Chapter 7

Functional Testing

7.1 Basic Idea

William Howden developed this method for testing programs while visit-
ing the International Mathematics and Statistics Libraries (IMSL) Inc.,
Houston in 1977-1978. IMSL Inc. is presently known as Visual Numer-
ics Inc. (http://www.vni.com/index.html). The following text is from
their website:

Fortune 100 companies have relied upon IMSL for numerical
analysis applications for over 30 years. The IMSL Numerical
Libraries are accurate and reliable. IMSL wuses proven
technology that has been thoroughly tested, well documented,
continuously maintained and used by developers worldwide.

The IMSL 1libraries are a comprehensive set of mathematical
and statistical functions that programmers can embed into
their software applications. These libraries free you
from developing your own internal code by providing
pre-written mathematical and statistical algorithms that
you can embed into your C, Java and Fortran applications.’’

Howden applied the idea of functional testing to programs from Edi-
tion 5 of the IMSL package. IMSL is a well documented and well main-
taine package. The errors he discovered can be considered to be of some
subtlety to have survived to Edition 5 status. The result of his work
has been published in IEEE Transactions on Software Engineering, Vol.
SE-6, No. 2, March, 1980, pp. 162-169.

In mathematics, a function is defined to be a set of ordered pairs
(X;,Y;), where X; is a vector of input values and Y; is a vector of out-

97

98 CHAPTER 7. FUNCTIONAL TESTING

put values. In functional testing, a program P is viewed as a function
that transforms the input vector X; into an output vector Y;, such that
Y; = P(X;). Some instances of P are as follows:

Example 1: Let Y7 = /(X;). Here, P—a square-root computing function—
computes the square-root Y7 of a non-negative integer X;.

Example 2: Let Y5 = C_compiler(X5). Here, P-a C compiler— pro-
duces object code Ys after compiling the C program Xj.

Example 3: Let Y3 = TelephoneSwitch(X3). Here, P—a telephone switch—
produces a variety of tones and voice signals represented by the
vector
Y, ={idle, dial, ring, fast busy, slow busy tone, voice}
by processing input data represented by the vector
X3 = {off hook, on hook, phone number, voice}.

Example 4: Let Yy = sort(X,). Here, P—an implementation of a sort-
ing algorithm—produces a sorted array Yj from the input vector X4
= {A, N}, where A is the array to be sorted and N is the number
of elements in A.

The above four examples suggest that sometimes it is easy to view
a program as a function in the mathematical sense and sometimes it is
more difficult. It is easier when the input values are algorithmically, or
mathematically, transformed into output values, such as in Example
1 and Example 4 above. In fact, Y; is a certain permutation of the
input array A. It is more difficult when the input values are not directly
transformed into the output values. For instance, in Example 3, an
off hook input is not mathematically transformed into a dial tone
output.

However, in functional testing we are not concerned with the details
of how an input vector is transformed into an output vector. Rather, in
functional testing

test data are selected on the basis of the important
properties of the elements in the domain of a program’s
input and output variables.

Therefore, the two key concepts in functional testing are as follows:

7.2. DIFFERENT TYPES OF VARIABLES 99

e Precisely identify the domain of each input and output variable.

e Select values from a data domain having important properties.

Precise identification of the domain of an input or output variable is
done by analyzing the specification and the design documents. In the
following section, we discuss how to select test data from the domain of
a variable.

Note: Here we remind the reader of the scope of functional testing.
Since we analyze the input and output data domains in functional
testing without considering the details of a program, the idea of
functional testing can be applied to an entire program as well as
to individual components (e.g. function, procedure, or method)
of the entire program. Thus, functional testing can be performed
both at the unit and system levels.

7.2 Different types of variables

In this section, we consider numeric variables, arrays, substructures, and
strings, and their important values.

7.2.1 Numeric variable

The domain of a numeric variable is specified in one of two ways as
explained below.

Discrete values: The data domain consists of a set of discrete values.
In this case, functional testing requires us to identify such a set.

Contiguous segments of values: The data domain consists of one or
more segments of integers or real numbers. In this case, functional
testing requires us to identify the minimum (MIN) and maximum
(MAX) values of each contiguous segment.

Example: In Figure 7.1, we show the inputs and output variables of the
Frequency Selection Boz (FSB) module of the Bluetooth wireless
communication system. Bluetooth technology uses frequency hop-
ping spread spectrum technique for accessing the wireless medium.
A piconet channelis viewed as a, possibly infinite, sequence of slots,
where a slot is 625 us in length. The frequency on which a data
packet will be transmitted during a given slot is computed by the
FSB shown in Figure 7.1. The FSB module accepts three input

100 CHAPTER 7. FUNCTIONAL TESTING

variables MODE, CLOCK, and ADDRESS, and generates values of the
output variable INDEX. All the four variables are numeric variables.
The domains of these variables are characterized in the following.

MODE: The domain of variable MODE is the discrete set {23, 79}.
CLOCK: The CLOCK variable is represented by a 28-bit unsigned
number. The smallest increment in CLOCK represents the
elapse of 312.5 us. The FSB module uses the upper 27 bits of
the 28-bit CLOCK. Therefore, the range of CLOCK is specified
as follows.
e MIN = 0x0000000 or 0x0000001
e MAX = OxFFFFFFE or OxFFFFFFF
ADDRESS: The CLOCK variable is represented by a 48-bit unsigned
number. The FSB module uses the lower 28 bits of the 48-bit
ADDRESS. Therefore, the range of ADDRESS from the viewpoint
of the FSB module is specified as follows.

e MIN = Oxyyyyy0000000, where yyyyy is a 20-bit arbi-
trary value.

e MAX = 0xzzzzzFFFFFFF, where zzzzz is a 20-bit arbi-
trary value.

INDEX: This variable assumes values in a given range as specified
in the following.

e MIN =0

e MAX = 22 if MODE = 23
e MAX = 78 if MODE = 79
MODE: {23, 79}

Lower 28 bits

48-bit ADDRESS i Frequency

Selection :>

Box INDEX: 0-78 or
Upper 27 bits 0-22

28-bit CLOCK

Figure 7.1: Frequency selection box of Bluetooth specification.

Once we characterize the domain of a numeric variable as a discrete
set of values or as a set of contiguous segments, test data are selected
based on the following selection criteria.

7.2. DIFFERENT TYPES OF VARIABLES 101

Selection criteria for input variables

Discrete domain: If the input domain is a discrete set of vari-
ables, then tests are carried out which involve each of the val-
ues. Referring to Figure 7.1, the domain of the input variable
MODE consists of a discrete set of values {23, 79}. Therefore,
the FSB module must be tested with both the values of MODE.

Contiguous domain: if the domain of the variable consists of
one or more intervals of numbers, then a program is tested
as follows.

Consider the minimum value of the interval.

Consider the maximum value of the interval.

Consider a value interior to the interval.

Consider certain values which have special mathematical
properties. These values include

-0

-1

— real numbers with small absolute values.

e A program must be tested with input values lying outside
the domains of the input variables. Here the idea is to
observe the behavior of the program in response of illegal
values.

In case the conceptual minimum value of a variable is —oo
and the conceptual maximum value is 400, then a very large
negative and a very large positive value are chosen as the
endpoints of the interval.

Selection criteria for output variables

Discrete domain: If the domain of an output variable consists
of a small set of discrete values, then the program must be
tested with input which result in the generation of each of
the output values. For a large set of discrete values, one may
test the program with input resulting in a number of different
output values.

102

CHAPTER 7. FUNCTIONAL TESTING

Contiguous domain: If an output variable has a domain which
consists of one or more intervals of numbers, then the pro-
gram needs to be tested with input values which result in the
generation of the following output values.

e minimum values of the intervals
e maximum values of the intervals

e an interior point in each interval

Selection criteria for dual-use variables

Sometimes a variable serves as an input to a program (or function)
and holds the output from the program (or function) at the end
of the desired computation. We call such a variable a dual-use
variable. For such variables, we design additional test cases to
meet the following selection criteria.

e Consider a test case such that the program produces a an
output value which is different from the input value of the
same dual-use variable.

e Consider a test case such that the program produces an out-
put value which is identical to the input value of the same
dual-use variable.

Selection criteria for multiple-type variables

Sometimes an input variable can take on values of different types.
For axample, a variable may take on values of type integer in
one program invocation and of type string in another invocation.
It may be unlikely for a programmer to define a single storage
space to hold values of different types. However, such multiple-
type variables may arise in real-life systems, and programs must
take necessary actions to handle them.

Example: In Figure 7.2, we show a part of the tax forms prepared
by Canada Customs and Revenue Agency (CCRA). By analyzing
this specification we conclude that a tax payer (user) inputs a real
number or a blank in Line 2. The value input in Line 2 is a real
number representing the net income of the spouse or common-law

7.2. DIFFERENT TYPES OF VARIABLES 103

If you have a spouse or common-law partner, special rules may apply. See page 5 in
the forms book for details. See also the “involuntary separation” information below.

Enter your net income from line 236 of your return | 1
Enter your spouse or common-law partner’s net income from page 1 of your return + 2
Add lines 1 and 2 Income for Ontario credits = 3
Involuntary separation 6089

If, on December 21, 2001, you and your spouse or common-law
partner occupied separate principal residences for medical,
educational, or business reasons, leave line 2 blank

and enter his or her address in the area beside box 6089.

Figure 7.2: A part of Form ON479 of T1 General - 2001 published by
Canada Customs and Revenue Agency.

partner of the user if both of them occupied the same residence on
December 21, 2001. Otherwise, if they occupied separate principal
residences for the specified reasons, then Line 2 must be left blank
and the addredd of the spouse or common-law partner must be
provided in box 6089.

Clearly, Line 2 is an input to a tax filing software system which
must be able to handle different types of values input in Line 2,
namely real values and blank—and a blank is not the same as 0.0.
This is because, if we equate a blank with 0.0 then the software
system may not know when and how to interpret the information
given in box 6089.

If an input or output variable can take on values of different types,
then the following criterion is used.

e Select test data by individually considering each type
of values that the variable can take on.

Referring to Line 2 input of Figure 7.2, a tax filing program must
be tested as follows.

e First, interpret Line 2 as a numeric variable taking on values
from an interval, and apply selection criteria such as selecting
the minimum value, the maximum value, and an interior value
of the defined interval.

e Second, interpret Line 2 as a string variable taking on values
from a discrete set of values, where the discrete set consists
of just one member, namely a blank.

104 CHAPTER 7. FUNCTIONAL TESTING

7.2.2 Arrays

An array has a more complex structure than an individual numeric vari-
able. This is because of three distinct properties of an array, as follows.

Dimensions of the array: Just as we select extremal-both minimum
and maximum—values and an intermediate value of a numeric vari-
able, we need to consider arrays of different configurations, such
as an array of minimum size, an array of maximum size, an ar-
ray with a minimum value for the first dimension and a maximum
value for the second dimension, and so on.

Values of individual elements of an array: This property is simi-
lar to that of a numeric variable. Individual array elements must
be treated separately.

Collective interpretation of a substructure of an array: Just as
we consider special values of a numeric variable, such as value
0, 1, and a small value €, there exist special values of substruc-
tures of an array. For example, some well-known substructures of
a 2-dimensional array are individual rows and columns, diagonal
elements, lower triangular matrix, and upper triangular matrix.
These substructures are interpreted as a whole.

Selection criteria for array dimensions

e The first step is to completely specify the dimensions of an
array variable.

e The second step is to construct different, special configura-
tions of the array by considering special values of individual
array dimensions and their combinations. Assume that an
array has k£ dimensions, and we choose the two endpoints
and an interval interior for each dimension. These selections
can be combined to form 3* different sets of dimensions for a
k-dimensional array.

e The third step is to apply the selection criteria of Section
7.2.1 to individual elements and substructures of a selected
array configuration.

7.3. COMBINING INPUT VALUES TO OBTAIN A TEST VECTOR105

7.3 Combining input values to obtain a test vec-
tor

A test wvector, also called test data, is an instance of the input to a
program. Thus, a test vector is a certain configuration of the values of
all the input variables. Values of individual input variables chosen in
the preceedings sections must be combined to obtain a test vector. If a
program has n input variables vary, vars, ..., var, which can take on
ki, ko, ..., ky special values, respectively, then there are k1 X ko X ... X ky,
possible combinations of test data.

In Table 7.1, we show the number of special values of different input
variables of the FSB module of Figure 7.1. Variable MODE takes on values
from a discrete set of size 2. Thus, we consider both the values from the
discrete set. Variables CLOCK and MODE take on values from one interval
each. Thus, we consider three special values for each of them. From
Table 7.1, one can generate 2 X 3 x 3 = 18 test vectors.

Variable | Number of special | Special values
values (k)

MODE 2 {23, 79}

CLOCK 3 {0x0000000,
0x000FFO00,
OxFFFFFFF}

ADDRESS 3 {0xFFFFF0000000,
OxFFFFFOOFFFO0O,
OxFFFFFFFFFFFF}

Table 7.1: Number of special values of inputs to the FBS module of
Figure 7.1.

If a program has n input variables, each of which can take on k
special values, then there are k™ possible combinations of test vectors.
We know that k is a small number, but » may be a large number. Even
with £ = 2 and n = 20, we will have more than a million test vectors.
Thus, there is a need to identify a method to reduce the number of
test vectors obtained by considering all possible combinations of sets of
special values of variables.

Howden propsed that input variables be put into the same subset if
they are functionally related. 1t is difficult to give a formal definition of
functionally related, but it is easy to identify them. For example,

106 CHAPTER 7. FUNCTIONAL TESTING

e variables appearing in the same assignment statement are func-
tionally related, and

e variables appearing in the same branch predicate (the condition
part of an if statement, for example) are functionally related.

To reduce the total number of input combinations, Howden sug-
gested that we produce all possible combinations of special values of
variables falling in the same functionally related subset. In this way, the
total number of combinations of special values of the input variables is
reduced.

Referring to Figure 7.3(a), let program P have five input variables,
such that x1 through x4 take on three special values, and x5 is a Boolean
variable. Thus, the total number of combinations of the special values of
the four input variables is 3* x 2 = 162. Let us assume that program P
has an internal structure as shown in Figure 7.3(b), where variables x1
and x2 are functionally related and variables x3 and x4 are functionally
related. Function f1 uses the input variables x1 and x2. Similarly,
function f1 uses the input variables x3 and x4. Input variable x5 is
used to decide whether the output of f1 or the output of f2 will be the
output of P. Thus, we can consider 32 = 9 different combination of x1
and x2 as input to f1, 3 = 9 different combinations of x3 and x4 as
input to f2, and two different values of x5 to the decision box d in P.
Thus, we need 36 (= (9+9) x 2) combinations of the five input variables
x1 through x5, which is much smaller than 162.

Functionally
related variables

x1 x1 p
g
X2 X2 | fl
— z — z
X3 P - X3 "
O L
x4 x4 || ™ f2
[—
x5 x5
—_—
Functionally

related variables

(a) (b)

Figure 7.3: Functionally related variables.

7.4. TESTING A FUNCTION IN CONTEXT 107

x= +k
x= -k
x= 0

Table 7.2: A set of test data for program P in Figure 7.4.

7.4 Testing a function in context

Let us consider a program P and a function f in it as shown in Figure
??. Variable x is an input to P and input to f as well. Suppose that
x can take on values in the range [—o00, +00], and that f is called only
when the predicate x >= 20 holds. If we are unaware of the predicate
x >= 20, then we are likely to select the set of test data shown in Table
7.2 to test P. Here, k is a number with a large magnitude.

Figure 7.4: A function in context.

The reader may note that the function f will be invoked just once
for x = 4k, assuming that k >= 20, and it will not be invoked when P
is run with the other two test data, because of the conditional execution
of f. Also, testing the function f in isolation will require us to generate
the same test data as above. And, it may be noted that the latter two
data points are invalid data, because they fall outside the range of x for
f in P. The valid range of x for f is [20, +00], and functional testing
in context requires us to select the values of x shown in Table 7.3. An
illegal value of x for f is 20 - e.

7.5 Complexity of applying functional testing

In this chapter, we have explained the basic idea in functional testing.
To revisit the topic, in functional testing, we perform the following steps.

e Identify the input and output domains of a program.

108 CHAPTER 7. FUNCTIONAL TESTING

x = k, where k >> 20.
x = y, where 20 < y << k.
x= 20

Table 7.3: A set of data to test function f of program P in Figure 7.4
in context.

e For selected input values, compute the expected outcome as illus-
trated in Figure 7.5(a).

e For selected output values, determine the input values that will
cause the program to produce those outputs as illustrated in Figure
7.5(b).

Generating test data by analyzing the input domains has the follow-
ing two characteristics.

e The number of test cases obtained from an analysis of the input
domains is likely to be too many, because of the need to design
test vectors representing different combinations of special values
of the input variables.

e Generation of the expected output for a certain test vector is rela-
tively simple. This is because what a test designer have to do is to
compute an expected output from an understanding and analysis
of the specification of a system.

On the other hand, generating test data by analyzing the output
domains has the following characteristics.

e The number of test cases obtained from an analysis of the out-
put domains is likely to be fewer compared to the same number
of input variables, because there is no need to consider different
combinations of special values of the output variables.

e Generation of the input vector needed to produce a chosen output
value will require one to analyze the specification in the reverse
direction, as illustrated in Figure 7.5(b), and this will be a more
complex task than computing an expected value in the forward
direction, as illustrated in Figure 7.5(a).

7.5. COMPLEXITY OF APPLYING FUNCTIONAL TESTING 109

Input domains Output domains
’ P

(a)
Input domains Output domains

(b)

Figure 7.5: Obtaining output values from an input vector (a) and ob-
taining an input vector from an output value (b) in functional testing.

110 CHAPTER 7. FUNCTIONAL TESTING

7.6 Functional testing in general

So far in this chapter we have discussed how to apply the idea of func-
tional testing to a program—the entire program. However, the underlying
concept—that is analyzing the input and output domains of a program—
can as well be applied to individual modules, functions, or even lines of
code of a program. This is because every computing element—irrespective
of whether it is an entire program, an individual function of a program,
or a line of code in a function—can be described in terms of its input and
output domains, and hence the idea of functional testing can be applied
to such a computing element.

Referring to Figure 7.6, program P is structured into three modules
M1, M2 and M3. Also, M1 is composed of functions fI and fj, M2
is composed of functions f2 and f3, and M3 is composed of functions f4
and f6. We can apply the idea of functional testing to the entire program
P, individual modules M1, M2, and M3, and individual functions fI
through f6 by considering their respective input and output domains as
listed in Table 7.4.

x1

x2

x3

x4

Figure 7.6: Functional testing in general.

Conceptually, one can apply functional testing at any level of abstraction—
from a single line of code at the lowest level to the entire program at the

7.7. EXERCISES

highest level. However, as we consider individual modules, functions,
and line of code, the task of accurately identifying the input and output
domains of the computing element under consideration becomes more

and more difficult.

Entity name Input variables | Output variables
P {x1, x2, x3, x4} {z}
M1 {x1, x2} {y5}
M2 {x3, x4} {y4}
M3 {y4, y5} {z}
f1 {x1, x2} {y1}
12 {x3, x4, y3} {y2, y4}
13 {y2} {y3}
4 {y4} {y6}
15 {y1} {y5%
16 {y52 {y62

Table 7.4: Input and output domains of functions of P in Figure 7.6

7.7 Exercises

{To be included ..

-3

112 CHAPTER 7. FUNCTIONAL TESTING

