Chapter 1

Getting Started

1.1 What is a test case

In its most basic form, a test case is a simple pair of < input, expected outcome >.
If a program under test is expected to compute the square-root of non-
negative numbers, then four examples of test cases are shown in Figure

1.1.

TB : <0,0>,

TB,: <25 5>,

TB;: <40, 6.3245553 >, and
TBy: < 100.5, 10.024968 >.

Figure 1.1: Examples of basic test cases.

In state-less systems, where the outcome depends solely on the cur-
rent input, test cases are very simple in structure as shown above. A pro-
gram to compute the square-root of non-negative numbers is an example
of a state-less system. A compiler for the C programming language is
another example of a state-less system.

In state-oriented systems, where the program outcome depends both
on the current state of the system and the current input, a test case may
consist of a sequence of < input, expected outcome > pairs. A telephone
switching system and an automated teller machine (ATM) are examples
of state-oriented systems. For an ATM machine, a test case for testing
the withdraw function is shown in Figure 1.1. Here, we assume that
the user has already entered inputs like the cash card and the PIN, and
those information have been validated by the ATM.

2 CHAPTER 1. GETTING STARTED

TSy : < check balance, $500.00 >, < withdraw, “amount?” >,
< $200.00, “$200.00” >, < check balance, $300.00 >.

Figure 1.2: An example of a test case with a sequence of <
input, expected outcome >.

In the test case TS, “check balance” and “withdraw” in the first,
second and fourth tuples represent the pressing of the appropriate keys
on the ATM machine. Tt is assumed that the user account has $500.00 on
it, and the user wants to withdraw an amount of $200.00. The expected
outcome “$200.00” in the third tuple represents the cash dispensed by
the ATM. After the withdrawal operation, the user makes sure that the
remaining balance is $300.00.

For state-oriented systems, most of the test cases include some form
of decision and timing in providing input to the system. Thus, a test case
may include loops and timers, which we do not show at this moment.

1.2 Expected outcome

The outcome of program execution is a complex entity that may include

e values produced by the program

— outputs for local observation (integer, text, audio, image)

— outputs (messages) for remote storage, manipulation, or ob-
servation

e state change

— state change of the program

— state change of the database (due to add/delete/update op-
erations)

e a sequence or set of values which must be interpreted together for
the outcome to make sense.

Ideally, the expected outcome should be computed while designing
the test case, that is before the program is executed with the selected
input. The idea here is that one should be able to compute the ex-
pected outcome from an understanding of the program’s requirements.
Precomputation of the expected outcome will eliminate any implement-
taion bias in case the test case is designed by the developer.

1.3. FAILURE, ERROR AND FAULT 3

In exceptional cases, where it is extremely difficult, impossible, or
even undesirable to compute a single expected outcome, one may do the
following:

1. execute the program with the selected input
2. observe the actual outcome of program execution
3. verify that the acutal outcome is the expected outcome

4. use the verified acutal outcome as the expected outcome in subse-
quent runs of the test case.

1.3 Failure, Error and Fault

In the literature on software testing, one may find references to the terms
failure, error, bug, and fault. In the following, we present these terms as
they are understood in the fault-tolerant community.

e Fuailure: A failure is said to occur whenever the external behavior
of a system does not conform to that prescribed in the system
specification.

e FError: An error is a state of the system which, in the absence of
any corrective action by the system, could lead to a failure which
would not be attributed to any event subsequent to the error.

e Fault: A fault is the adjudged cause of an error.

Sometimes test engineers and software developers interchangeably
use the terms errors, faults and bugs. In this book, we too will use them
interchageably. The above definition of failure assumes that the given
specification is acceptable to the customer. However, if the specification
does not meet the expectations of a customer, then, of course, even a
fault-free implementation fails to satisfy the customer. Because of the
“human factor” involved in the overall acceptance of a system, it is a
difficult task to give a precise definition of fault, error, or bug. In spite
of this difficulty, we will stick to the given definition above.

1.4 The Objectives of Testing

The people having a stake in the test process are the programmers, QA
engineers, project managers, and the customers. These people view the
test process from different perspectives, which can be categorized as four
viepoints as explained below.

4 CHAPTER 1. GETTING STARTED

It does work: After implementing a module as a function, procedure,
or method, a programmer may want to test whether or not the
module works to in normal circumstances. The same idea applies
to an entire system as well-once a system has been integrated, the
developers may want to test whether or not the system performs
the basic functions. Here, for psychological reason, the test’s ob-
jective is to show that the system works, rather than it does not
work.

It does not work: Once the programmer or the development team is
satisfied that a module or the system works to a certain degree,
more tests are conducted with the objective of finding faults with
the module or the system. Here, the idea is to try to make the
module of the system fail.

Reduce the risk of failure: Most of the complex software systems
contain faults, which cause the system to fail from time to time.
This concept of failing from time to time gives rise to the notion of
failure rate of the system. As faults are discovered and fixed while
performing more and more tests, the failure rate of a system gen-
erally decreases. Thus, a higher-level objective of performing tests
is to bring down the risk of failing to an acceptable level. Fail-
ure rates are mathematically modeled using the idea of software
reliability, which will be explained in Chapter ?7.

Reduce the cost of testing: The different kinds of costs associated
with the test process include

e the cost of designing, maintaining, and executing the test
cases,

e the cost of analyzing the result of executing each and every
test case,

e the cost of documenting the test cases, and

e the cost of actually executing the system.

Therefore, the less the number of test cases designed, the less will
be the associated cost of testing. However, producing a small
number of arbitrary test cases is not a good way of saving cost.
The highest level of objective of performing tests is to produce
low-risk software with fewer number of test cases. This idea leads
us to the concept of effectiveness of test cases. Test engineers must
judiciously select fewer, effective test cases.

1.5. WHAT IS COMPLETE TESTING 5

1.5 What is Complete Testing

It is not unusual to find people making claims such as “I have exhaus-
tively tested the program.” Complete or exhaustive testing means there
are no undiscovered faults at the end of the test phase. Thus, all prob-
lems must be known at the end of complete testing. For most practical
systems, complete testing is near impossible, because of the following
reasons:

e The domain of possible inputs of a program is too large to be used
in the test process. There are both valid inputs and invalid inputs.
The program may have a large number of states. There may be
timing constraints on the inputs, i.e., an input may be valid at
a certain time and invalid at other times. An input value, which
is valid but is not properly timed, is called an inopportune input.
Therefore, the input domain of a system can be very large to be
applied to the program.

e The design issues may be too complex to completely test. The
design might have included implicit design decisions and assump-
tions.

e It may not be possible to create all possible execution environments
of the system. This becomes more significant when the behavior
of the software system depends on the real, outside world, such
as weather, temperature, altitude, pressure, geographic topology,
and so on.

1.6 The Central Issue in Testing

We must realize that though the outcome of complete testing—that is
discovering all faults—is highly desirable, it is a near impossible task and
it must not be attempted. The next best thing is to select a subset of
the input domain to test a program. Referring to Figure 1.3, let D be
the input domain of a program P. Suppose that we select a subset D1
of D, i.e. D1 C D, to test program P. It is possible that D1 exercises
only a part P1, i.e. P1 C P, of the execution behavior of P, in which
case faults with the other part P2 will go undetected.

By selecting a subset of the input domain D1, the test engineer
attempts to deduce properties of an entire program P by observing the
behavior of a part P1 of the entire behavior of P on selected inputs D1.
Therefore, the selection of the subset of the input domain must be done
in a systematic and careful manner so that the deduction is as accurate

6 CHAPTER 1.

Input domain D Program P

GETTING STARTED

Apply input
pply inputs P1

P2

Observe outcome

-

Figure 1.3: A subset of the input domain exercising a subset of the

program behavior.

and complete as possible. Thus, lack of complete testing gives rise to

the possibility of residual faults in a system.

1.7 Test Activities

Compute expected outcome for the selected input

Selected input

Observe actual

Result
Analysis

—_— Program (P)

Environment

outcome

Assign a test verdict

Figure 1.4: Different activities in program testing.

In order to test a program, a test engineer must perform a sequence
of activities called test activities. Most of these activities have been
shown in Figure 1.4, and explained in the following. These explanations

focus on a single test case.

Identify a feature to be tested: The first activity is to identify the
feature to be tested. The feature defines the intention or purpose
of designing one or more test cases to ensure that the program
supports the feature. A purpose must be associated with every

test case.

1.7. TEST ACTIVITIES 7

Suppose that a module under test is meant to sort a given array
of integers in the ascending order. Then, some examples of test
features are as follows.

e Sort an array of two elements which take on different values
and the initial array is unsorted.

e Sort an array of 20 elements where half of the elements have
the same value.

Select inputs: The second activity is to select test inputs. Selection
of test inputs can be based on the requirements specification, the
source code, or our expectations. Test inputs are selected by keep-
ing the test feature in mind. For example, for the first test feature
given above, one may select test inputs as follows: size of input
array = 2, input array = [20, 10].

Compute expected outcome: The third activity is to compute the
expected outcome of the program or the module with the selected
inputs. In most of the cases, this can be done from a high-level
understanding of the test feature and the specification of the mod-
ule under test. We must realize that in some cases, it may be
extremely difficult, near impossible, or undesirable to compute a
single, specific expected outcome. Soon we will explain what to
do in such a case.

Setup the execution environment of the progam: The fourth step
is to prepare the right execution environment of the program. In
this step all the external assumptions behind program execution
must be satisfied. A few examples are as follows.

e Initialize the local system external to the program;
e Initialize any remote, external system (e.g. remote partner)

e Sometimes the test engineer may have to wait until the phys-
ical environment is set up. For example, wait for the right
weather to happen, wait for the time of peak telephone traffic,
and so on.

Execute the program: In the fifth step, the test engineer executes the
program with the selected inputs and observes the actual outcome
of the program. Test execution may not be a simple task like
compiling a program or editing a file. To execute a test case, inputs
may be supplied to the program at different physical locations at
different times. In a later part of the book, we will discuss the
issue of test coordination.

8 CHAPTER 1. GETTING STARTED

Analyze the test result: The final test activity is to analyze the re-
sult of test execution. Here, the main task is to compare the actual
outcome of program execution with the expected outcome. The
complexity of comparison depends on the complexity of the data
observed. The observed data can be as simple of an integer or a
string of characters, or as complex as an image, a video clip or
audio. At the end of the analysis step, a test verdict is assigned
to the program. There are three kinds of test verdicts Pass, Fail
and Inconclusive as explained below.

e If the program produces the expected outcome and the pur-
pose of the test case is satisfied, then a Pass verdict is as-
signed.

e If the program does not produce the expected outcome, then
a Fail verdict is assigned.

e If the program produes the expected outcome, but the pur-
pose of the test case is not satisfied, then an Inconclusive
verdict is assigned. Additional tests must be conducted to
refine an Inconclusive verdict into a Pass or a Fail.

A test report must be written after analyzing the test result. The
motivation for writing a test report is to get the fault fixed, if the
test revealed a fault. Therefore, the report must be informative.
A test report may contain the following information:

e Explain how to reproduce the failure.
e Analyze the failure to be able to describe it.

e A pointer to the actual outcome and the test case complete
with the input, the expected outcome, and the execution en-
vironment.

Chapter 2

Theory of Program Testing

In this chapter, we discuss a few theories put forward in the past two to
three decades.

2.1 Goodenough and Gerhart’s Theory

In the year 1975, Goodenough and Gerhart published a seminal paper on
test data selection in the IEEE Transactions on Software Engineering.
In that paper, they gave a fundamental testing concept, identified a few
types of program erros, and gave a theory for selecting test data from a
program’s input domain. Though this theory is not without critiques, it
is widely quoted and appreciated in the research community of software
testing.

2.1.1 Fundamental Concepts

Input domain D

Program P(d)
P

Figure 2.1: Executing a program with a subset of the input domain.

Referring to Figure 2.1, let D be the input domain of a program P.
Let T C D. The result of executing P with input d € D is denoted by
P(d).

10 CHAPTER 2. THEORY OF PROGRAM TESTING

OK(d): Define a predicate OK(d) which expresses the acceptability
of result P(d). Thus, OK(d) = true if and only if P(d) is an
acceptable outcome.

SUCCESSFUL(T): For agiven T C D, T is a successful test, denoted
by SUCCESSFUL(T), if and only if V¢ € T, OK(t). Thus,
SUCCESSFUL(T) = true, if and only if Vt € T, OK (t).

Ideal Test: Let T'C D. T constitutes an ideal test if

OK(t),Vte T = OK(d),Vd € D.
An ideal test is interpreted as follows. If from the successful exe-
cution of a sample of the input domain we can conclude that the
program contains no errors, then the sample constitutes an ideal
test. Practitioners may loosely interpret “no error” as “not many
errors of severe consequences.” The validity of the above defini-
tion of an ideal test depends on how “thoroughly” T exercises P.
Some people equate thorough test with exhaustive or complete test
in which case T = D.

COMPLETE(T, C): A thorough test, T, is defined to be one satisfy-
ing COMPLETE(T,C), where COMPLETE is a predicate that
defines how some test selection criteria, C, is used in selecting a
particular set of test data T' from D. COMPLETE(T,C) will be
defined in a later part of this section. Essentially, C' defines what
properties of a program must be exercised to constitute a thorough
test.

Reliable Criterion: A selection criterion C is reliable if and only if
either every test selected by C' is successful, or no test selected is
successful. Thus, reliability refers to consistency.

Valid Criterion: A selection criterion C is walid if and only if when-
ever P is incorrect, C selects at least one test set T" which is not
successful for P. Thus, validity refers to the ability to produce
meaningful results.

Theorem: If C' is a reliable and valid criterion, then any test selected
by C' is an ideal test.

One may be tempted to find a reliable and valid criterion, if it exists,
so that all faults can be detected with a small set of test cases. However,
there are several difficulties in applying the above theory, as explained
in the following.

2.1. GOODENOUGH AND GERHART’S THEORY 11

e Since faults in a program are unknown, it is impossible to prove
the reliability and validity of a criterion. A criterion is guaranteed
to be both reliable and valid if it selects the entire input domain
D. However, this is undesirable and impractical.

e Neither reliability nor validity is preserved during the debugging
process, where faults keep disappearing.

e If the program P is correct, then any test will be successful and
every selection criterion is reliable and valid.

e If P is not correct, there is in general no way of knowing whether
a criterion is ideal without knowing the errors in P.

2.1.2 The Theory of Testing

Let D be the input domain of a program P. Let C' denote a set of test
predicates. If d € D satisfies test predicate ¢ € C, then ¢(d) is said to
be true. Selecting data to satisfy a test predicate means selecting data
to exercise the condition combination in the course of executing P.

With the above idea in mind, COMPLETE(T,C), where T C D,
is defined as follows:

COMPLETE(T,C) = (Ve € C)(3t € T)e(t)
A
(Vt € T)(3c € C)c(t).

What the above theory essentially means is this. For every test
predicate, we select a test such that the test predicate is satisfied. Also,
for every test selected, there exists a test predicate which is satisfied by
the selected test.

The definitions of an ideal test and thoroughness of a test do not
reveal any relationship between them. However, we can establish a re-
lationship between the two in the following way.

Let B be the set of faults (or bugs) in a program P, which are re-
vealed by an ideal test T7. Let a test engineer identify a set of test predi-
cates C1, and design a set of test cases Ty, such that COM PLETE(T}, C1)
is satisfied. Let Bj represent the set of faults revealed by 7). There is
no guarantee that 7 reveals all the faults. Later, the test engineer iden-
tifies a larger set of test prediactes C, such that C5 D (', and designs
a new set of test cases Tb, such that 7o O T} and COM PLETE(T5, Cs)

12 CHAPTER 2. THEORY OF PROGRAM TESTING

is satisfied. Let By be the set of faults revealed by T5. Assuming that
the additional test cases selected reveal more faults, we have By D Bj.
If the test engineer repeats this process, he may ultimately identify a
set of test predicates C; and design a set of test cases T7, such that
COMPLETE(Ty,Cy) is satisfied and 17 reveals the entire set of faults
B. In this case, T} is a thorough test satisfying COMPLETE(Ty,Cy)
and represents an ideal test set.

2.1.3 Program Errors

Any approach to testing is based on assumptions about how program
faults occur. Faults are due to two main reasons as explained below.

e Faults occur due to our inadequate understanding of all conditions
that a program must deal with.

e Faults occur due to our failure to realize that certain combinations
of conditions require special treatments.

Goodeough and Gerhart classify program faults as follows:

Logic fault: This class of faults mean a program produces incorrect
results independent of resource required. That is, the program
fails because of the faults present in the program and not because
of a lack of resources. Logic faults can be further split into three
categories as follows:

Requirements fault: This means our failure to capture the real
requirements of the customer.

Design fault: This represents our failure to satisfy an understood
requirement.

Construction fault: This represents our failure to satisfy a de-
sign.Suppose that a design step says “Sort array A.” To sort
the array with IV elements, one may choose one of the several
sorting algorithms. Let

for (i = 0; i < N; i++) {

be the desired for loop construct to sort the array. If a
programmer writes the for loop in the following form

2.1. GOODENOUGH AND GERHART’S THEORY 13

for (i = 0; i <= N; i++){

then there is a construction error in the implementation.

Performance fault: This class of faults lead to a failure of the program
to produce expected results within specified or desired resource
limitations.

Thorough testa must be able to detect faults arising from any of the
above reasons. Test data selection criteria must reflect information de-
rived from each stage of software development. Since, untimately, each
type of fault is manifested as an improper effect produced by an imple-
mentation, it is useful to categorize the sources of faults in implemen-
tation terms. In the following, we categorize faults in implementation
terms.

Missing control-flow paths: Intuitively, a control-flow path, or sim-
ply a path, is a feasible sequence of instructions in a program. A
path may be missing from a program if we fail to identify a con-
dition and specify a path to handle that condition. An example
of a missing path is our failure to test for a zero divisor before
executing a division. If we fail to recognize that a divisor can take
up a zero value, then we will not include a piece of code to handle
the special case. Thus, a certain desirable computation will be
missing from the program.

Inappropriate path selection: A program executes an inappropriate
path if a condition is expressed incorrectly. In Figure 2.1.3, we have
shown a desired behavior and an implemented behavior. Both
the behaviors are identical except in the condition part of the if
statement. The if part of the implemented behavior contains
an additional condition B. It is easy to see that both the desired
part and the implemented part behave in the same way for all
combinations of values of A and B except when A =1 and B = 0.

Inappropriate or missing action: There are three instances of this
class of fault.

e One may calculate a value using a method that does not
necessarily give the correct result. For example, a desired
expression is x = x * w, whereas it is wrongly written as

14 CHAPTER 2. THEORY OF PROGRAM TESTING

Desired behavior Implemented behavior
if (4) proci(); if (A && B) procl();
else proc2(); else proc2();

Figure 2.2: An example of inappropriate path selection.

x = x + w. These two expressions produce identical results
for several combinations of x and w, suchas x = 1.5, w = 3,
for example.

e Failing to assign a value to a variable is a kind of missing
action.

e Calling a function with the wrong argument list is a kind of
inappropriate action.

The main danger due to an inappropriate or missing action is
that the action is incorrect only under certain combinations of
conditions.

Therefore, to find test data that reliably reveal errors, one must do
the following:

e Identify all the conditions relevant to the correct operation of a
program.

e Select test data to exercise all possible combinations of these con-
ditions.

The above idea of selecting test data leads us to define the following
terms

Test data: Test data are actual values from a program’s input domain
that collectively satisfy some test selection criterion.

Test predicate: A test predicate is a description of conditions and
combinations of conditions relevant to the program’s correct oper-
ation.

e Test predicates describe what aspects of a program are to be
tested. Test data cause these aspects to be tested.

e Test predicates are the motivating force for test data selec-
tion.

2.2. WEYUKER AND OSTRAND’S THEORY 15

e Components of test predicates arise first and primarily from
the specifications for a program.

e As implementations are considered, further conditions and
predicates may be added.

2.1.4 Conditions for Reliability

A set of test predicates must at least satisfy the following conditions to
have any chance of being reliable. These conditions are key to meaning-
ful testing.

e Every individual branching condition in a program must be repre-
sented by an equivalent condition in C.

e Every potential termination condition in the program, for example,
an overflow, must be represented by a condition in C.

e Every condition relevant to the correct operation of the program
that is implied by the specification and knowledge of program’s
data structure, must be represented as a condition in C.

e Test predicates must be independent.

2.2 Weyuker and Ostrand’s Theory

Goodenough and Gerhart’s theory of an ideal test suffers from a fault,
namely its dependence on the program being tested. In practice, as
program failures are observed, the progarm is debugged to locate faults,
and the faults are generally fixed as soon as they are found. During this
debugging phase, as the program changes, so does the idealness of a test
set. This is because a fault which was revealed before debugging is no
more revealed after debugging and fault fixing.
[Complete this part]

16 CHAPTER 2. THEORY OF PROGRAM TESTING

2.3 Gourlay’s Theory

2.3.1 Definitions

To motivate a theoretical discussion of testing, we begin with an ideal
process for software development, which consists of the following steps.

e First, a customer and a development team specify what is needed.

e Second, the development team takes the specification and attempts
to write a program to meet the specification.

e A test engineer takes both the specification and the program, and
selects a set of test cases. The test cases are based on the specifi-
cation and the program.

e The program is executed with the selected test data, and the test
outcome is compared with the expected outcome.

e If the program fails some of the test cases, the program contains
faults.

e If the program passes all the test cases, we call the program to be
ready for use.

We focus on the selection of test cases and the interpretation of their
results. We assume that the specification is correct, and the specification
is the sole arbiter of the correctness of the program. The program is
said to be correct if and only if it satisfies the specification. Gourlay’s
testing theory establishes a relationship between three sets of entities:
specifications, programs, and tests. The set of all programs are denoted
by P, the set of all specifications by S, and the set of all tests by 7.
Members of P will be denoted by p and ¢, members of S will be denoted
by r and s, and members of 7 will be denoted by ¢ and w.

Upper case letters will denote subsets of P, S, and 7. For examples,
peEPCPandteT CT, where t denotes a single test case. The cor-
rectness of a program p with respect to a specification s will be denoted
by p corr s. Given s, p, and ¢, the predicate “p ok(t) s” means that the
result of testing p under ¢ is judged successful by specification s. The
reader may recall that T' denotes a set of test cases, and p ok(T) s is
true if and only if p ok(t) s, Vt € T.

We must realize that if a program is correct, then it will never pro-
duce any unexpected outcome with respect to the specification. Thus,
p corr s = p ok(t) s, Vt.

2.3. GOURLAY’S THEORY 17

Definition: A testing system is a collection < P, S, T, corr, ok >,
where P, S, and T are arbitrary sets, corr C P x S, sets, ok C T xP xS,
and VpVsVt(p corr s = p ok(t) s).

Definition: Given a testing system < P,S,7T, corr, ok > a new
system < P,S,T’, corr, ok’ > is called a set construction, where T is
the set of all subsets of T, and where p ok’ (T') s & Vi(t € T = p ok(t) s).
(The reader may recall that T' is a member of 7', because T' C T.)

Theorem: < P,S,T', corr, ok’ >, a set construction on a testing
system < P, S, T, corr, ok >, is itself a testing system.

[Proof]

The set construction is interpreted as follows. A test consist of a
number of trials of some sort, and success of the test as a whole depends
on success of all the trials. In fact, this is the rule in testing practice,
where a test engineer must run a program again and again on a variety
of test data. Failure of any one run is enough to invalidate the program.

Definition: Given a testing system < P,S,T, corr, ok > a new
system < P, S,T’, corr, ok’ > is called a choice construction, where T'
is the set of subsets of 7, and where p ok/(T) s < 3t(t € T Ap ok(t) s).
(The reader may recall that T' is a member of T, because T' C T.)

Theorem: < P,S,T', corr, ok’ >, a choice construction on a testing
system < P, S, T, corr, ok >, is itself a testing system.

[Proof]

The choice construction models the situation in which a test engineer
is given a number of alternative ways of testing the program, all of which
are assumed to be equivalent.

Definition: A test method is a function M : P xS — T.

That is, in the general case, a test method takes the specification S
and an implementation program P, and produces test cases. In prac-
tice, test methods are predominantly program dependent, specification
dependent, or totally dependent on the expectations of customers, as
explained below.

Program dependent: In this case, T = M(P), that is, test cases are
derived solely based on the source code of a system. This is called
while-box testing. Here, a test method has complete knowledge of
the internal details of a program. However, from the viewpoint of
practical testing, a white-box method is generally not applied to an
entire program. Rather, one applies such a method to small units
of a given large system. A wunit refers to a function, procedure,
method, and so on. A white-box method allows a test engineer to
use the details of a program unit. Effective use of a program unit

18 CHAPTER 2. THEORY OF PROGRAM TESTING

requires a thorough understanding of the unit. Therefore, white-
box test methods are used by programmers to test their own code.

Specification dependent: In this case, T = M (S), that is, test cases
are derived solely based on the specification of a system. This is
called black-boz testing. Here, a test method does not have access
to the internal details of a program. Rather, such a method uses
information provided in the specification of a system. Because
specifications are much smaller in size than their corresponding
implementations, it is not unusal to use an entire specification in
the generation of test cases. Black-box methods are generally used
by the develepment team and an independent quality-assurance

(QA) group.

Expectation dependent: In practice, customers may generate test
cases based on their ezpectations from the product at the time
of taking delivery of the system. These test cases may include
continuous operation tests, usability tests, and so on.

2.3.2 Power of Test Methods

A test engineering is concerned with what method to use to produce test
cases, and how to compare test methods so that he can find out what test
methods are better than others. Let M and N be two test methods. For
M to be at least as good as N, we must have the situation that whenever
N finds an error, so does M. In other words, whenever a program fails
under a test case produced by method N, it will also fail under a test
case produced by method M, with respect to the same specification.
Therefore, Fiy C F)y, where Fy and F); are the sets of faults discovered
by test sets produced by methods N and M, respectively.

Let Ths and T be the set of test cases produced by methods M
and N, respectively. Then, we need to follow two ways to compare their
fault-detection power.

Case 1: Ty O Tx. In this case, it is clear that method M is at least
as good as method N. This is because, method M produces test
cases which reveal all the faults revealed by test cases produced
by method N. This case has been depicted in Figure 2.3(a).

Case 2: Ty and Ty overlap, but Ty 2 T. This case suggests that
Ty does not totally contain Ty. To be able to compare their fault
detection ability, we execute the program P under both the sets

2.3. GOURLAY’S THEORY 19

of test cases, namely Tjs and Tx. Let Fj; and Fy be the sets of
faults detected by test sets Ths and T, respectively. If Fiy O Fy,
then we say that method M is at least as good as method N. This
situation has been explained in Figure 2.3(b).

(p)3 m

(a)

N Execute

gﬂﬂ@

Figure 2.3: Different ways of comparing power of test methods. When
one method produces all test cases produced by another method (a),
and when the test sets intersect (b).

(b)

20

CHAPTER 2. THEORY OF PROGRAM TESTING

Chapter 3

Test Generation Methods

3.1 Sources of Information for Test Case Selec-
tion

Test cases can be designed by considering all sources of information
related to a progarm. These sources are listed and explained below.

Requirements and functional specifications: The process of soft-
ware development begins by capturing user needs. Depending on
the particular life-cycle model chosen, the amount of user needs
identified will vary. For example, in the Waterfall model, a re-
quirements engineer tries to capture most of the requirements. On
the other hand, in the spiral model, only a few requirements are
identified in the beginning. Whatever may be the life-cycle model
chosen, to test a program (or, system), a test engineer considers
whatever requirements the program is expected to satisfy. The
requirements might have been specified in an informal manner,
such as a combination of plain text supplemented with equations,
graphics, some flow-charts, and so on. Though this form of a re-
quirements specification may be ambiguous, it is well-understood
by customers. For example, the Bluetooth specification consists of
about 1100 pages of documentation that describes how various sub-
systems of a Bluetooth interface is expected to work. The specifica-
tion is written in plain text form supplemented with mathematical
equations, state diagrams, tables, and figures. For some systems,
requirements might have been captured in the form of use cases,
entity-relationship diagrams, and class diagrams. Some-
times the requirements of a system might have been specified in a
formal language or notation, such as SDL, Estelle, finite-state ma-
chine, and so on. All of these informal and formal specifications

21

22 CHAPTER 3. TEST GENERATION METHODS

are prime sources of test cases.

Source code: Whereas a requirements specification describes the in-
tended behavior of a system, the source code describes the actual
behavior of the system. High-level assumptions and constraints
take concrete form in an implementation. Though a software de-
signer may produce a very detailed design, programmers may in-
troduce additional details into the system. For example, a step
in the detailed design can be “sort array A.” To sort an array,
there are many sorting algorithms with different characteristics,
such as iteration, recursion, and temporarily using another array.
Therefore, test cases must be designed based on what actually a
program does and how it does so by considering the source code.

Input and Output Domains: Some values in the input domain of a
program have special meanings, and hence must be treated sep-
arately. To illustrate this point, let us consider the factorial
function. The factorial of a non-negative integer n is computed as

follows:
factorial(0) = 1;
factorial(l) = 1;
factorial(n) = n * factorial(n-1);

A programmer may wrongly implement the factorial function as
factorial(n) =1 * 2 * ... * n;

without considering the special case of n = 0. The above wrong
implementation will produce the correct result for all positive val-
ues of n, but will fail forn = 0.

Sometimes even some output values have special meanings, and a
program must be tested to ensure that it produces the special val-
ues for all possible causes. In the above example, the output value
1 has special significance: (i) it is the minimum value computed
by the factorial function, and (ii) it is the only value produced
for two different inputs.

In the integer domain, the values 0 and 1 exhibit special character-
istics if arithmetic opeartions are performed. These characteristics
are: 0 * x = 0and 1 * x = x for all values of x.

The summary of the above discussion is that all the special values
in the input and output domains of a program must be considered
while testing the program.

3.2. STRUCTURAL AND FUNCTIONAL TESTING 23
3.2 Structural and Functional Testing

It is clear that a program must be tested with test cases designed
from several sources, such as the specification, source code, and
knowledge of the special properties of the program’s input and
output domains. A test selection technique is called a structural
technique or a functional technique based on the information it
uses to produce test cases.

In structural testing, one primarily examines the source code with
focus on control flow and data flow. Control flow refers to se-
quencing of instructions by using different control methods. Con-
trol passes from one instruction to another instruction in a number
of ways, such as one instruction after another, function call, mes-
sage passing, and interrupts. Conditional statements control the
flow of instruction executions in a progarm. Data flow refers to
the propagation of values from one variable or constant to another
variable. Definitions and uses of variables determine the data flow
aspect in a program.

[Data base?]

In functional testing, one assumes no knowledge of the internal de-
tails of a program. A program is treated like a black box. A test
engineer concerns himself only with what is visible outside the pro-
gram, that is, just the input and the externally visible outcome. A
test engineer applies input to a program, observes the examines
the externally visible outcome of the program, and determines
whether or not the program outcome is the expected outcome.
Inputs are selected from the program’s requirements specification
and properties of the program’s input and outout domains. A test
engineer concerns himself only with the functionality and features
of a program as found in the program’s specification.

At this point it is necessary to make a distinction between the
scopes of structural testing and functional testing. One applies
structural testing techniques to individual units of a large program,
whereas functional testing techniques can be applied to both an
entire system as well as to individual program units. Let us con-
sider a program unit U which is a part of a larger program P.
A program unit is just a piece of source code with a well-defined
objective and well-defined input and output domains. Now, if a
programmer derives test cases for testing U from a knowledge of
the internal details of U, then the programmer is said to be doing

24

CHAPTER 3. TEST GENERATION METHODS

structural testing. On the other hand, if the programmer designs
test cases from the stated objective of the unit U and from his
knowledge of the special properties of the input and output do-
mains of U, then he is said to be doing functional testing.

The ideas of strcutural and functional testing do not give program-
mers and test engineers a choice of whether to design test cases
from the source code or from the requirements specification of a
program. Rather, these techniques are used by different groups of
people at different times in a software life-cycle model. For exam-
ple, individual programmers use both the structural and functional
testing techniques to test their own code, whereas independent test
engineers use functional testing techniques.

Neither structural testing nor functional testing is by itself good
enough to detect all bugs. Even if one selects all possible inputs,
a structural testing technique cannot detect all faults, if there are
missing paths in a program. Similarly, without a knowledge of the
structural details of a program, many faults will go undetected.

[Give an example. Give two sorting algorithms: one iterative and
one recursive.]

Therefore, a combination of both structural and functional testing
techniques must be used in program testing.

