Chapter 4

Path Testing

4.1 Basic Idea

Path testing is a kind of structural testing, which is performed by pro-
grammers to test code written by themselves. Path testing is applied to
small units of code, such as a function. Soon it will be clear that effec-
tiveness of path testing decreases as a programmer applies this to larger
software aggregates, such as a collection of several functions. When
we say test cases for path testing are derived from the source code, we
mean test cases are derived from a program unit, such as a function or
a method, for example, and not from an entire, large program. The
fundamental structural concepts in a program unit are

e Control flow,
e Data flow,
e Path.

Control flow refers to the ordering of instruction execution in a pro-
gram unit. Essentially, it means what is the next instruction to be
executed. Data flow refers to the definition and use of variables in a
program unit. Structurally, a path is a sequence of statements in a pro-
gram unit. Semantically, a path is an execution instance of the unit. For
a given set of input data, the program unit executes a certain path. For
another set of input data, the program unit may execute another path.
Control flow and data flow are said to occur along the executed path.
The main idea in path testing is to appropriately select a few paths in
a program unit, and observe whether or not the selected paths produce
the expected outcome. By executing a few paths in a program unit, the
programmer tries to conclude whether or not the entire program unit

25

26 CHAPTER 4. PATH TESTING

behaves as expected. In fact, a path is any sequence of statements in
a program unit. However, entry-exit paths are naturally selected, be-
cause of the difficulty associated with starting and stopping execution
at arbitrary points in a program unit.

4.2 Outline of Path Testing

The process of generating test input data for performing path testing is
depicted in Figure 4.1 and explained below.

Inputs: The inputs to the process of generating test data and the ac-
tivities are the source code of the progarm unit and a set of path
selection criteria. In the following, two examples of path selection
criteria are given.

Example 1: Select paths such that every statement is
executed at least once.

Example 2: Select paths such that every if statement
once evaluates to true and once to false.

Generation of a Control Flow Graph (CFG): In the first step, a
control flow graph is generated from the given program unit. A
CFG is a detailed graphical representation of a program unit. The
idea behind drawing a CFG is to clearly visualize all the paths in
a program unit. The process of drawing a CFG from a program
unit will be explained in the following section.

Selection of Paths: In this step, paths are selected from the CFG to
satisfy the test selection criteria. Paths are selected by looking at
the structure of the CFG.

Generation of Test Input Data: A path can be executed if and only
if a certain instance of inputs to the program unit causes all the
condition statements along the path to evaluate to true. Thus, it
is essential to identify certain values of the inputs to the program
unit from a given path for that path to execute.

Feasibility Test of a Path: A path is said to be feasible if and only if
there exists an instance of the inputs to the progarm unit, which
cause the condition statements along the path to evaluate to true.
If there is no such instance of the inputs, then we call the path to be
infeasible. The idea behind checking the feasibility of a selected
path is to meet the path selection criteria. If certain paths are

4.3. CONTROL FLOW GRAPH

found to be infeasible, then new paths are chosen to meet

selection criteria, which explains the loop in Figure 4.1.

Path
Selection

Criteria

Program
Unit

Inputs

Control
Flow Graph

Process of generating test input data

Select

Paths

Output

Selected
Paths

Test Input

Generate

Data

Test Input
Data

27

the

Figure 4.1: The process of generating test input data for path testing.

In the following sections, all the steps of the process of generating

test input data from a program unit will be explained.

4.3 Control Flow Graph

A control flow graph is a graphical representation of a program unit.
Three symbols are used to construct a control flow graph, as shown
in Figure 4.2. The rectangle represents a sequential computation. A
maximal sequential computation can be represented either by a single

rectangle or by many rectangles, each corresponding to one statement
in the program.

28 CHAPTER 4. PATH TESTING

We label each computation and decision box with a unique integer
value. The two branches of a decision box are labelled with T and
F to represent the true and false evaluations of the condition inside the
box, respectively. We will not label a merge node, because we can clearly
identify paths in a control flow graph even without explicitly considering
the merge nodes. Moreover, not mentioning the merge nodes in a path
will make a path description shorter.

True False

Computation

Sequential Computation Decision Point Merge Point

Figure 4.2: Symbols in a control flow graph.

To illustrate the process of drawing a control flow graph, let us con-
sider the openfiles() function shown in Figure 4.3. This function has
three statements: an assignment statement int i = 0;, a conditional
statement if (), and a return(i) statement. The reader may note that
irrespective of the evaluation of the condition in the if (), the function
performs the same action, which is null. In Figure 4.4, we show a very
high-level representation of control flow in openfiles() with three nodes
numbered 1, 2, and 3. This control flow graph shows just two paths in
openfiles().

A closer examination of the condition part of the if() statement
reveals that there are not only Boolean and relational operators in the
condition part, but also assignment statements. Some of their examples
are given below:

assignment statements: fptrl = fopen("filel", "r") and i++
relational operator: fptrl != NULL
Boolean operators: && and |].

Executions of the assignment statements in the condition part of the if
statement depend on the component conditions. For example, consider
the following component condition in the if part:

4.3. CONTROL FLOW GRAPH 29

FILE *fptrl, *fptr2, *fptr3; /* These are global variables. */

int openfiles(){
/*
This function tries to open files "filel", "file2", and "file3"
for read access, and returns the number of files successfully
opened. The file pointers of the opened files are put in the
global variables.

*/

int i = 0;

if(
(((fptrl = fopen("filel", "r")) != NULL) && (i++) && (0)) ||
((C fptr2 = fopen("file2", "r")) != NULL) && (i++) && (0)) ||
(((fptr3 = fopen("file3", "r")) != NULL) && (i++))

)3

return(i);

Figure 4.3: A function to open three files.

(((fptrl = fopen("filel", "r")) != NULL) && (i++) && (0)).

The above condition is executed as follows:

Execute the assignment statement fptrl = fopen("filel", "r").
Execute the relational operation fptrl != NULL.

If the above relational operator evaluates to false, skip the evalu-
ation of the subsequent condition components (i++) && (0).

If the relational operator evaluates to true, then first (i) is evalu-
ated to true or false. Irrespective of the outcome of this evaluation,
the next statement executed is (i++).

If (1) has evaluated to true, then the following condition (0) is
evaluated. Otherwise, evaluation of (0) is skipped.

In Figure 4.5, we show a detailed control flow graph for the openfiles()
function.

30 CHAPTER 4. PATH TESTING

4.4 Paths in a control flow graph

For the convenience of discussion, we assume that a control flow graph
has exactly one entry node and exactly one exit node. Each node is
tagged with a unique integer value. Also, the two branches of a decision
node are labelled with True(T) or False(F) depending on the control
flow. We are interested in identifying entry-exit paths in a control flow
graph.

A path is represented as a sequence of computation and decision
nodes from the entry node to the exit node. While including a decision
node in a path, we also specify whether control exits the node via its
True or False branch.

In Table 4.1, we show a few paths from the control flow graph of
Figure 4.7. The reader may note that we have arbitrarily chosen these
paths without applying any path selection criterion. In Path 3, we
have unfolded the loop just once, whereas Path 4 unfolds the same
loop twice, and these are two distinct paths.

Path 1 | 1-2-3(F)-10(T)-12-13

Path 2 | 1-2-3(F)-10(F)-11-13

Path 3 | 1-2-3(T)-4(T)-5-6(T)-7(T)-8-9-3(F)-10(T)-12-13
Path 4: | 1-2-3(T)-4(T)-5-6(T)-7(T)-8-9-
3(T)-4(T)-5-6(T)-7(T)-8-9-3(F)-10(T)-12-13

Table 4.1: Examples of path in the control flow graph of Figure 4.7.

4.5 Path Selection Criteria

The objectives of defining path selection criteria are as follows.

e All program constructs are exercised at least once. The program-
mer needs to observe the outcome of executing each and every
program construct, such as statements, Boolean conditions, and
returns, to name a few of them.

e We do not generate test inputs which execute the same path again
and again. Executing the same path several times is a waste of
resources. However, if each execution of a program path poten-
tially updates the state of the system, e.g. the database state, then
multiple executions of the same path may not be identical.

e We know what program features we have tested and what we have
not tested. For example, we may execute an if statement only

4.5. PATH SELECTION CRITERIA 31

once so that it evaluates to True. If we do not execute it once
again for its False evaluation, we are at least aware that we have
not observed the program’s outcome with a False evaluation of the
if.

Now we explain the following well-known path selection criteria.
e Select all paths

e Select paths to achieve complete statement coverage

e Select paths to achieve complete branch coverage

e Select paths to achieve predicate coverage

4.5.1 All-path coverage criterion (Py)

If all paths are selected, then one can detect all faults, except those due
to missing path errors. However, a program may contain a large number
of paths, or even an infinite number of paths. The small, loop-free
openfiles() function shown in Figure 4.3 contains more than 25 paths.
Though only eight of all those paths are feasible, one does not know
whether or not a path is feasible at the time of selecting those paths. If
one selects all possible paths in a program, then we say that the all-path
selection crietrion has been satisfied. We denote the all-path selection
criterion by Pu.

Now we consider the example of openfiles() function. openfiles()
function tries to open the three files “filel”, “file2”, and “file3.” The
function returns an integer representing the number of files it has suc-
cessfully opened. A file is said to be successfully opened with “read”
access if the file exists. Therefore, there are three conceptual inputs
variables to the function, namely the existence of those three files. The
existence of a file is either “Yes” or “No”. Thus, the input domain of
the function consists of eight combinations of the existence of the three
files as shown in Table 4.2.

For each input, that is each row of Table 4.2, of openfiles(), we can
trace a path in the control flow graph of Figure 4.5. Ideally, we identify
test inputs to execute a certain path in a program-—and this will be
explained in a subsequent part of this chapter. We give three examples
of what test input executes what path in Table 4.5.1. In this manner,
we can identify eight possible paths in Figure 4.5. Though the all-paths
selection criterion is desirable from the viewpoint of detecting faults, it
remains as an ideal criterion and may not be achievable in practice.

32 CHAPTER 4. PATH TESTING

Existence of | Existence of | Existence of
“filel” “file2” “file3”
No No No
No No Yes
No Yes No
No Yes Yes
Yes No No
Yes No Yes
Yes Yes No
Yes Yes Yes

Table 4.2: The input domain of openfiles()

Input Path

< No,No,No > | 1-2-3(F)-8-9(F)-14-15(F)-19-21
<Yes,No,No > | 1-2-3(T)-4(F)-6-8-9(F)-14-15(F)-19-21
<Yes,YesYes > | 1-2-3(T)-4(F)-6-8-9(T)-10(T)-11-13(F)-
14-15(T)-16(T)-18-20-21

Table 4.3: Inputs and paths in openfiles()

4.5.2 Statement coverage criterion (C1)

Statement coverage refers to executing individual program statements
and observing its outcome. If all statements have been executed at least
once, we say that 100% statement coverage has been achieved. Complete
statement coverage is denoted by C1l. Complete statement coverage is
the weakest coverage criterion in program testing. Any test suite that
achieves less than C1 for new software is not acceptable. This is because
the programmer must execute the program under various test scenarios
to observe the outcome of executing each and every statement in the
program.

All program statements are represented in some form in a control
flow graph. Referring to the ReturnAverage() function and its control
flow graph in Figures 4.6 and 4.7, respectively, the four assignment state-
ments

4.5. PATH SELECTION CRITERIA 33

-

ti
tv
sum

O O O O

“e

have been represented by node 2. The while statement has been
represented as a loop, where the condition for loop control

(ti < AS && value[i] '= -999)

has been represented by nodes 3 and 4. Thus, covering a statement in
a program means visiting one or more nodes representing the statement.
To be precise, covering a statement means selecting a feasible entry-exit
path that includes those nodes. Since a single entry-exit path includes
many nodes, we need to select just a few paths to cover all the nodes of
a control flow graph.

Therefore, the basic problem is to select a few feasible paths to cover
all the nodes of a control flow graph in order to achieve the complete
statement coverage criterion C1. While selecting paths, we follow these
rules:

e Select short paths.

e Select paths of increasingly longer length. Unfold a loop several
times, if there is a need.

e Select arbitrarily long, “complex” paths.

One can select the two paths shown in Figure 4.4 to achieve complete
statement coverage.

SCPath 1 | 1-2-3(F)-10(F)-11-13
SCPath 2 | 1-2-3(T)-4(T)-5-6(T)-7(T)-8-9-3(F)-10(T)-12-13

Table 4.4: Paths for statement coverage of the flow graph of Figure 4.7.

4.5.3 Branch coverage criterion (C2)

Syntactically, a branch is an outgoing edge from a node. All the rectangle
nodes have at most one outgoing branch (edge) the exit node of a control
flow graph does not have an outgoing branch. All the diamond nodes
have two outgoing branches or edges. Covering a branch means selecting

34 CHAPTER 4. PATH TESTING

a path that includes the branch. Complete branch coverage, denoted
by C2, means selecting a number of paths such that every branch is
included in at least one path. Statement coverage guarantees that all
the outgoing branches from the rectangle nodes are covered, but there
is no guarantee that all the outgoing branches from the diamond nodes
will be covered.

In a preceeding discussion, we showed that one can select two paths,
SCPath 1 and SCPath 2 in Table 4.4, to achieve complete statement
coverage. These two paths cover all the nodes (statements) and most of
the branches of the control flow graph shown in Figure 4.7. The branches
which are not covered by these two paths have been highlighted by bold
dotted lines in Figure 4.8. These uncovered branches correspond to the
three independent conditions

value[i] '= -999,
value[i] >= MIN,
value[i] <= MAX

evaluating to False. The meaning of these uncovered branches is that as
a programmer we have not observed the outcome of program execution
as a result of the conditions evaluating to False. Thus, complete branch
coverage means selecting enough number of paths such that every con-
dition evaluates to True at least once and to False. at least once.

To cover the branches highlighted by the bold dotted lines in Figure
4.8, we need to select more paths. A set of paths for complete branch
coverage is shown in Table 4.5.

BCPath 1 | 1-2-3(F)-10(F)-11-13

BCPath 2 | 1-2-3(T)-4(T)-5-6(T)-7(T)-8-9-3(F)-10(T)-12-13
BCPath 3 | 1-2-3(T)-4(F)-10(F)-11-13

BCPath 4 | 1-2-3(T)-4(T)-5-6(F)-9-3(F)-10(F)-11-13
BCPath 5 | 1-2-3(T)-4(T)-5-6(T)-7(F)-9-3(F)-10(F)-11-13

Table 4.5: Paths for branch coverage of the flow graph of Figure 4.7.

4.5.4 Predicate coverage criterion (C3)

To explain the concept of predicate coverage, first we refer to the partial
control flow graph of Figure 4.9(a). OBI1, OB2, OBS3, and OB are four
Boolean variables. First, the program computes the values of the indi-
vidual variables OB1, OB2 and OBS&-details of their computation are

4.5. PATH SELECTION CRITERIA 35

irrelevant to our discussion and have been omitted. Next, OB is com-
puted as shown in the control flow graph. The control flow graph checks
the value of OB and executes either OBlockl or OBlock2 depending on
whether OB evaluates to True or False, respectively.

We need to design just two test cases to achieve both statement
coverage and branch coverage. To achieve this, we select inputs such
that the four Boolean conditions in Figure 4.9(a) evaluate to values
shown in Table 4.6. The reader may note that we have shown just one
way of forcing OB to True. As a programmer if we select inputs so
that these two cases hold, then we are not observing the effect of the
computations taking place in nodes 2 and 3. There may be faults in
the computation parts of nodes 2 and 3 such that OB2 and OB3 always
evaluate to False.

Therefore, there is a need to design test cases such that a path is
executed under all possible conditions. Referring to Figure 4.9(a), the
False branch of node 5 is executed under exactly one condition, namely
when OB1 = False, OB2 = Fulse, and OB3 = Fulse, whereas the True
branch executes under seven conditions.

If all possible combinations of truth values of the conditions affecting
a selected path have been explored under some tests, then we say that
predicate coverage has been achieved. Therefore, the path taking the
True branch of node 5 in Figure 4.9(a) must be executed for all seven
possible combinations of truth values of OBI, OB2, and OB3 which
result in OB = True.

A similar situation holds for the partial control flow graph shown in
Figure 4.9(b), where AB1, AB2, AB3, and AB are Boolean variables.

Cases | OB1 | OB2 | OB3 | OB
Case 1 T F F T
Case 2 F F F F

Table 4.6: Two cases for complete statement and branch coverage of the
control flow graph of Figure 4.9(a).

36 CHAPTER 4. PATH TESTING

Entry point i=0

Exit point

return(i)

Figure 4.4: A high-level control flow graph representation of openfiles().

4.5. PATH SELECTION CRITERIA

i=0
2

fptrl = fopen("filel", "r")

37

| 8

fptr2 = fopen("file2", "r")

i

i++
@3
0
F
T

+
1

+
?('
4

—

fptr3 = fopen("file3", "r")

fptr3 1= NULL

18

i++

i++

return(i)

15

Figure 4.5: A detailed control flow graph representation of openfiles().

38 CHAPTER 4. PATH TESTING

public static double ReturnAverage(int valuel[],
int AS, int MIN, int MAX){

/*

Function: ReturnAverage Computes the average

of all those numbers in the input array in
the positive range [MIN, MAX]. The maximum
size of the array is AS. But, the array size
could be smaller than AS in which case the end

of input is represented by -999.

*/

int i, ti, tv, sum;

double av;

i=0; ti =0; tv=20; sum = 0;
]

while (ti < AS && value[i] != -999) {
tit+t;
if (value[i] >= MIN && value[i] <= MAX) {
tv++;
sum = sum + valuel[il];
}
i++;
}
if (tv > 0)
av = (double)sum/tv;
else

av = (double) -999;
return (av);

Figure 4.6: A function to compute the average of selected integeres in
an array.

4.5. PATH SELECTION CRITERIA 39

Initialize: value[], AS 1
MIN, MAX

i

i=0, ti=0, 2
tv=0, sum=0

10

11 12

av = (double)-999 av = (double)sum/tv

tv++
sum = sum + value[i]

13

return(av)

i++

Figure 4.7: A control flow graph representation of ReturnAverage().

40 CHAPTER 4. PATH TESTING

Initialize: value[], AS 1
MIN, MAX

l

i=0, ti=0, 2
tv=0, sum=0

12

av = (double)-999 av = (double)sum/tv

tv++
sum = sum + value[i]

13

return(av) i+

Figure 4.8: Branches not covered by statement coverage in ReturnAver-

age().

4.5. PATH SELECTION CRITERIA 41

1 Compute OB1 1 Compute AB1
2 Compute OB2 2 Compute AB2
3 Compute OB3 3 Compute AB3
4/ 0B = OB1 || OB2 || OB3 4| AB = ABI && AB2 && AB3

OBlockl1 OBlock?2 ABlock1 ABlock2

(a) (b)

Figure 4.9: Partial control flow graph with OR operation (a) and AND
operation (b).

