Project 1 – Description Jan. 30, 2006

V.2.2.

ECE 453/CS 447/SE 465 Course Project

Version 2.2.
Departments of Electrical and Computer Engineering

and Computer Science

University of Waterloo, Waterloo ON, Canada, N2L 3G1

1.0 Introduction

This document contains the project description for ECE453/CS447/SE465. This project is a continuation of the VoIP project from ECE451/CS445/SE463 and ECE452 / CS446 / SE464. The project has two parts.
In the first part of the project we will:
i. Specify and design two new features for the system, namely call forwarding and UI Internationalization

ii. Provide pseudocode or an implementation for the new features

iii. Design an extensible infrastructure for unit testing your new code

In the second part of the project that will be due just before the end of the course you will:

i. Provide the full implementation of the system extensions

ii. Specify a test plan for your system extensions

iii. Use JUnit or CPPUnit to test parts of your code

iv. Use the infrastructure developed in the first part of the project to perform additional tests on your code

2.0 Enhancements

The marketing group has determined that the following features are essential to expand sales of your VoIP system:

Call forward (follow-me): This feature allows a subscriber to specify an alternate phone (extension) so that the phone request can be forwarded to the alternate phone extension, which causes the alternate phone to ring when there is an incoming call to a subscriber’s phone (initial phone called). The specified phone in the forwarding rings instead of the subscriber’s original phone. In this respect, causing the other phone to ring is a side effect of transferring the call, and it should not affect the normal operation of the phone the call is forwarded to. The subscriber can cancel the call forward or reroute the call forward to another phone at anytime except during a call. This feature is useful when the subscriber is away from their phone for an extended time interval.

Internationalization: For non-English speaking markets, all text in the administrator console, database, reports and bills must be in a different language. In addition, graphics and icons may need to be changed to be suitable for another localization. For this version, only support for French needs to be added.

These feature requests are quite typical of those found in industry and very typical of the type of enhancement maintenance routinely performed during the life of a software system. After the changes have been implemented, further testing of the new code and regression testing will be required.
2.1 Call Forward: Detailed Overview

This section discusses the call-forward feature in detail from the marketing department’s point of view (external functionality). Feature selection (i.e. setting/canceling call forwarding), expected usage and limitations are elaborated.

All subscriber phones are allowed to access the call forward feature. The “#” key is to be used to access the new feature. This feature is set (activated) using the following sequence of digits after the subscriber goes off-hook:
‘#’ plus ‘1’ plus ‘extension’

Dial tone is removed after the ‘#’ is detected; normal inter-digit timeout applies. After the “1” and the target extension are entered, dial tone would be reapplied indicating that the feature was set successfully and calls will be forwarded to the target extension. The subscriber can now either go on-hook or proceed to dial any extension as in a normal originating call sequence. If an error occurs for any reason while setting the feature (e.g. invalid extension), a fast-busy tone is applied to indicate the feature was not set successfully by the system. The fast-busy tone remains applied until the subscriber goes on-hook. If the feature is set while calls are already being forwarded, the newly specified target extension will replace the current one. To cancel the call-forward on the subscriber’s phone, the subscriber goes off-hook and uses the following sequence:

‘#’ plus ‘2’

Normal inter-digit timeouts apply. Dial tone is removed after the ‘#’ is detected. After the “2” is entered, dial tone would be reapplied indicating the feature was cancelled successfully; a user can make a call at this point. If there was no call-forward enabled at the time, the system takes no action. Otherwise, all incoming calls are re-routed back to the subscriber’s phone. Call forward will not allow a call to be forwarded across several extensions. If S1 call forwards to S2, then S2’s phone will ring (provided it is on-hook) regardless of the call forward status of S2.
For convenience, we refer to a subscriber who forwards his/her calls as the forwarder, and the subscriber who the call is being forwarded to as the forwardee.

The easiest way to think about how call forwarding works is to think about the process of setting a forward as making a call, the process of determining whether or not a forward successful as a “silent” call, and the process of forwarding the actual call as a “call under the hood”. This means the following:

· A call forward may be set if the conditions exist which allow the forwarder to make a call. For example, there must be sufficient resources and the forwarder’s phone must have permissions to make calls
.

· Setting call forward will succeed if a call to the forwardee is possible. This can be tested by making a call from the forwarder to the forwardee, without playing any tones or making an audio connection on either side, to determine the response the forwardee sends back. If the forwardee is capable of receiving the call, the forward will succeed. Note that a forward can still succeed if the forwardee is on the phone while the forwarder is setting the feature.

· While the forwarder’s phone is in the forward mode, any call to the forwarder will be forwarded regardless of whether or not the forwarder is on the phone. Furthermore, a forwarder may initiate a call while a forwarded call is in progress. Note that when the forwarder’s phone receives a call, the received call must obey the regular call sequence before it can be forwarded. In other words, the forwarder must be able to receive the call before s/he is able to forward the call; however, this condition is checked ONLY when a call is placed to the forwarder and does not affect whether or not a forward can be set.

· A forward is automatically cancelled in the event a permission change renders the forward impossible. For example, if either permission for the forwarder or the “can receive calls” permission for the forwardee is revoked by the administrator while the forward is active, the forward will be cancelled automatically. For simplicity, this is the only case which you must consider; you may assume that the extension will not be changed by the administrator and the phones will not be taken out of service.
· When a call is forwarded (e.g. when a caller calls the forwarder and is redirected to the forwardee), it should be treated as establishing a call from the caller to the forwardee; the normal call sequence should be used in this case. For example, if the forwardee is off-hook, the caller will receive a busy tone.

Other Behavioural Specifications
i. You can not forward calls to the operator (e.g. the sequence #10 will cause a fast busy).
ii. For simplicity, no graphical extensions to the administrator console are required for this enhancement.
iii. Normal billing rules apply when a phone is forwarded. That is the billing should be the same for the original phone calling the initial party; however, there should also be a charge for the forwarder. The forwarder should receive a charge for a call of the same duration on their bill as the caller.
2.2 Internationalization: Detailed Overview

The program will allow interactions in English and French. All text in the interface (i.e. GUI windows for the administrator interface) and the bills will be in either English or French. In addition, graphics (i.e. company logos) and icons may need to be changed to be suitable for another localization. The new extended system must have a modular and extensible architecture that allows these changes to be added easily. In this respect, the extended program will accept English or French input into the customer database. The administrator can enter English or French characters at any time, regardless of the display language (e.g. an English-speaking administrator can enter a name containing French characters).
A single version of the system must handle both languages. Furthermore, it must be easy to add support for new languages in the future. So, it would be wise to store all interaction text in a central location. The following characteristics must be supported:
· Selecting the language: The ability to switch display languages at runtime is not required.
· Displaying and inputting non-English text: It is assumed that the administrator’s computer system will have the ability to input and display non-English text.

· Storing and processing non-English text: Make sure no code assumes that the text and information are in English. This includes searching and sorting algorithms. For simplicity consider searching and sorting that is supported by the database and the character encoding.
In the real world, a human translator would be used to translate the display text. For our purposes, it is sufficient to use approximately correct French to demonstrate support for the language. For simplicity, you are only required to translate the text displayed on the console; you are not required to localize the data, such as the date format.
3.0 Testing Infrastructure

In addition to the new features presented above, you are also required to develop a simple infrastructure which will allow you and your fellow team members to implement drivers and stubs for unit testing your code. The infrastructure should allow for drivers to maintain a reference of the unit (i.e. class.method) that is “tested”, allow for test data to be read from a file, and allow for the invocation of the appropriate method to be tested. The test data file may contain the class name, the method name, and one or more test cases in the form of tuples <input data, correct expected output data>. A similar infrastructure is required for stubs. In particular, the infrastructure should allow for units to maintain a reference to the class stub and the method stub, and read from a file the appropriate data <input data, expected output data> to simulate the call to a unit that has not been implemented yet. In a nutshell:
For drivers the infrastructure should allow the following:
· Read from a file the unit to be tested (method in class)
· Instantiate the appropriate driver, and unit to be tested

· Read from the file the input data and the corresponding expected result data for the method to be tested

· Invoke the method

· Obtain the result

· Compare the obtained result with the expected result

· Report success or failure

In this respect the driver framework instantiates, reads data, invokes, compares, and reports on the unit test on a case by case basis.

For the stubs the infrastructure should allow the following:
· Instantiate the appropriate stub class

· Invoke the stub method in the stub class that possibly reads the expected output for the given input from a file or from an oracle (i.e. a dummy program that computes the correct result given an input)
· Return the result to the unit that is being tested

You should use a clean design, and design patterns that may be applicable (i.e. Abstract Factory, Factory Method, Template, Strategy, Iterator, Command, State, Proxy, Adapter, Chain of responsibility etc.). You should also use a modular architecture for the testing framework, the components of which can be considered as completely separate from the phone system application. You are free to decide the format of the test data files, or the implementation of the Oracle.
You will use the implemented testing infrastructure to test parts of the extended code and, in particular, parts of the code that will be exercising three different scenarios with respect to activating / deactivating the call forwarding, billing, and abnormal operations (i.e. forwarding to a number that does not exist). For the first part of the project you are only required to show by example how your testing framework will operate by providing a message sequencing chart and a class/object diagram involving the major components of your testing framework and example units (as objects for now) that are to be tested.
In the second part of the project you will use this framework to test three methods involving the three possible scenarios as discussed above. In the second part of the project you will also use a commercial testing framework (JUnit or CppUnit) for a more complete testing of your application following the testing plan that you will devise as one of the deliverables of the second part of the project.
For groups with a C++ implementation, they may hardcode individual test cases for each unit to be tested due to the lack of reflection support in the language. In other words, the framework must only support reading in the units to be tested and the input / expected output parameters, and executing the appropriate test unit. For groups with a Java implementation, they are required to use reflection to determine, at run-time, which classes are to be instantiated and which methods are to be called to execute a test case. This information is inferred from the test case (driver) file. In either case, design patterns should still be applied where possible, and the framework should be amenable to the extension of additional test cases.

For example, in a Java implementation, it is expected that new test cases for additional units to be tested can be added by simply adding entries to the driver file. In contrast, in a C++ implementation, new test cases are added by adding a method for the test case.

4.0 Deliverables

For the first part of the project you will need to submit:
1. A Requirements specification document for the extensions. The template for the requirements document can be found at the course web site. For simplicity you need to consider only the following Use Cases for the Section 2 of the SRS document:

a. Activate Call Forwarding Scenario (Normal operation – success)

b. De-activate Call Forwarding Scenario (Normal operation – success)
c. Attempt to forward. Phone not previously forwarded, press #1, press 1 digit, timeout, cancel the attempt to forward.

d. Combination forward and call. Phone B forward to phone C. A call B the time B is on the phone with D. Phone C rings, and B is charged for its call to D, and its forward to C. Also A is charged for its call to B.

2. A Design specification document for the extensions. The template for the design document can also be found at the course web site. The class diagrams and any other component diagrams should interface consistently with the existing application you have implemented already in the previous course. Show only the immediate interactions of the new classes/components with the existing classes/components.
3. A UML Component Diagram, and a class diagram for the Testing Framework you are implementing. You can include these diagrams in the Design document of the extensions, but make sure that the Testing Infrastructure is specified separately and is clearly identified as the Testing infrastructure not the extension infrastructure.

4. A UML object diagram and a message sequencing chart to illustrate the use of the framework when testing a specific method in a specific class.
You can submit an archive file with the above documents to CourseBook by midnight Monday February 27, 2006. Please use the SRS and SDD templates that can be found in the course Web site.
� This list and any other lists which are provided are not meant to be exhaustive.

Page 1 of 6

