.g.,

stack of layers
Semantic constraints, e.g.,

a layer may only talk to its adjacent layers

♦ For each architectural style, an architectural pattern can be
defined

It’s basically the architectural style cast into the pattern form
The pattern form focuses on identifying a problem, context of a
problem with its forces, and a solution with its consequences and
tradeoffs; it also explicitly highlights the composition of patterns

Catalogues of Architectural Styles
and Patterns

♦ Architectural styles
[Garlan&Shaw] M. Shaw and D. Garlan. Software Architecture:
Perspectives on a Emerging Discipline. Prentice Hall, Englewood Cliffs, NJ,
1996

♦ Architectural Patterns
[POSA] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M.
Stal. Pattern-Oriented Software Architecture. A System of Patterns. John
Wiley & Sons Ltd., Chichester, UK, 1996

Taxonomy of Architectural Styles
♦ Data flow
♦ Call-and-return
♦ Interacting processes
♦ Data-oriented repository
♦ Data-sharing
♦ Hierarchical
♦ …

“Pure” Form of Styles
♦ When we introduce a new style, we will typically first examine

its “pure” form.
Pure data flow styles (or any other architectural style) are rarely
found in practice
Systems in practice

Regularly deviate from the academic definitions of these systems
Typically feature many architectural styles simultaneously

As an architect you must understand the “pure” styles to
understand the strength and weaknesses of the style as well as the
consequences of deviating from the style

Overview
♦ Context
♦ What is software architecture?
♦ Example: Mobile Robotics
♦ Architectural styles and patterns

Data flow
Call-and-return
Interacting processes
Data-oriented repository
Data-sharing
Hierarchical
Other

♦ Heterogeneous architectures

Data Flow
♦ A data flow system is one in which:

The availability of data controls the computation
The structure of the design is determined by the orderly motion of
data from component to component
The pattern of data flow is explicit
This is the only form of communication between components

♦ There are variety of variations on this general theme:
How control is exerted (e.g., push versus pull)
Degree of concurrency between processes
Topology

Data Flow
♦ Components: Data Flow Components

Interfaces are input ports and output ports
Input ports read data; output ports write data
Computational model: read data from input ports, compute, write data to
output ports

♦ Connectors: Data Streams
Uni-directional

Usually asynchronous, buffered
Interfaces are reader and writer roles
Computational model: transport data from writer roles to reader roles

♦ Systems
Arbitrary graphs
Computational model: functional composition

Patterns of Data Flow in Systems
♦ Data can flow in arbitrary patterns

♦ Primarily we are interested in linear
data flow patterns

♦ ...or in simple, constrained cyclical
patterns...

Kinds of Data Flow Architectures
Batch sequential

♦ Dataflow network (pipes&filters)
acyclic, fanout, pipeline, Unix, etc.

♦ Closed loop control

Characteristics of Batch Sequential
Systems

♦ Components (processing steps) are independent programs
♦ Connectors are some type of media - traditionally magnetic tape
♦ Each step runs to completion before the next step begins

Characteristics of Batch Sequential
Systems

♦ History
Mainframes and magnetic tape
Limited disk space
Block scheduling of CPU processing time

♦ Business data processing
Discrete transactions of predetermined type and occurring at periodic
intervals
Creation of periodic reports based on data periodic data updates

Characteristics of Batch Sequential
Systems

♦ Transformational data analysis
Raw data is gathered and analyzed in a step-wise, batch-oriented
fashion

♦ Typical applications: non real-time, batch oriented
computations such as:

Payroll computations
IRS tax return computations

Kinds of Data Flow Architectures
♦ Batch sequential

Dataflow network (pipes&filters)
acyclic, fanout, pipeline, Unix, etc.

♦ Closed loop control

Pipes and Filters
♦ The tape of the batch sequential system, morphed into a language and operating

system construct
♦ Compared to the batch-sequential style, data in the pipe&filter style is processed

incrementally

Pipes and Filters
♦ “The Pipes and Filters architectural pattern [style] provides a

structure for systems that process a stream of data. Each
processing step is encapsulated in a filter component. Data is
passed through pipes between adjacent filters. Recombining
filters allows you to build families of related systems.” [POSA
p53]

Pipes and Filters
♦ Components (Filters)

Read streams of data on input producing streams of data on output
Local incremental transformation to input stream (e.g., filter, enrich,
change representation, etc.)
Data is processed as it arrives, not gathered then processed
Output usually begins before input is consumed

♦ Connectors (Pipes)
Conduits for streams, e.g., first-in-first-out buffer
Transmit outputs from one filter to input of other

Pipes and Filters
♦ Invariants

Filters must be independent, no shared state
filters don’t know upstream or downstream filter identity
Correctness of output from network must not depend on order in which
individual filters provide their incremental processing

♦ Common specializations
Pipelines: linear sequence of filters
Bounded and typed pipes …

Example Pipe-and-Filter Systems
♦ lex/yacc-based compiler (scan, parse, generate code, ..)
♦ Unix pipes
♦ Image processing
♦ Signal processing
♦ Voice and video streaming
♦ …

Example Pipe-and-Filter System:
Khors–An Image-Processing Workbench

Example Pipe-and-Filter System
♦ Telemetry Data Collection Systems

Receives telemetry stream, decom frames, applies coefficients,
stores data

Data Pulling and Data Pushing
♦ What is the force that makes the data flow?

♦ Four choices:
Push: data source pushes data in a downstream direction
Pull: data sink pulls data from an upstream direction
Push/pull: a filter is actively pulling data from a stream, performing
computations, and pushing the data downstream
Passive: don’t do either, act as a sink or source for data

♦ Combinations may be complex and may make the “plumber’s” job more
difficult

if more than one filter is pushing/pulling, synchronization is needed

A Push Pipeline With an Active
Source

dataSource
push

filter1
push

dataSink

write(data)

write(data)

filter2
push

f1(data)

f2(data)

write(data)

A Pull Pipeline With an Active
Sink

dataSink
pull

filter1
pull

dataSource

data:=read()

filter2
pull

f1(data)

f2(data)

data:=read()
data:=read()

A Mixed Push-pull Pipeline With Pasive
Source and Sink

dataSink filter1
pull/push

dataSourcefilter2
pull

f1(data)

f2(data)

data:=read()
data:=read()

write(data)

A Pipeline With Active Filters and
Synchronizing Buffering Pipes

dataSource filter1
pull/push

dataSink

write()

f2(data)

buffering
Pipe

filter2
pull/push

data:=read()

f1(data)

f1(data)

data:=read()

write()

data:=read()

data:=read()

write()

Pipe and Filter: Strengths
♦ Overall behaviour is a simple composition of behaviour of individual

filters.

♦ Reuse - any two filters can be connected if they agree on that data format
that is transmitted.

♦ Ease of maintenance - filters can be added or replaced.

♦ Prototyping e.g. Unix shell scripts are famously powerful and flexible,
using filters such as sed and awk.

♦ Architecture supports formal analysis - throughput and deadlock detection.

♦ Potential for parallelism - filters implemented as separate tasks, consuming
and producing data incrementally.

Pipe and Filter: Weaknesses
♦ Can degenerate to ‘batch processing’ - filter processes all of its data before passing

on (rather than incrementally).

♦ Sharing global data is expensive or limiting.

♦ Can be difficult to design incremental filters.

♦ Not appropriate for interactive applications - doesn’t split into sequential stages.
POSA book has specific styles for interactive systems, one of which is Model-
View-Controller.

♦ Synchronisation of streams will constrain architecture.
♦ Error handling is Achilles heel e.g. filter has consumed three quarters of its input

and produced half its output and some intermediate filter crashes! Generally restart
pipeline. (POSA)

♦ Implementation may force lowest common denominator on data transmission e.g.
Unix scripts everything is ASCII.

Pipe-and-Filter vs. Batch
Sequential

♦ Both decompose the task into a fixed sequence of computations
(components) interacting only through data passed from one to another

♦ fine grained
♦ results starts processing
♦ localized input
♦ concurrency possible
♦ interactive awkward but

possible

♦ course grained
♦ high latency
♦ external access to input
♦ no concurrency
♦ non-interactive

Pipe-and-FilterBatch Sequential

Overview
♦ Context
♦ What is software architecture?
♦ Example: Mobile Robotics
♦ Architectural styles and patterns

Data flow
Call-and-return
Interacting processes
Data-oriented repository
Data-sharing
Hierarchical
Other

♦ Heterogeneous architectures

Call-and-return
♦ Main program/subroutines
♦ Information hiding

ADT, object, naive client/server

Main Program + Subroutine
Architecture

♦ Classic style since 60s - pre-OO.
♦ Hierarchical decomposition into subroutines (Components)

each solving a well defined task/function.
♦ Data passed around as parameters.
♦ Main driver provides a control loop for sequencing through

subroutines.

Data Abstraction / Object Oriented
♦ Widely used architectural style
♦ Components:

Objects or abstract data types
♦ Connections:

Messages or function/procedure invocations
♦ Key aspects:

Object preserves integrity of representation - no direct access
Representation is hidden from objects

♦ Variations:
Objects as concurrent tasks
Multiple interfaces for objects (Java !)

♦ Note that Data Abstraction is different from Object-Oriented - no inheritance.

Object-Oriented
Strengths/Weaknesses

♦ Strengths:
Change implementation without affecting clients (assuming interface doesn’t
change)
Can break problems into interacting agents (distributed across multiple machine /
networks).

♦ Weaknesses:
To interact objects must know each other’s identity (in contrast to Pipe and Filter).
When identity changes, objects that explicitly invoke it must change (Java interfaces
help though).
Side effect problems: if A uses B and C uses B, then C effects on B can be
unexpected to A (and vice-versa).
Complex dynamic interactions – distributed functionality.

Overview
♦ Context
♦ What is software architecture?
♦ Example: Mobile Robotics
♦ Architectural styles and patterns

Data flow
Call-and-return
Interacting processes
Data-oriented repository
Data-sharing
Hierarchical
Other

♦ Heterogeneous architectures

Interacting processes
♦ Communicating processes

LW processes, distributed objects, …

♦ Event systems
implicit invocation, pure events, …

Event-Based, Implicit Invocation
♦ This architectural style (pattern) is characterised by the style of

communication between components:
Rather than invoking a procedure directly or sending a message a
component announces, or broadcasts, one or more events.

♦ Basically, components communicate using a generalised Observer Design
Pattern style of communication.

♦ BUT this is a different architectural style from Object-Oriented
Communications are broadcast-based and components are not necessarily
objects.

Implicit Invocation Example
♦ Components register interest in an event by associating a procedure with

the event.

♦ When the event is announced the system implicitly invokes all procedures
that have been registered for the event.

♦ Common style for integrating tools in a shared environment, e.g.,
Tools communicate by broadcasting interesting events
Other tools register patterns that indicate which events should be routed to
them and which method/procedure should be invoked when an event
matches that pattern.
Pattern matcher responsible for invoking appropriate methods when each
event is announced.

Implicit Invocation Example
♦ Examples:

Editor announces it has finished editing a module, compiler
registers for such announcements and automatically re-compiles
module.
Debugger announces it has reached a breakpoint, editor registers
interest in such announcements and automatically scrolls to
relevant source line.

Implicit Invocation
♦ Components

Modules whose interfaces provide a collection of
procedures/methods and a set of events that it may announce

♦ Connectors
Bindings between event announcements and procedure/method
calls
Traditional procedure/method calls (to bypass implicit invocation)

Implicit Invocation
♦ Invariants

Announcers of events do not know which components will be affected by
those events
Components cannot make assumptions about ordering of processing, or
what processing will occur as a result of their events

♦ Common Examples (Shaw and Garlan textbook)
Programming environment tool integration
User interfaces - Model-View-Controller
Syntax-directed editors to support incremental semantic checking

Implicit Invocation
♦ Strengths

Strong support for reuse - plug in new components by registering it
for events
Maintenance - add and replace components with minimum affect
on other components in the system.

Implicit Invocation
♦ Weaknesses

Loss of control
when a component announces an event, it has no idea what components will
respond to it
cannot rely on order that these components will be invoked
cannot tell when they are finished

Ensuring correctness is difficult because it depends on context in which
invoked. Unpredictable interactions.
Sharing data - see the Observer Design Pattern

♦ Hence explicit invocation is usually provided as well as implicit invocation.
In practice architectural styles are combined.

Model-View-Controller

Model-View-Controller
♦ A decomposition of an interactive system into three components:

A model containing the core functionality and data,
One or more views displaying information to the user, and
One or more controllers that handle user input.

♦ A change-propagation mechanism (i.e., observer) ensures consistency
between user interface and model, e.g.,

If the user changes the model through the controller of one view, the other
views will be updated automatically

♦ Sometimes the need for the controller to operate in the context of a given
view may mandate combining the view and the controller into one
component

♦ The division into the MVC components improves maintainability

Model-View-Controller

model

view1 controller1 view2 controller2 view3

Overview
♦ Context
♦ What is software architecture?
♦ Example: Mobile Robotics
♦ Architectural styles and patterns

Data flow
Call-and-return
Interacting processes
Data-oriented repository
Data-sharing
Hierarchical
Other

♦ Heterogeneous architectures

Data-Oriented Repository
♦ Transactional databases

True client/server

♦ Blackboard
♦ Modern compiler

Repositories / Data Centred

♦ Characterised by a central data store component representing systems state
and a collection of independent components that operate on the data store.

♦ Connections between data store and external components vary considerably
in this style:

Transactional databases: Incoming stream of transactions trigger processes
to act on data store. Passive.
Blackboard architecture: Current state of data store triggers processes.
Active.

Blackboard
♦ Characteristics: cooperating ‘partial solution solvers’ collaborating but not

following a pre-defined strategy.
♦ Current state of the solution stored in the blackboard.
♦ Processing triggered by the state of the blackboard.

Blackboard
(shared data)

Knowledge
Source 6

Knowledge
Source 5

Knowledge
Source 4

Knowledge
Source 3

Knowledge
Source 2

Knowledge
Source 1

Examples of Blackboard
Architectures

♦ Problems for which no deterministic solution strategy is known, but many
different approaches (often alternative ones) exist and are used to build a
partial or approximate solution.

AI: vision, speech and pattern recognition (see POSA case study)
Modern compilers act on shared data: symbol table, abstract syntax tree
(see Garlan and Shaw case study)

Overview
♦ Context
♦ What is software architecture?
♦ Example: Mobile Robotics
♦ Architectural styles and patterns

Data flow
Call-and-return
Interacting processes
Data-oriented repository
Data-sharing
Hierarchical
Other

♦ Heterogeneous architectures

Data-sharing
♦ Compound documents
♦ Hypertext
♦ Fortran COMMON
♦ LW processes

Overview
♦ Context
♦ What is software architecture?
♦ Example: Mobile Robotics
♦ Architectural styles and patterns

Data flow
Call-and-return
Interacting processes
Data-oriented repository
Data-sharing
Hierarchical
Other

♦ Heterogeneous architectures

Hierarchical
♦ Layered

Interpreter
Tiered

Layered Systems
♦ “A layered system is organised hierarchically, each layer

providing service to the layer above it and serving as a client to
the layer below.” (Garlan and Shaw)

♦ Each layer collects services at a particular level of abstraction.

♦ In a pure layered system: Layers are hidden to all except
adjacent layers.

Layered Systems
♦ “Onion Skin model”…

♦ corresponds to a stack of layers.

Components
Composites of
various elements

Connectors
Usually
procedure
calls

Useful Systems
Basic Utilities

Core Level

Core
Level

Basic Utilities
Useful Systems

Hierarchical systems
♦ Hierarchical systems can be tree-

like in general

Layered Systems
♦ Applicability

A large system that is characterised by a mix of high and low level issues,
where high level issues depend on lower level ones.

♦ Components
Group of subtasks which implement a ‘virtual machine’ at some layer in
the hierarchy

♦ Connectors
Protocols / interface that define how the layers will interact

Layered Systems
♦ Invariants

Limit layer (component) interactions to adjacent layers (in practice this
may be relaxed for efficiency reasons)

♦ Typical variant relaxing the pure style
A layer may access services of all layers below it

♦ Common Examples
Communication protocols: each level supports communication at a level of
abstraction, lower levels provide lower levels of communication, the lowest
level being hardware communications.

Layered System Examples
♦ Example 1: ISO defined the OSI 7-layer architectural model with layers:

Application, Presentation, …, Data, Physical.
Protocol specifies behaviour at each level of abstraction (layer).
Each layer deals with specific level of communication and uses services of the next
lower level.

♦ Example 2: TCP/IP is the basic communications protocol used on the internet.
POSA book describes 4 layers: ftp, tcp, ip, Ethernet. The same layers in a network
communicate ‘virtually’.

♦ Example 3: Operating systems e.g. hardware layer, …, kernel, resource
management, … user level “Onion Skin model”.

♦ ...

Layered Systems
♦ Strengths

Increasing levels of abstraction as we move up through layers –
partitions complex problems
Maintenance - in theory, a layer only interacts with layers above
and below. Change has minimum effect.
Reuse - different implementations of the same level can be
interchanged
Standardisation based on layers e.g. OSI

Layered Systems
♦ Weaknesses

Not all systems are easily structured in layers (e.g., mobile robotics)
Performance - communicating down through layers and back up, hence
bypassing may occur for efficiency reasons

♦ Similar strengths to data abstraction / OO but with multiple levels of
abstraction (e.g. well-defined interfaces, implementation hidden).

♦ Similar to pipelines, e.g., communication with at most one component at
either side, but with richer form of communication.

♦ A layer can be viewed as aka “virtual machine” providing a standardized
interface to the one above it

Interpreter
♦ Architecture is based on a virtual machine produced in

software.

♦ Special kind of a layered architecture where a layer is
implemented as a true language interpreter.

♦ Components are ‘program’ being executed, its data, the
interpretation engine and its state.

♦ Example: Java Virtual Machine. Java code translated to
platform independent bytecodes. JVM is platform specific and
interprets (or compiles - JIT) the bytecodes.

Tiered Architectures
♦ Special kind of layered architecture for enterprise applications
♦ Evolution

Two Tier
Three Tier
Multi Tier

Two Tier Client Server Architecture
Design

♦ Developed in the 1980s to decouple (typically form/based) user interface from the
storage of data.

♦ Improved maintainability (changes to UI and database can be made independently);
Scales up to 100 users

♦ See http://www.sei.cmu.edu/str/descriptions/twotier.html#512860

Client tier
User System Interface
+ Some Processing
Management

Server tier
Database Management
+ Some Processing
Management

Three Tier Client Server Architecture
Design

♦ Emerged in the 1990s to overcome the limitations of the two tier architecture by
adding an additional middle tier.

♦ This middle tier provides process management where business logic and rules are
executed and can accommodate hundreds of users by providing generic services
such as queuing, application execution, and database staging.

♦ An effective distributed client/server design that provides increased performance,
flexibility, maintainability, reusability, and scalability, while hiding the complexity
of distributed processing from the user.

♦ See http://www.sei.cmu.edu/str/descriptions/threetier.html

Three Tier Client Server
Architecture Design

User System Interface

Database Management

Processing Management

Example of a Multi Tier Architecture: Java 2
Platform, Enterprise Edition (J2EE)

Service Oriented Architecture (SOA)

Overview
♦ Context
♦ What is software architecture?
♦ Example: Mobile Robotics
♦ Architectural styles and patterns

Data flow
Call-and-return
Interacting processes
Data-oriented repository
Data-sharing
Hierarchical
Other

♦ Heterogeneous architectures

Other Architectures...
♦ Distributed Systems:

Common organisations for multi-process systems characterised either by
topological organisation e.g. ring or star, and inter-process protocols e.g.
client-server architectures.
Broker pattern: An arrangement where decoupled components interact by
remote service invocations. A broker component is responsible for
coordinating communication and for transmitting results and exceptions.

♦ Process Control Systems:
Dynamic control of physical processes based on a feedback loop.

POSA Architectural Patterns
♦ These were already discussed:

Layers pattern
Pipes and filters pattern
Blackboard pattern
Model-view-controller pattern
Broker pattern

POSA Architectural Patterns for
Adaptable Systems

♦ Microkernel pattern
An arrangement that separates a minimal functional core from extended
functionality and customer-specific parts.
The microkernel also serves as a socket for plugging in these extensions and
coordinating their collaboration.

♦ Reflection pattern
Organize a system into a base level performing the actual functionality and a meta-
level providing a runtime, explicit configuration model of the base level.
The metalevel makes software self-aware by allowing to inspect and possibly
reconfigure itself through the metalevel

Overview
♦ Context
♦ What is software architecture?
♦ Example: Mobile Robotics
♦ Architectural styles and patterns

Data flow
Call-and-return
Interacting processes
Data-oriented repository
Data-sharing
Hierarchical
Other

Heterogeneous architectures

Heterogeneous Architectures
♦ In practice the architecture of large-scale system is a combination of

architectural styles:
(‘Hierarchical heterogeneous’) A Component in one style may have an
internal style developed in a completely different style (e.g, pipe component
developed in OO style, implicit invocation module with a layered internal
structure, etc.)
(‘Locational heterogeneous’) Overall architecture at same level is a
combination of different styles (e.g., repository (database) and
mainprogram-subroutine, etc.)
Here individual components may connect using a mixture of architectural
connectors - message invocation and implicit invocation.
(‘Perspective heterogeneous’) Different architecture in different
perspectives (e.g., structure of the logical view, structure of the physical
view, etc.)

Example of Heterogeneous Architectures:
Enterprise Architectures

♦ Multi tier (at the highest level), distributed (including broker pattern), transactional databases,
event-based communication, implicit invocation, object-oriented, MVC (e.g., for presentation
in the client), dataflow for workflow, etc.

Overview
♦ Context
♦ What is software architecture?
♦ Architectural styles and patterns

Data flow
Call-and-return
Interacting processes
Data-oriented repository
Data-sharing
Hierarchical
Other

Heterogeneous architectures

