34 CHAPTER 4. PATH TESTING

4.4 Paths in a control flow graph

For the convenience of discussion, we assume that a control flow graph
has exactly one entry node and exactly one exit node. Each node is
tagged with a unique integer value. Also, the two branches of a decision
node are labelled with True(T) or False(F) depending on the control
flow. We are interested in identifying entry-exit paths in a control flow
graph.

A path is represented as a sequence of computation and decision
nodes from the entry node to the exit node. While including a decision
node in a path, we also specify whether control exits the node via its
True or False branch.

In Table 4.1, we show a few paths from the control flow graph of
Figure 4.7. The reader may note that we have arbitrarily chosen these
paths without applying any path selection criterion. In Path 3, we
have unfolded the loop just once, whereas Path 4 unfolds the same
loop twice, and these are two distinct paths.

Path 1 | 1-2-3(F)-10(T)-12-13

Path 2 | 1-2-3(F)-10(F)-11-13

Path 3 | 1-2-3(T)-4(T)-5-6(T)-7(T)-8-9-3(F)-10(T)-12-13
Path 4: | 1-2-3(T)-4(T)-5-6(T)-7(T)-8-9-
3(T)-4(T)-5-6(T)-7(T)-8-9-3(F)-10(T)-12-13

Table 4.1: Examples of path in the control flow graph of Figure 4.7.

4.5 Path Selection Criteria

The objectives of defining path selection criteria are as follows.

e All program constructs are exercised at least once. The program-
mer needs to observe the outcome of executing each and every
program construct, such as statements, Boolean conditions, and
returns, to name a few of them.

e We do not generate test inputs which execute the same path again
and again. Executing the same path several times is a waste of
resources. However, if each execution of a program path poten-
tially updates the state of the system, e.g. the database state, then
multiple executions of the same path may not be identical.

e We know what program features we have tested and what we have
not tested. For example, we may execute an if statement only

4.5. PATH SELECTION CRITERIA 35

once so that it evaluates to True. If we do not execute it once
again for its Fulse evaluation, we are at least aware that we have
not observed the program’s outcome with a False evaluation of the
if.

Now we explain the following well-known path selection criteria.
e Select all paths

e Select paths to achieve complete statement coverage

e Select paths to achieve complete branch coverage

e Select paths to achieve predicate coverage

4.5.1 All-path coverage criterion (Py)

If all paths are selected, then one can detect all faults, except those
due to missing path errors. However, a program may contain a large
number of paths, or even an infinite number of paths. The small, loop-
free openfiles() function shown in Figure 4.3 contains more than 25
paths. Though only eight of all those paths are feasible, one does not
know whether or not a path is feasible at the time of selecting those
paths. If one selects all possible paths in a program, then we say that
the all-path selection crietrion has been satisfied. We denote the all-path
selection criterion by P.

Now we consider the example of openfiles() function. This func-
tion tries to open the three files “filel”, “file2”, and “file3.” The function
returns an integer representing the number of files it has successfully
opened. A file is said to be successfully opened with “read” access if
the file exists. Therefore, there are three conceptual inputs variables to
the function, namely the existence of those three files. The existence of
a file is either “Yes” or “No”. Thus, the input domain of the function
consists of eight combinations of the existence of the three files as shown
in Table 4.2.

For each input, that is each row of Table 4.2, of openfiles(), we
can trace a path in the control flow graph of Figure 4.5. Ideally, we
identify test inputs to execute a certain path in a program-and this
will be explained in a subsequent part of this chapter. We give three
examples of what test input executes what path in Table 4.5.1. In this
manner, we can identify eight possible paths in Figure 4.5. Though the
all-paths selection criterion is desirable from the viewpoint of detecting
faults, it remains as an ideal criterion and may not be achievable in
practice.

36 CHAPTER 4. PATH TESTING

Existence of | Existence of | Existence of
“filel” “file2” “file3”
No No No
No No Yes
No Yes No
No Yes Yes
Yes No No
Yes No Yes
Yes Yes No
Yes Yes Yes

Table 4.2: The input domain of openfiles().

Input Path

< No,No,No> | 1-2-3(F)-8-9(F)-14-15(F)-19-21
<Yes,No,No > | 1-2-3(T)-4(F)-6-8-9(F)-14-15(F)-19-21
<Yes,YesYes > | 1-2-3(T)-4(F)-6-8-9(T)-10(T)-11-13(F)-
14-15(T)-16(T)-18-20-21

Table 4.3: Inputs and paths in openfiles().

4.5.2 Statement coverage criterion (C1)

Statement coverage refers to executing individual program statements
and observing its outcome. If all statements have been executed at least
once, we say that 100% statement coverage has been achieved. Complete
statement coverage is denoted by C1. Complete statement coverage is
the weakest coverage criterion in program testing. Any test suite that
achieves less than C1 for new software is not acceptable. This is because
the programmer must execute the program under various test scenarios
to observe the outcome of executing each and every statement in the
program.

All program statements are represented in some form in a control
flow graph. Referring to the ReturnAverage() function and its con-
trol flow graph in Figures 4.6 and 4.7, respectively, the four assignment
statements

i = 0;
ti = 0;

4.5. PATH SELECTION CRITERIA 37

tv = 0;
sum = 0;

have been represented by node 2. The while statement has been
represented as a loop, where the condition for loop control

(ti < AS && valuel[i] '= -999)

has been represented by nodes 3 and 4. Thus, covering a statement in
a program means visiting one or more nodes representing the statement.
To be precise, covering a statement means selecting a feasible entry-exit
path that includes those nodes. Since a single entry-exit path includes
many nodes, we need to select just a few paths to cover all the nodes of
a control flow graph.

Therefore, the basic problem is to select a few feasible paths to cover
all the nodes of a control flow graph in order to achieve the complete
statement coverage criterion C1. While selecting paths, we follow these
rules:

e Select short paths.

e Select paths of increasingly longer length. Unfold a loop several
times, if there is a need.

e Select arbitrarily long, “complex” paths.

One can select the two paths shown in Figure 4.4 to achieve complete
statement coverage.

SCPath 1 | 1-2-3(F)-10(F)-11-13
SCPath 2 | 1-2-3(T)-4(T)-5-6(T)-7(T)-8-9-3(F)-10(T)-12-13

Table 4.4: Paths for statement coverage of the flow graph of Figure 4.7.

4.5.3 Branch coverage criterion (C2)

Syntactically, a branch is an outgoing edge from a node. All the rectangle
nodes have at most one outgoing branch (edge)—the exit node of a control
flow graph does not have an outgoing branch. All the diamond nodes
have two outgoing branches or edges. Covering a branch means selecting
a path that includes the branch. Complete branch coverage, denoted
by C2, means selecting a number of paths such that every branch is

38 CHAPTER 4. PATH TESTING

included in at least one path. Statement coverage guarantees that all
the outgoing branches from the rectangle nodes are covered, but there
is no guarantee that all the outgoing branches from the diamond nodes
will be covered.

In a preceeding discussion, we showed that one can select two paths,
SCPath 1 and SCPath 2 in Table 4.4, to achieve complete statement
coverage. These two paths cover all the nodes (statements) and most of
the branches of the control flow graph shown in Figure 4.7. The branches
which are not covered by these two paths have been highlighted by bold
dotted lines in Figure 4.8. These uncovered branches correspond to the
three independent conditions

value[i] !'= -999,
value[i] >= MIN,
value[i] <= MAX

evaluating to False. The meaning of these uncovered branches is that as
a programmer we have not observed the outcome of program execution
as a result of the conditions evaluating to False. Thus, complete branch
coverage means selecting enough number of paths such that every con-
dition evaluates to True at least once and to False. at least once.

To cover the branches highlighted by the bold dotted lines in Figure
4.8, we need to select more paths. A set of paths for complete branch
coverage is shown in Table 4.5.

BCPath 1 | 1-2-3(F)-10(F)-11-13

BCPath 2 | 1-2-3(T)-4(T)-5-6(T)-7(T)-8-9-3(F)-10(T)-12-13
BCPath 3 | 1-2-3(T)-4(F)-10(F)-11-13

BCPath 4 | 1-2-3(T)-4(T)-5-6(F)-9-3(F)-10(F)-11-13
BCPath 5 | 1-2-3(T)-4(T)-5-6(T)-7(F)-9-3(F)-10(F)-11-13

Table 4.5: Paths for branch coverage of the flow graph of Figure 4.7.

4.5.4 Predicate coverage criterion (C3)

To explain the concept of predicate coverage, first we refer to the partial
control flow graph of Figure 4.9(a). OBI1, OB2, OBS3, and OB are four
Boolean variables. First, the program computes the values of the indi-
vidual variables OB1, OB2 and OB3-details of their computation are
irrelevant to our discussion and have been omitted. Next, OB is com-
puted as shown in the control flow graph. The control flow graph checks

4.5. PATH SELECTION CRITERIA 39

Initialize: value[], AS 1
MIN, MAX

l

i=0, ti=0, 2
tv=0, sum=0

11 12

av = (double)-999 av = (double)sum/tv

tv++
sum = sum + value[i]

13

return(av)

i++

Figure 4.8: Branches not covered by statement coverage in ReturnAver-

age().

40 CHAPTER 4. PATH TESTING

the value of OB and executes either OBlock! or OBlock2 depending on
whether OB evaluates to True or False, respectively.

We need to design just two test cases to achieve both statement
coverage and branch coverage. To achieve this, we select inputs such
that the four Boolean conditions in Figure 4.9(a) evaluate to values
shown in Table 4.6. The reader may note that we have shown just one
way of forcing OB to True. As a programmer if we select inputs so
that these two cases hold, then we are not observing the effect of the
computations taking place in nodes 2 and 3. There may be faults in
the computation parts of nodes 2 and 3 such that OB2 and OBS& always
evaluate to False.

Therefore, there is a need to design test cases such that a path is
executed under all possible conditions. Referring to Figure 4.9(a), the
False branch of node 5 is executed under exactly one condition, namely
when OBI = False, OB2 = False, and OB3 = Fulse, whereas the True
branch executes under seven conditions.

If all possible combinations of truth values of the conditions affecting
a selected path have been explored under some tests, then we say that
predicate coverage has been achieved. Therefore, the path taking the
True branch of node 5 in Figure 4.9(a) must be executed for all seven
possible combinations of truth values of OB1, OB2, and OB3 which
result in OB = True.

A similar situation holds for the partial control flow graph shown in
Figure 4.9(b), where AB1, AB2, ABS3, and AB are Boolean variables.

Cases | OB1 | OB2 | OB3 | OB
Case 1 T F F T
Case 2 F F F F

Table 4.6: Two cases for complete statement and branch coverage of the
control flow graph of Figure 4.9(a).

4.6 Generating test input

In Section 4.5, we explained the concept of path selection criteria to
cover certain aspects of a program with a set of paths. The program
aspects we considered were all statements, true and false evaluations of
each condition, and combinations of conditions affecting execution of a
path. Now, having identified a path, the question is how to select input

4.6. GENERATING TEST INPUT 41

1 Compute OB1 1 Compute AB1
2 Compute OB2 2 Compute AB2
3 Compute OB3 3 Compute AB3
4/ 0B = OB1 | OB2 || OB3 4/ AB = AB1 && AB2 && AB3

OBlockl OBlock2 ABlockl1 ABlock2

(a) (b)

Figure 4.9: Partial control flow graph with OR operation (a) and AND
operation (b).

42 CHAPTER 4. PATH TESTING

values such that when the program is executed with the selected inputs,
we essentially force the program to execute the selected path. In other
words, we need to identify path forcing inputs. In the following, we
define a few terms and give an example of generating test inputs for a
selected path.

Input Vector: An input vector is a collection of all data entities read
by the routine whose values must be fixed prior to entering the
routine. Members of an input vector of a routine can take different
forms as listed below.

Input arguments to a routine

Global variables and constants
Files

Contents of registers in Assembly language programming

Network connections

e Timers

A file is a complex input element. In one case, mere existence
of a file can be considered as an input, whereas in another case,
contents of the file are considered to be inputs. Thus, the idea of an
input vector is more general than the concept of input arguments
of a function.

Example 1: Referring to openfiles() function of Figure 4.3, an
input vector consists of individual presence or absence of the files
“filel”, “file2”, and “file3”.

Example 2: The input vector of ReturnAverage () method shown
in Figure 4.6 is < value[], AS, MIN, MAX >.

Predicate: A predicate is a logical function evaluated at a decision
point.

Example 1: Referring to the decision node 3 of Figure 4.7, the
predicate is ti < AS.

Example 2: Referring to the decision node 5 of Figure 4.9, the
predicate is 0B.

Path predicate: A path predicate is the set of predicates associated
with a path.

4.6. GENERATING TEST INPUT 43

1-2-3(T)-4(T)-5-6(T)-7(T)-8-9-3(F)-10(T)-12-13.

Figure 4.10: An example of a path from 4.7.

Example: Referring to Figure 4.7, consider the following path:

The above path clearly indicates that nodes 3, 4, 6, 7, and 10
are decision nodes. The predicate associated with node 3 appears
twice in the path; in the first instance it evaluates to True and
in the second instance it evaluates to Fulse. The path predicate
associated with the path under consideration is shown in Figure

4.11.
ti < AS = True
valuel[i] '= -999 = True
value[i] >= MIN = True
valuel[i] <= MAX = True
ti < AS = Fulse
tv > 0 = True

Figure 4.11: Path predicate for the path shown in 4.10.

While identifying a path predicate, we also specify the indended
evaluation of the component predicates as found in the path speci-
fication. For instance, in the above path predicate we specify that
value[i] !'= -999 must evaluate to True. We keep this additional
information for the following two reasons.

e In the absence of this additional information denoting the in-
tended evaluation of a predicate, we will have no way to dis-
tinguish between the two instances of the predicate ti < AS,
namely 3(T) and 3(F), associated with node 3.

e In order to generate path forcing inputs, we must know whether
the individual component predicates of a path predicate eval-
uate to True or False.

Predicate interpretation: The path predicate shown in Figure 4.11 is
composed of elements of the input vector < value[], AS, MIN, MAX >,
a vector of local variables < i,ti,tv >, and the constant -999.

44 CHAPTER 4. PATH TESTING

public static int SymSub(int x1, int x2){
int y;
y =x2 +7;
if (x1 + y >=0)
return (x2 + y);
else return (x2 - y);

}

Figure 4.12: A Java method to explain symbolic substitution.

Local variables are not visible outside a function. Rather, local
variables are used to:

e hold intermediate results,
e point to array elements, and

e control loop iterations.

In other words, they play no roles in selecting path forcing in-
puts. Therefore, we can easily substitute all the local variables
in a predicate with the elements of the input vector by using the
idea of symbolic substitution. Let us consider the method shown
in Figure 4.12. The input vector for the method in Figure 4.12
given by < x1,x2 >. The method defines a local variable y and
also uses the constants 7 and 0.

The predicate
x1+y>=0
can be rewritten as
x1 +x2+7>0

by symbolically substituting y with x2 4+ 7. The rewritten predi-
cate

x1 + x2 +7 >0

has been expressed solely in terms of the input vector < x1,x2 >
and the constant vector < 0,7 >.

4.6. GENERATING TEST INPUT 45

Thus, predicate interpretation is defined as the process of sym-
bolically substituting operations along a path in order to express
the predicates solely in terms of the input vector and a constant
vector.

In a control flow graph, there may be several different paths leading
up to a decision point from the initial node, with each path doing
different computations. Therefore, a predicate may have different
interpretations depending on how control reaches the predicate
under consideration.

Path Predicate Expression: An interpreted path predicate is called
a path predicate expression. A path predicate expression has the
following properties.

e A path predicate expression is void of local varibles. and is
solely composed of elements of the input vector and possibly
a vector of constants.

e A path predicate expression is a set of constraints constructed
from the elements of the input vector and possibly a vector
of constants.

e By solving the set of constraints in the path predicate ex-
pression of a path, one can produce input values which when
applied to the routine will cause the selected path to be exe-
cuted.

e If the set of constraints cannot be solved, there exist no input
which can cause the selected path to execute. In other words,
the selected path is said to be infeasible.

e An infeasible path does not imply that one or more compo-
nents of a path predicate expression are unsatisfiable. It sim-
ply means that the total combination of all the components
in a path predicate expression is unsatisfiable.

e Infeasibility of a path predicate expression suggests that one
considers other paths in an effort to meet a chosen path se-
lection criterion.

Example 1: Consider the path shown in Figure 4.10 from the
control flow graph of Figure 4.7. In Table 4.7, we have shown
the nodes of the path in column 1, the corresponding description
of each node in column 2, and the interpretation of each node in
column 3. For the purpose of convenience, we have highlighted
each interpreted predicate with a box. The intended evaluation of

46 CHAPTER 4. PATH TESTING
each interpreted predicate can be found in column 1 of the same
row.

Node | Node description Interpreted description
1 Input vector:
< value[], AS, MIN, MAX >
2 i=0, ti = 0,
tv =0, sum = 0
3(T) |ti<As
4(T) | value[il != -999 |value[0] != -999|
) ti++ ti=04+1=1
6(T) |value[i] >= MIN |value[0] >= MIN|
7(T) | value[i] <= MAX (value[0] <= MAX|
8 tv++ tv=0+4+1=1
sum = sum + value[i] sum = 0 + value[0]
= value[0]
9 i++ i=0+1-=1
3(F) |ti<4As
10(T) [tv > 0O 1>0
12 av = (double) sum/tv av = (double) value[0]/1
13 return(av) return(value[0])

Table 4.7: Interpretation of path predicate of path shown in Fig. 4.10.

For the sake of clarity, we show the path predicate expression of
the path under consideration in Figure 4.13. The rows of Figure
4.13 have been obtained from Table 4.11 by combining each inter-
preted predicate in column 3 with its intended evaluation found in
column 1. Now the reader may compare Figure 4.11 and 4.13 to
note that the predicates in Figure 4.13 are interpretations of the

4.6. GENERATING TEST INPUT 47

corresponding predicates in Figure 4.11.

0 <AS = True ... (1)
value[0] !'= -999 = True (2)
value[0] >= MIN = True (3)
value[0] <= MAX = True (4)
1 < AS = Fulse (5)
1>0 = True ... (6)

Figure 4.13: Path predicate expression for the path shown in 4.10.

Example 2: Now we give an example of an infeasible path. In
Figure 4.14 we show a path appearing in the control flow graph of
Figure 4.7. The path predicate and its interpretation are shown
in Table 4.8, and the path predicate expression has been shown in
Figure 4.15. The path predicate expression is unsolvable because
the constraint 0 > 0 = True is unsatisfiable. Therefore, the path
shown in Figure 4.14 is an infeasible path.

1-2-3(T)-4(F)-10(T)-12-13.

Figure 4.14: Another example of path from 4.7.

0 < AS = True (1)
value[0] !'= -999 = True (2)
0>0 = True (3)

Figure 4.15: Path predicate expression for the path shown in Figure
4.14.

Generating Input Data from a Path Predicate Expression: In or-
der to generate input data which can force program to execute a
selected path, we must solve the corresponding path predicate ex-
pression. Let us consider the path predicate expression shown in
Figure 4.13. We observe that constraint (1) is always satisfied.
Constraints (1) and (5) must be solved together to obtain AS = 1.
Similarly, constraints (2), (3), and (4) must be solved together.
We note that MIN <= value[0] <= MAX and value[0] '= -999.

48 CHAPTER 4. PATH TESTING

Therefore, we have many choices to select values of MIN, MAX, and
value[0]. An instance of the solutions of the constraints of Figure
4.13 is shown in Figure 4.16.

AS =1
MIN = 25
MAX = 35

value[0] = 30

Figure 4.16: Input data satisfying the constraints of Figure 4.13.

4.7 Examples of test data selection

In this section, we give examples of selected test data to achieve complete
statement and branch coverage. In Table 4.9, we show four sets of test
data. The first two data sets cover all statements of the control flow
graph in Figure 4.7. However, for complete branch coverage, we need
all four sets of test data.

If we execute the method ReturnAverage shown in Figure 4.6 with
the four sets of test input data shown in Figure 4.9, then we notice that
each and every statement of the method is executed at least once, and
every Boolean condition once evaluates to True and once evaluates to
False. In the sense of complete branch coverage, we have thoroughly
tested the method. However, we can easily introduce very simple faults
in the method which go undetected when we execute the method with
the above four sets of test data. Two examples of fault insertion are
given below.

Example 1: Suppose that we replace the correct statement
av = (double) sum/tv;

with a faulty statement

av = (double) sum/ti;

in the method. Here the fault is that the method computes the average
of the total number of inputs, denoted by ti, rather than the total
number of valid inputs, denoted by tv.

Example 2: Suppose that we replace the correct statement

4.7. EXAMPLES OF TEST DATA SELECTION

49

Node | Node description Interpreted description
1 Input vector:
< value[], AS, MIN, MAX >
2 i=0, ti =0,
tv = 0, sum = 0
3(T) |ti<AS
4(F) | value[il !'= -999 |value[0] != -999
10(T) | tv > 0 0>0
12 av = (double) sum/tv av = (double) valuel[0]/0
13 return(av) return((double) value[0]/0)

Table 4.8: Interpretation of path predicate of path shown in Fig. 4.14.

Test data set Input Vector
AS | MIN | MAX | valuel[]
1 1] 5 |20 [10]
2 1 5 20 [-999]
3 1 5 20 [4]
4 1] 5 |20 [25]

Table 4.9: Test data for statement and branch coverage.

50 CHAPTER 4. PATH TESTING

sum = sum + valuel[i];
with a faulty statement
sum = valuel[i];

in the method. Here the fault is that the method no more computes the

sum of all the valid inputs in the array. In spite of the fault, the first set

of test data produce the correct result due to coincidental correctness.
The above two examples of faults lead us to the following conclusions.

e One must generate test data to satisfy certain selection criteria,
because those selection criteria identify what aspects of a program
we want to cover.

e After the coverage criteria have been met, additional tests, which
are much longer than the simple tests generated to meet coverage
criteria, must be generated.

e Given a set of test data for a program, we can inject faults into
the program which go undetected by those test cases.

4.8. EXERCISES o1

4.8 Exercises

Question 1 You are given the following binary search routine in C. The
input array v[] is assumed to be sorted in ascending order, n is
the array size, and you want to find the index of an element x in
the array. If x is not found in the array, the routine is supposed
to return -1. Answer the questions following the routine.

int binsearch(int x, int v[], int n){
int low, high, mid;
low = 0;
high = n - 1;
while (low <= high) {
mid = (low + high)/2;
if (x < v[mid])
high = mid - 1;
else if (x > v[mid])
low = mid + 1;
else
return mid;
}

return -1;

Figure 4.17: Binary search routine.

(i) Draw a control flow graph for binsearch().

(ii) From the control flow graph, identify a set of entry/exit paths
to satisfy the complete statement coverage criterion.

(iii) Identify additional paths, if necessary, to satisfy the complete
branch coverage criterion.

(iv) For each path identified above, derive their path predicate
expressions.

(v) Solve the path predicate expressions to generate test input,
and compute the corresponding expected outcomes.

(vi) Are all the selected paths feasible? If not, select and show
that a path is infeasible, if it exists.

(vii) Can you introduce a fault in the routine so that it goes

undetected by your test cases designed for complete branch
coverage?

52 CHAPTER 4. PATH TESTING

Question 2 The specification of an insert routine is as follows. The
routine accepts four parameters: an integer array (a), the length
of the array (len), the number of valid elements in the array (n)-
the first n elements of the array are considered to be valid, and
an integer (x) to be potentially inserted into the array. If x is a
member of the array, the routine returns n. If x is not a member
of a, and there is space in the array, the routine inserts x at the
end of the valid part of the array and returns n+1. If x is not a
member of the array and there is no space left in the array, then
the routine returns =1. If n < len, there is space in the array for
more elements to be inserted. An implementation of the insert
routine is given below. The caller ensures that len > 0.

static int insert(int a[], int len, int n, int x){
int i; int found = O;
for (i = 0; i <= n-1; i++){
if (a[i] == x){ found = 1; break; }
}
if (found) return n;
else if (n < len) { aln] = x; return n+1; }
else return -1;

Figure 4.18: An insert routine.

(i) Draw a detailed control flow graph for the insert() routine.

(ii) Introduce a fault in the routine by making very small changes
so that the following test cases fail to detect the fault. Explain
why the fault went undetected.

Test case #1
Input: a=10,3,5,7,-1],len =5, n=4,x=4
Expected returned value = 5
State of the array = [0, 3, 5, 7, 4]

Test case #2
Input: a=10,3,5,7,-1],len =5,n=4,x=5
Expected returned value = 4
State of the array = [0, 3, 5, 7, -1]

Test case #3
Input: a=10,3,5 7,len=4,n=4,x=6
Expected returned value = -1
State of the array = [0, 3, 5, 7]

4.8. EXERCISES 53

Question 3 Answer the following questions.

(i) Compare the power of test selection methods based on
statement coverage, branch coverage and predicate cov-
erage.

(ii) Argue that the short test cases designed to achieve state-
ment coverage and branch coverage have weak fault de-
tection ability.

(iii) If the statement coverage and branch coverage critera
produce weak test cases, why should a programmer de-
sign test cases to achieve those coverage criteria?

54

CHAPTER 4. PATH TESTING

