Project Part 2 v.2.0
06/03/2006

ECE 453/CS 447/SE 465 Course Project Part2
Version 2
Departments of Electrical and Computer Engineering

and Computer Science

University of Waterloo, Waterloo ON, Canada, N2L 3G1

1.0 Introduction

This document contains the description for the second part of the ECE453/CS447/SE465 project that pertains to Unit and System Testing.
In the second part of the project that will be due on Sunday, March 26, 2006, 23:59 EST, you will:

i. Provide the full implementation of the system extensions and testing framework
ii. Compile a limited test plan for your system extensions

iii. Use JUnit or CPPUnit to test parts of your code

iv. Use the infrastructure developed in the first part of the project to perform the same tests
The project is structured into three main themes: Limited Test Plan, Unit Testing and System Testing. In the sections below, you will find details on the structure and theme of your test cases.
2.0 Test Plan
For this part of the project you should compile a limited test plan document that pertains only to the Functional aspects of Call Forwarding (i.e. not include robustness or performance scenarios). The structure of the Test Plan Document should be as follows:

Section 1:
Introduction (1 page)

Section 2:
Feature Description (a table listing feature IDs, and a short English description for each basic feature ID in Call Forwarding) (2 pages max.)

Section 3:
System Test Suite Structure

3.1
System Test Cases (the system test case scenarios that pertain only to the functional properties of Call Forwarding (see test case scenario template in section 3.2.1 of the project description) (2 – 3 test case scenarios per page)

3.2
Traceability Matrix (rows are Test Case IDs and Columns are Feature IDs) (1 page)

3.3
Test Effort Estimation (to be discussed in class) (2 pages)

3.1.1
Test Design Effort

3.1.2
Test Execution Effort

3.1.3
Environment Set-Up Effort

3.1.4
Training Effort

3.1.5
Total Testing Effort
3.0 Unit and System Testing

The following outline describes the testing tasks which will be required in this project:
· Unit Testing (test cases implemented in JUnit/CPPUnit AND your testing framework)

· Functional Unit Testing
· Decision Table-based testing (for three methods you select)
· Structure Unit Testing

· Condition Path coverage (for three methods you select); show control flow graph and paths covered in each test case
· System Testing (for the five specified scenarios)
· A description for each scenario using the template provided (see section 3.2.1 in the project description).
· The units involved for each scenario.
· A high level description of the threads involved in each scenario in terms of FSMs, ASFs or high level psudocode.
· The input and expected output of each test.

· The actual outcome for each test with respect to (i) whether the expected output has been observed, and (ii) the threads involved (i.e. all expected units have been triggered, states have been reached properly, or ASFs or test case steps have been successfully applied).

1.
1.1.
1.1.1.
1.1.1.1.
1.1.1.1.1.
1.1.1.1.2.
1.1.2.
1.1.2.1.
1.1.2.1.1.
1.1.2.1.2.
1.2.
1.2.1.
1.2.2.
1.2.3.
1.2.4.
1.2.5.

3.1 Unit Testing: Detailed Overview

For this part of the project, you will select three methods in your implementation to perform unit testing using a Functional Unit Testing technique (Decision Tables) and a Structural Unit Testing technique (Condition Coverage).
The three selected methods should pertain to the system extensions (call forwarding or internationalization). If you cannot find any methods with sufficient complexity to test from the newly created / modified methods, you are allowed to select other methods from your previous system code. It would be a good practice to choose the same three methods for both functional and structural unit testing; advice in given in the following subsections for choosing the methods.
3.1.1 Functional Unit Testing

For Functional Unit Testing, you will use Decision Tables to come up with the test cases for the three selected methods. The methods you select for Functional Unit Testing should have significant control logic so that the Decision Tables will not be trivial. You are required to implement five (5) distinct test cases which are defined in the decision table for each method; therefore, a total of fifteen (15) test cases must be implemented for functional unit testing identified in the document.

You will exercise the inferred test cases using both
a) JUnit or CPPUnit toolkits, and
b) the testing framework you implemented in the first part of the project. In addition,
you are expected to show the complete decision tables for each method, and the input, output and outcome of the actual test cases in the test execution document.

3.1.2 Structural Unit Testing

For Structural Unit Testing, you will use the Condition Coverage criterion to infer test cases. Try to avoid selecting simple or trivial methods to test. You can check this by evaluating the Cyclomatic Complexity of the method you are testing. Avoid though selecting any method with Cyclomatic Complexity lower than 3 and higher than 6. You are required to identify all test cases which are inferred by the criterion for each method but implement and run only 5 of these test cases. Therefore, the total number of test cases required is 15 (5 for each method).
You will exercise the inferred test cases using both a) JUnit or CPPUnit toolkits, and b) the testing framework you implemented in the first part of the project. In addition,

you are expected to show, for each selected method, the Control Flow Graph, the Statements and Paths exercised by each test case selected, and the input, output and outcome of the actual tests in the test execution document.
3.2 System Testing: Detailed Overview

For this part of the project you will perform system testing for the following five scenarios:

1) Try setting call forwarding in a phone that has already call forwarding activated
2) Try setting call forwarding towards an inactive number
3) When B has set call forwarding to C and A calls B, verify the correct billing
4) Administrator revokes receive privileges of the forwardee
5) Exercise the correct operation of double forwarding B forwards to C and C forwards to D, and A calls B.
For each scenario, you are expected to show:

a) A description for the scenario using the template provided in section 3.2.1 of the project description.
b) The units involved for each scenario.
c) A high level description of the threads involved in each scenario in terms of FSMs, ASFs or high level psudocode.
d) The input and expected output of each test.

e) The actual outcome for each test with respect to (i) whether the expected output has been observed and (ii) wether the threads involved are traversed according to the specification (i.e. all expected units have been triggered, states have been reached properly, or ASFs or test case steps have been successfully applied). The method or formalism (FSM, ASF Graph etc.) that you will use to show or discuss points e(i) and e(ii) is up to you.
For the purpose of this project, you are required to implement one system test per scenario, although in general, the mapping between a scenario and a test case is one-to-many.
3.2.1 Scenario Template

A scenario should be specified as follows:
	TEST CASE ID#: <add ID>
	Test Case Title: <add title>

	Creator:
	<add entry>

	Test Category:
	<add entry one of> : Basic Tests, Functionality Tests, Robustness Tests, Stress Tests, Performance Tests, Load and Stability Tests

	Requirement ID:
	<add related requirement ID from SRS>

	Test Objective:
	<add description of the objective>

	Assumptions:
	<add description of the assumptions for this test case>

	Initial Conditions:
	<add initial conditions (preconditions) that need be valid for the test to be applied>

	Post Conditions:
	<add final conditions and system state that will hold after the test case completes>

	Test Steps:
	<add entry as sequence of steps>

	Clean Up:
	<add entry as sequence of steps>

	Pass/Fail Criteria:
	<add entry with respect to the test steps that need to pass>

	Automation:
	<add entry whether the test can be automated>

	Test Priority:
	<add entry as overall test priority: low, medium, high>

3.2 Test Execution Document

The structure of the Test Execution Document should be as follows:

Section 1:
Introduction (1 page)

Section 2:
Unit Testing (12 pages)
2.1 Functional Unit Testing (2 pages max per method)
· Decision tables for each selected method

· Definition of five test cases for each selected method (subset of the test cases inferred by decision table)
· Input, output, and actual outcome of each test case
2.2 Structure Unit Testing (2 pages max per method)
· Control flow graphs for each selected method
· Indication of the statements and paths exercised by each test case

· Input, output, and actual outcome of each test case
Section 3:
System Testing (15 pages)
3.1-3.5 (one subsection per specified scenario, 3 pages max per scenario)

· description of the scenario (as per template)

· describe the units involved

· high level desription of the threads involved in terms of FSMs, ASFs, or high level pseudocode

· input and expected output of each test

· actual outcome of each test (see point e in section 3.2)
4.0 Deliverables

For this part of the project you will need to submit:
1. Test Plan for Call Forwarding Extension Document (defined in section 2 of the project description)

2. Test Execution Document (defined in section 3 of the project description)

3. An archive file containing the full system implementation with system extensions, testing framework and defined test cases
1.
2.

·
·
·
·
·
3.
Submit an archive file with the above deliverables to CourseBook by 23:59 Sunday March 26, 2006.
Page 1 of 5

